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HAMILTONIAN FORMULATION FOR THE YANG-MILLS
FIELDS ASSOCIATED WITH ELECTRIC AND MAGNETIC
CHARGES IN THE COULOMB GAUGE*

By M. P. BeNywAL, SuNiL KUMAR AND D. C. JosHI
Department of Physics, Garhwal University**
( Received July 24, 1985; revised version received June 5, 1986; final version received March 6, 1987)

We consider particles carrying both the electric and magnetic charges in the Yang-
-Mills theory. The Hamiltonian formulation for the system has been carried out in the
Coulomb gauge. The zero mode problem associated with the Coulomb gauge has been
taken care of by introducing generalized Green’s functions and imposing the restrictions
of orthogonality of source terms and zero modes. It has been shown that the orthogonality
imposes restrictions on the physical states of the system.

PACS numbers: 11.10.Ef

1. Introduction

It is generally believed that quantum field theory is able to provide a simple, unified
description of all microscopic phenomena. However, there are problems associated with
the quantization of field theories containing a gauge symmetry. It is because of the fact
that imposition of canonical commutation relations may lead to inconsistency with the
gauge conditions [1]. According to usual interpretation of quantum theory, choosing the
Coulomb gauge in the Yang-Mills theory eliminates the redundant degrees of freedom
inherent in gauge theories [2]. Gribov [3], however, has discussed some difficulties associated
with formulating a non-Abelian gauge theory in the Coulomb gauge, which are related
to the existence of zero modes of a particular operator, when ficlds are sufficiently large.
Tyburski [4], in considering a source-free first-order canonical quantization scheme for
a non-Abelian gauge theory, has treated the zero modes by introducing a generalized
Green’s function, which has also been used [5] to remove the zero modes in quantizing

the Yang-Mills theory in the Coulomb gauge. However, the sources in the latter paper
are only ‘electric’ ones.
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In the present paper we consider the sourees as being both electric and magnetic,
and carry out the Hamiltonian formulation for the Yang-Mills theory in the Coulomb
gauge by introducing generalized Green’s functions. The magnetic sources are not of
topological origin [6] but similar to the ones considered by Brandt and Neri [7] in formulat-
ing the non-Abelian classical Lagrangian for point electric and magnetic charges. For
the inclusion of both the sources a non-Abelian field tensor [8] defined in terms of two
potentials has been used. In Sect. 2 the field equations have been derived and time compo-
nents of these equations have been written as the constraints to which the potentials and
field tensor are subjected. The Gribov ambiguity and the necessity of introducing the
generalized Green’s functions to remove the zero modes has been taken up in Sect. 3. In
Sect. 4 the Hamiltonjan formulation has been carried out. Finally, the conclusions are
given in Sect. 5.

2. Field equations

Since we have considered the sources to be both electric and magnetic, similar to point
electric and magnetic charges assumed by Brandt et al. [7], we define a non-Abelian field
tensor [8] as

Fj, = 0,4y—0,A4;+ef A A3 8,,,,(8*B™ — 0°B* + g f***B®B*) M

to describe the system of electric and magnetic charges in Yang-Mills theory. In these
equations A2 and B are two potentials which have been used to avoid string variables,
e and g are the corresponding gauge coupling constants, f** are the structure constants
of the gauge group SU(2) and é,,,,, is the antisymmetric tensor with g, v, ¢, o running from
0 to 3 and

B = 8 o)

In view of the use of two potentials in the field tensor (1) we choose two gauge functions
U and U’ for their gauge transformations

A, »UAU '~ —2— vo, Ut (3a)
and

B,—» UBU' '~ —;— u'e, U, (3b)
where U and U’ may be defined as

U = exp [ —ieA*(x)T*] (4a)
and
U’ = exp [—igh*(x)T"] (4b)
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in which T represent the group generators of the gauge group SU(2) obeying
[Ta,' Tb] = ifabcTc, (5)
A%(x) and A'°(x) are arbitrary real funcﬁons of x. It is easy to see from equations (4) that
eA%(x) # gA'°(x). The field tensor (1) is invariant under gauge functions (4).
F,, - UF, U '+U'F, U ! (6)
provided that the conditions
U'(8,45—8,A5+ef ™AL AYU' ™1 = 0 (7a)
and
U[3 6,,00(6°B*°—6"B* + g f**B¥*B*)]JU ! = 0 (7b)
are also obeyed.
Now the Lagrangian density for the system may be written as
= —5 Fo,F*"+ji A" — kiB", ®

where j; and kj are the electric and magnetic source densities which transform as
ju— UjU™Y (9a)
and
k, > Uk, U1, (9b)
Thus, under the transformations (3), (6) and (9) the Lagrangian density (8) is gauge

covariant. Euler Lagrange variation of the Lagrangian density (8) with respect to the po-
tential A gives the field equations

Dy Fe= j, (10)
where
D} = 8,6 +ef* 4, (11)
is the covariant derivative. The variation of Eq. (8) with respect to the potential B yields
the field equations
D F*e = ke, (12)
where
Dy = 3,6+ gf B! 13)
is another covariant derivative and

F#e = L §WF 14
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is the dual of field tensor F** given by Eq. (1). The field equations derivable from Eq. (10)
and (12) are

D:cFOic — jOa’ (15a)
Djeefroic — goa (15b)

and
DEF = —(j*—DiFe), (16a)
DIseFole — _(kle_ D;acl?-iﬂ'). (16b)

From Egs (15), the time components of field equations (10) and (12), the dependences
between A? and F°* as well as between B and F °“may be observed. The time components
imply the constraints for these dependences.

3. The Coulomb gauge and zero modes

The gauge transformations (3) shall maintain the Coulomb gauge condition

0,42 =0 = §,B? (17a)
in the form
B4 =0 = §,B) (17b)
provided that
DFUU™Y =0 = DF(U'U'™Y). 17¢)

In the Coulomb gauge it is convenient to split the field strengths F°* and F°* jnto trans-
verse and longitudinal parts:

Fola — poiaT__ aiéa (182)
and
FOila _ [fOiaT__ aiéa, (18b)
where
9, F%4T = @ = §,F°T, (18¢)

From the field tensor (1), we may write
Fo% = 0°A"~ 'A% + ef A% A"+ gy (a,B,:+ % o }’B;) (19
and from Eq. (14)

~ e
FOia = aOBia_aIBOa+ gfachObBic__euk (6,A2+ _EfabcArA:) . (20)
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In these equations we are interested in seeing whether the terms (g/2)e,;f**B}Bf and
(¢/2)e;f A4 45, which represent the crossproducts in the gauge group space, may be
written in terms of the gradient of some scalar functions. This requires

&jk0if * EumAtAm = 0 (21a)
as well as

&, f “gumB1 By = 0. (21b)

It may then be observed that Eqs (21) are satisfied if the vector potentials A® and B° are
such that

|AY = |49 (22a)
and
|B| = |B. (22b)

Therefore, assuming the conditions (22) to exist we may write

= s BB = — 39" (23a)

and
e c a
?s,ﬂf’"‘AfA,, = —3'¢", (23b)

where ¢’ and ¢* are the scalar functions. _
From Egs (19) and (20), we may write expressions for 9,F° and 8,F°%, respectively,
which may then be used in Eqs (18) to obtain:
~9,0'%* = —D{0'A% - 0,0'¢" (242)
and
_aiaiéa = _D;acaiBOc_*_aiaigba,‘ (24b)

where we have also used Egs (23). Defining

fe=8-¢" (252)
and
f10=8+9¢" (25b)
Eqs (24) may be written as
D¥3'4% = 9,0 (26a)

and
D{*9'B% = o,3'f". (26b)
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Using Eqs (18), the field Eqs (15) may be written as

D;“@f“ = _j0a+D‘acF0icT (27&)
and '

D;acaiéé = —k%4 D;acﬁoicT‘ (27b)

Now solutions for Eqs (26a), (27a) and (26b), (27b) may be obtained by introducing Green’s
functions G® [5] and G'® respectively, which obey

DG (X, y; A) = —5"6°(x-)) . (28a)
and

D;abaiGle(Sc’, ;; B) — —6“63(§""_57_’). - (28b)
However, Green’s functions are well defined if the operators D;0' and D/#" have no zero

modes. If the gauge functions U and U’ (Eqs (4)) correspond to infinitesimal transforma-
tions

U=exp(ch) = 1+¢eh (29a)
and
U’ = exp (¢'h) = 1+¢'h, (29b)
then gauge transformations (3) become
A} = A;+eD;h (30a)
and
B; = B;+¢'D}*. (30b)
In that case the Coulomb gauge condition is maintained, provided that
D®OR® = 0 = D;®'n® 31

Therefore, when gauge transformations are infinitesimal, the Eqs'(31) become analogue
to Eq. (17¢). However, the Eqs (31) have non-trivial solutions [5] and there exist normaliza-
tion zero modes of operators D,6" and D]’ for sufficiently large A, and B, [3]. Due to the
existence of the zero modes, the solutions of Eqs (26) and (27) cannot be obtained in terms
of Green’s functions given by Eqs (28a) and (28b), respectively. Instead, generalized
Green’s functions G and G’ have to be introduced. These generalized Green’s functions
obey

DPIGH(E-)) = 88— 3)— T h*V(%; HT; 4) (322)
n
and
Di?3'G"™(x—y) = 6°6°(%~5)= T h*™(%; B)h"™(F; B), (32b)
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where h*™ are the zero modes of equations (30) and » is for number of zero modes. However,
for simplicity we assume only one zero mode and also the source terms in equations (26a),
(27a) and (26b), (27b) to be orthogonal to zero modes 4°. Therefore, equations (26a) and
(27a) may be solved in terms of generalized Green’s function G as

A° = Gv*f (33a)
and
& = G(D,F°T—j0). (33b).

Eqs (25a) and (33b) may be solved to obtain
a ~al c et 8 abc c ~ab .
f* = G"D} (F°’ e Bka) - G®j° (34)

and then 4° may be obtained from Eq. (33a) using Eqgs (34) Similarly, Eqs (26b) and (27b)
may be solved by using gemeralized Green’s function G’ Eq. (32b) as

= G'vf’ (35a)
and

¢ = G'(DIF¥T— k% (35b)

again f' may be solved by using Egs (25b) and (35b) to obtain the exact value of B® as
~ ~ers € ~ .
fm = Gme;bc (FOWT“ _2_ gijkfabcA.l;A_lcc> —G’akab. (36)

The solutions of Eqs (26a) and (27a) obtained through Eqs (33) and (34) and those
for Eqs (26b) and (27b) obtained through Eqgs (35) and (36) are subjected to orthogonality
requirements with respect to the zero modes as has been discussed above. The requirements
impose the restrictions

Q = Tr | d®xh(x) [D,F*"(x)~j°] = O, (37a)
R = Tr [ &*Xh(X)V*f(X) = 0, (37b)
and
Q' = Tr [ d*xh(x) [D;F*T(x)— k"] = 0, (38a)
| R’ = Tt | @Xh()Vf'(%) = 0, (38b)

which are essential to obtain the solutions in terms of generalized Green’s functions G and
G’ given by the Eqs (32a) and (32b), respectively.
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4. Hamiltonian

Having solved it for A°, £ and fas well as B®, { and f*, we may now calculate the Hamil-
tonian for the system of electric and magnetic charges. From the Lagrangian dbnsity (8,
the Hamiltonian density for the systeth may be calculated as

H = H 4+ Hp, ‘ (39)
where
H = DoA] j{z_ - (40a)
9(00 A7) .
and
Hyg = — [6087 a(%—% —3] (40b)

to give the total energy of the system as
H = [&x# = [ Px[H -+ 5] 41)
The negative sign in the Eq. (40b) is due to the fact that the variation of Lagrangian density
with respect to Bj corresponds to the dual of field tensor F** (Eq. (1)). From Eq. (40a) we
may calculate the 5, by using Eqs (19) and (18a) as
Hy= —0, AT 2, (42)
Similarly, using Eqs (20) and (18b), s##; may be calculated as
Hy = —(0,BF"T— ). (43)
From Eqgs (19), (18a), (23a), (25a) and (33a), we have
G4y = F, 3.-—(5;—D;(~7V’)f +2,;(9;By) (44)
and similarly using Egs (20), (18b), (25b) and (33b), we obtain
0oB; = F gi—(ai—D;é’Vz)f '_8ljk(ajAk)' (45)
Since G and G’ obey Egs (32a) and (32b), respectively, the right-hand sides of Egs (44)
and (45) are not explicitly transverse unless the Eqs (37b) and (38b) are satisfied. Then we
obtain from the first terms of 5, (Eq. (42)), the following contribution to the Hamiltonian
_ j‘d3;aoAdilF0iaT - jdBE[Fs'il'FOiaT_}_(DlixbébCVZfC)FOiaT

+8; jk(a jB:)FOiaT] . (46)
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Integrating this equation by parts and using Eqs (14), (15a), (16b), (23a), (27b) and

imposing the conditions (37b), we obtain after performing simple calculations

— § d*x0oATFT = [ API[FGIFG] —Ey2¢

+G*f*j°+ Biki — BiDGF°"], 47

which may be used to obtain the Hamiltonian H, from the density (40a) as
Hy = [ 838 4 = [ &[5 {(FG)’+ 0L +(F)} +jiAl “3)

Similarly, Hamiltonian H, may be calculated from the density (40b) as

Hy = [ &35 = [ X[} {(FE)* + 047 +(F)*} + Bikil, (49)

where use has been made of Eqgs (14), (15b), (16a), (23b), (27a) and (38b). However, from
Eq. (14),

ij = % 6jk0iﬁ0ia = —ng (50a)
and
F = 5 8,0F % = Fg, (50b)

we may calculate the total Hamiltonian from Eqs (48) and (49) as
H = | @3[(Fe) +(FeD* +(0.L) + (0. +JiAi +KiB{] (51)
which identifies the Coulombian interaction energy explicitly in the form

H, = [ &[0 +0:£%%) (52)

5. Conclusion

We have carried out the Hamiltonian formulation for the system of non-Abelian
electric and magnetic charges in the Coulomb gauge. The quantization problem of non-
-Abelian gauge theories in the Coulomb gauge is not free from ambiguities [3] in view
of the zero modes associated with the operators D,&* and D;d". However, we have taken
due care of the zero modes, by using generalized Green’s functions and imposing the restric-
tions that the source terms must be orthogonal to the zero modes. The restrictions given
by Eqs (37) and (38) may be interpreted as the restrictions on the physical states Q|yp)> = 0,
Rjp> =0 and Q'ly> =0, R'|y> = 0. Contrary to the magnetic charges of topological
origin [6], we have introduced the point particles, which carry both electric and magnetic
charges. The use of the two-potential approach has been preferred over the controversial
string variables [9]. It may be observed from Eqgs (24), (25) and (26) that contrary to electric
case, we need to introduce another functions ¢ and ¢’ which are defined by Eqgs (23). It may
also be observed from Eq. (52) that contrary to electric case, the contribution to the Coulom-
bian interaction energy is due to two different scalar functions ¢ and { whose solutions
are given by Eqgs (33b) and (35b), respectively.
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