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CLASSICAL YANG-MILLS THEORY IN PRESENCE OF
EXTENDED ELECTRIC AND MAGNETIC SOURCES*
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The Yang-Mills field equations in presence of extended electric and magnetic sources
have been considered and the solutions have been obtained by formulating the equations
as an initial value problem in temporal gauge. For spherically symmetric electric and
magnetic source distributions, the totally screened solutions with arbitrary low energy
have been obtained. The static solutions for the noh-spherically symmetric sources have
also been obtained.

PACS numbers: 03.50.Kk

1. Introduction

The Yang-Mills field equations in presence of static sources have been discussed
by Sikivie and Weiss [1] in the temporal gauge as an initial value problem. Considering
the static sources as both electric and magnetic, we have studied in an earlier paper {2]
the classical Yang-Mills field equations and have formulated them as an initial value
problem in the temporal gauge. The initial value problem was applied to discuss the Yang-
-Mills fields produced by a system of point dyons and it was observed that there exist
different solutions differing in their total energy and isospin.

Extending this approach in the present paper, we incorporate the extended electric
and magnetic sources and obtain the solutions to the Yang-Mills field equations. The
extended electric and magnetic sources have been taken as both spherically symmetric
and non-spherically symmetric ones. The former have been considered as having finite
or infinite extensions. As regards the spherically symmetric source distributions it has been
found that the totally screened Coulombian solutions with arbitrarily small energies are
possible, while in the case of non-spherically symmetric sources the multipole moments
exist which must vanish in order to allow static solutions of the Yang-Mills fields.

* Work under project HCS/DST/1081/81.
** Address: Department of Physics, Garhwal University, P.O.Box 25, Srmagar (Garhwal) 246 174,
India.
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2. The electric and magnetic sources and initial value problem in temporal gauge

We consider the nontopological electric and magnetic sources and introduce [2] the
following non-Abelian field tensor to describe them:

Fg, = 0,45—0,A,+ef " A A~} 8,,,,(0°B™ — 6°B* + gf *“B*B™), ¢Y)

where 45 and B, are the two non-Abelian potentials, e and g are the corresponding coupling
parameters, f*° are the structure constants of the gauge group SU(2) and O ,vg0 I8 the anti-
symmetric tensor. The potentials 4, and B obey the gauge transformation

‘a I .
Af->UAU - :(apb)v ! (2a)
and
1
B: > U'BU '~ —(3,UU'", (2b)
g
where
U = e—iei.“(x)Ta (33)
and
U' = e”W¥"OT° (3b)

in which 4°(x) and A%(x) are the constant matrices and 7° the group generators of SU(2).
The field tensor (1) is form-invariant under the transformations (2):

Fi, - UF, U '+U'F,U™? )

provided the subsidiary conditions

U[0,,0,(0°B*—0"B* + g fOBPBIUT = 0 (5a)
and
U'[@,,Av——ayA,,+ef""‘A,'jA‘j]U"‘ =0 (5b)

are observed.
The Lagrangian density for the system may now be written as

& = — % FL P 4j A" —kiB ©)
in which j; and kj are respectively the electric and magnetic source densities obeying

.= U Ut (7a)
and

ki, - U'k,U'"". (7o)



1089

The Lagrangian density (6) is now invariant under the transformations (2), (4) and (7)
and its Euler-Lagrange variation gives us the following symmetric field equations

D“Fuva = jva (83.)
and
D "‘ Frve K, (8b)

where F** is the dual of the field tensor (1)

e = % 5uvacF oo ®
and

D, = d,+ef*A}, (10a)

D, = d,+gf"B, (10b)

are the covariant derivatives. It may be observed from the gauge transformations (2) that
the gauge functions U and U’ allow us to consider

A = AT* =0 (11a)
and
B® = BYT° =0 (11b)

simultaneously as the temporal gauge conditions for the system. Now, considering the field
equation (8) under the temporal gauge conditions (11) we may obtain

8% = 8, Fe y efbeqbpiie (12a)
0,FO15 4 g e gPF0e — ;08 (12b)
BoA™(X, 1) = FO(X)+£,30;B5(x, 1)+ ;f “enBi(%, DBi(x, 1) (12¢)

and
B, = 2 Fiiy gf”ch?ﬁjic (13a)
0,0y gpobepgboic _ | 0a (13b)

8B (%, 1) = FO(3)—e,30,45(%, 1)
e - -
- —EfabcgijkAg(xa t)Ali(x, t)a (130)

where the sources have been taken as static. If we now assume that the small fluctuations
in potentials are allowed and potentials obey [3], then:

AYR, 1) = A%X)+al(x)etor (14a)



1090

and
Bi(x, 1) = BY(x)+bi(x)e* >, (14b)
where af(X) and bf(X) are the small perturbations on the potentials; S = \/—1, w, and

, are the frequencies of eigen-modes which determine [4] the Abelian and non-Abelian
character of potentials. Now, substituting (14b) into (12c) we may obtain

BoA (X, 1) = P(X)+Q(¥)e" + R(X)e*5*7, (15)
where
P(R) = FO%) 48, [a BY() + g f"”‘B”’(EE)B"‘(})] (16a)
0(x) = e [6,-b*“<5c’)+ %f"“B"”(:’c’)b"°(5c’>+b"”()'c’)B“(:?)] (16b)
and
RG) = 2™ oub (D). (160)

Now, integrating equation (15) from the initial time #, to time ¢, we may obtain

A(x, 1) = P(x) (t—to)— 53—(:) (%% — 50y — “%(zx) (2597 — g2503t), an
from which we may obtain the initial time value of
A"(x, 1) at t=1, as
A%, D)lymgy = O. (18)

Similarly, substitution of (14a) into (13c) would yield the vanishing initial value for B“(x, ):
B“(%, 1)),y = 0. (19)

These vanishing initial values would help eliminate the nonlinearity from the Yang Mills
field equations.

3. The extended static sources

When the point particle is assumed to carry both the electric and magnetic charges
we have the case of point dyon [2]. Now we consider that eleciric and magnetic charges
of dyon have no d-function singularities but instead have spherically symmetric distribu-
tions

4(r) = g(x) = C exp(—cr) (20a).
q44(r) = qX) = D exp{(—dr) (20b)
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for r = |x| = oo,

where C and D are constants, and ¢ and 4 are the positive quantities. Since, in view of
equations (20), the electric and magnetic charge distributions have infinite extensions,
the total electric and magnetic charges may be given by

Q. = j'm4nr2q¢(r)dr (2ta)
0
and

Q, = ?Mcrzq,(r)dr. (21b)
0

The total charges (21) may, however, be looked upon as the sum of the charges between
origin and a certain radius r and charges between r and co. If 4,(r) and A (r) be the respective
fractions of total electric and total magnetic charges outside the radius r, we may write

-+

h(r) = Qi f4nr2q,(r)dr (22a)

e
r

and
hy(r) = —1-— J4nr2q,(r)dr. (22b)
2,

It may be observed from equations (20) that as r —» oo, g(r) - 0. Therefore, equations
(22) imply

_ 2 a0

= 23
¢ 4nr® dr (232)
and
Q, dh,(r)
_ ' 23b
% 4nr?  dr (23b)

Since we are considering the source distributions as static, and static source distribution
only ‘rotates’ in the internal isospin space [1], we may assume that electric charge rotates
about the 8°! axis while the magnetic charge about 4** and thus the general electric and
magnetic charge distributions may be given by

4’(") = q.(r) [6*® cos (2rnh,(r))+ % sin (2nnh(M)], (24a)
and

a5(r) = q,(r) [0 cos (21mh‘,(r))+5"2 sin 2anh,(r)], (24b)
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where # is an integer and 6%, i = 1, 2, 3 denote isotopic spin directions. Let us assume that
there exists a gauge in which electric charges is aligned along 5*® and magnetic charge
along 8°'. That is in this gauge

gir) = g.(ré” (25a)
and

qi(r) = gq,(r)é". (25b)

This description is reminiscent of Zwangiger’s [5] generalized charge vector, whose two
vector components represent the electric and magnetic charges on the particle. The configu-
ration (25) may be obtained from the general charge distributions (24) by their rotations
about respective axes. It may be observed from equation (24) that when h(r) and h(r)
have values 1 and 0, the equations (24) transform into (25). Also from the equations (22)
and (21) we may notice that when r — 0, k(r) - 1 and when r — 0, h(r) - 0 and so does
the h,(r). Therefore, the electric charges are aligned along 5°® and magnetic charges along
5°! at both r = 0 and r = oo. However, h(r) and 4 (r) may also have the values between
1 (at r = 0) and O (at r = ), such as

1
ho(r) = = = hy() (26)

resulting that the configuration (25) will not be obtained from (24). This indicates that
between r = 0 and r = oo, the alignment of eleetric and magnetic charges would change
from the one along 6° and §°" axes, respectively. Therefore, to have the charges maintain
their alignments along the desired axes all through, we must ascribe large values to the

1
integer n, such that o of Eq. (26) tends to zero.
n

4. The solutions

(a) Spherically symmetric source distributions having finite extension

Let us consider that the electric and magnetic charges are spherically symmetric and
extend up to a distance r, only, from the origin. To obtain the solutions of the Yang-Mills
field equations (8), the nonlinear terms must be taken care of. For the Coulomb solutions
to the field equations (8), the nonlinear terms may be eliminated by setting

Ay(x) = 5“3V“(x) (27a)
and

Bi(x) = 6" W,(x), (27b)
where the source distributions are given by the configurations (25). When the electric and

magnetic source distributions are spherically symmetric but confined to a radius ro, the
electric and magnetic fields produced by these sources may be expected both inside and
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outside ro. For r > ry, the outside region, we may observe that the ansatz (27) reduces
field tensors (1) to its Abelian counterpart ‘

T = (0,V,—0,V,) =% 8,y0e (W — W5 (28a)
and its dual to
f :v = (anwrv _aqu) +’:lf 5””(60‘/6_6“/0)513 (28b)

such that the Yang-Mills field equations in temporal gauge conditions (11) assume the
linear forms

o = jo (292)
and
af % = k%, (29b)

where j% = gi(x) and k° = g%(x) denote the static sources. From these equations the
electric and magnetic fields produced by static electric and magnetic sources may be cal-
culated by using equations (23) and integrating them

9.

1o = 7 (30a)
and
7o = Do gy (30b)
4wt T

where we have used A(0) = 1 and A(r > rg) = 0.

Now we make use of the observation [1] that in SU(2), a source aligned along +6* may
be locally changed to —&%. Therefore, if we assume that the region 0 < r < r, is divided
into even number of shells and if a source is aligned along a particular isotopic axis in
a shell, the alignment will be in the reverse direction in the adjacent shells. Thus, when
each of the shell carries an equal total isotopic charge the net charge in the region 0 < r

< ro would be zero. In the present case, the sources are both electric and magnetic and the
total isotopic charge is

I =0Q5%+0Q,0". (31)

Since source alignments along either of the isospin axes may be reversed locally, the net
electric and net magnetic charges in the R.H.S. of the field equations (29) for the region
0 <{r < r, would be zero and obviously the solutions of field equation (29) would have
vanishing electric and magnetic fields. If we now write the constraints (12b) and (13b) as

8, F% = jo— ef A[F* - (322)
and

d, F“'Ota = k% — g fabc B? F~Oic, (32b)
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where nonlinear terms which also act as charge distributions have opposite sign to the
source distributions j° and k°°, we observe that these charge distributions provide screening
to the source distributions and when they become equal, the R.H.S. of equations (32)
become zero and the screening is total. In the present case the nonlinear terms vanished
due to the ansatz (27) and source terms due to their locally changeable alignments. Thus
the solutions discussed above are obtained for the totally screened electric and magnetic
fields and their energy may be made arbitrarily small by making the number of shells
large.

(b) The spherically symmetric distributions with infinite extensions

We considered in (a) that the extension of the sources was finite and that beyond r > r,
the source distribution vanished. Now, if the source distributions have infinite extension,
a certain fraction of the total charge would:-be outside r,. These fractions have been defined
by h(r) and A (r) given by equation (22) and the corresponding electric and magnetic source
distributions are expressed by equations (24) for which the field equation (29) may be
written as

(33a)

. dh
0,f%% = — -Q-_"z (6°3 cos (2anh,(r))+6°* sin Qrnh(r )
4zr dr

Qa

0, f% = 2 —2_ (6" cos (2nnh,(r))+6°* sin (2nnh ( )

(33b)

where we have used equation (23) in source equation (24). Integrating equation (33) and
using A4,0) = 1 = h,(0) the solution to the field equations may be obtained as

foe = 4% 2‘ {6°%(cos (2nnh (r)) — 1) — 6 sin (2nnh (1))} (34a)
and
i
fora 11%' 5 {6"%(cos (2nnh,(r))—1)— &' sin (2&nh,(r)}. (34b)

Under ansatz (27) the equations for the potentials viz. (12c) and (13c) become

47 = [Fow(;)‘*“sazsijkajm&)]t (352)
and

B} = [FO(x)~5"%;30,Vi(%)]t. (35b)
Therefore, for the source distributions (24) the complete solutions are given by the temporal
gauge conditions (11) and the equations (34) and (35). Now, the configurations (25) may

be obtained from (24) by rotating them in the opposite sense through 2nnh(r). The corre-
sponding solutions may be obtained from equations (34) and (35) as

3=0
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A3, £) = [fO%3) + 66,40, Wi ()]t — 8" e~ 'V(2mnh (1))

Qe r

¥ 2nn

o) = — {5°%(1 —cos (2mnh (r))) — 8 sin (2nnh(r))} (36a)
and
0=20

Bi, 1) = [FOx) — 66,0, Vi(D)]t — 0P g~V Q2rnh (7))

Qg r

A Jom — {6°%(1 —cos (2rnh,(r))— 6* sin (2rnh,(r))}, (36b)

me( )

where r = |X].

In the limit of 4,(r) and A,(r) > O these fields reduce to the totally screened electric and
magnetic fields obtained under sources with finite extension. A similar result is obtained
for n — o0, i.e. when the number of shells is large. Since we require large », so that the
alignment of the sources is maintained throughout the space, the fields (36) will essentially
be totally screened. The energy of the solutions (36) may be computed -from

H = | [faGfa) +Fa(0f el 0)]d’x &)

to give

1 sin (nnh ) siﬁz (nnhy(r))
= dr+ —dr . 38
n(2nn)* [Q f r? +0 r? F (38)
0 (1]
The integration of (38) shows that for'r = 0, the energy becomes infinite. For the energy
to be finite we must have ‘

h(0)—h(r) = r™% = hy(0)—h,(r). (39)

We may also observe that since » is large, the energy (38) of the solutions (36) tends to
smaller values when n — oo, H — 0 which suggests that arbitrary small values of energy
are possible for the solutions (36).

{(c) The nonspherically symmetric sources

When the source distributions deviate from spherical symmetry, the ansatz (27)
eannot be used to eliminate the non-linearities in the field equations (8). For such non-
spherical source distributions, the Yang-MxIls field equations (8) may be solved through
the temporal gauge conditions (11). Under these conditions the field equations (8) assume
the forms (12b) and (13b), respectively, which can be solved through the initial value
problem. For this purpose we observe from the field equations (8) that

D,D,F* = D,D,F* =0 (40)
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and from (12a) and (13a) in temporal gauge

D,F* = D,F* = 0. (41)
The equations (40) and (41) then tell us that under the temporal gauge conditions (11),
0o(DiF)" = 8oj°%(x) = 0 (422)

and also
3o(DiF%)® = 9,k%(X) = 0. (42b)

These equations imply that the constraints (12b) and (13b) are time independent and
therefore it will be sufficient for 4’, B, F® and F°“ to satisfy these constraints at 7 = ¢,
to satisfy the constraints for all time [1]. Considering equations (12b) and (13b) at the initial
time ¢ = t,, their nonlinear terms may be eliminated by using vanishing initial values
of potentials given by equations (18) and (19). The equations (12b) and (13b) then become

8 = q¥x), (432)
o7 = q3(%), (43b)

where x* and 7 are the initial time values of the fields F°* and F°", respectively, q%(x)

and qg(x) are'not spherically symmetric now. The solutions for these equations may there-
fore be obtained at ¢ = ¢;, as [6]:

A2 =0, A,..o

—f ks (), "; (44a)

and

Bo =0, B!=0,

f0ia _ i 33 ac X, - %]

F = 4n_fd x'qg(x) ];_?13 . (44b)
The energy corresponding to these solutions will be given by equation (27), F3; and F3, are
taken from the solutions (44). It may then be observed that due to nonspherlcal symmetry,
g°(X) # q°(r) implying that for same |x| = r, there will be different ¢°(x), so that the
energy of the solutions which correspond to the same [x| = r will be different. Obviously, -
the corresponding total isotopic charge will also be different, The solutions corresponding
to the time development may be obtained from (12a), (13c) and (13a), (13c) and they will
not be static in general.-However, static solutions may be obtained if an arbitrary number
of multipole moments of both electric and magnetic sources vanish. To obtain this, we
consider that electric and magnetic sources may, be represented as

gs(r) = 5°g3(r) (452)
and ¢ .
as(r) = 5" g}(r), (45b)
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where g3(r) = +g.(r) in some regions S, and equal to —g,(r) in regions S.. We assume
that similar situation exists for magnetic charges as well, in regions S; and S_. The multipole
moments of these source distributions may be written as

i = 0% [ 11 Y1(6, $)q2(r)d’r (46a)
and

04, = 8 [ 'Y (6, §)gy(n)d’r, (46b)

where Y,,(6,¢) denote the normalized spherical harmonics, and asterisks denote complex
conjugates. If the regions S, and S_ are chosen in such a way that the arbitrary multipole
moments vanish, i.e.

O = 6 [ (Ym0, §) [r"—r"1d’r = 0, 47

where r is for the region S, and r’ for S_, then the configuration (44) will yield static solu-
tions. :

5. Discussion

We have obtained the solutions to the Yang-Mills fields in presence of extended electric
and magnetic sources. The sources considered were both spherically symmetric and non-
spherically symmetric. In the former case, the general electric and magnetic source distribu-
tions were described by equations (24) which were then aligned along respective axes as
in equations (25). It has been observed that the alignment of sources is maintained according
to (25) at both r = 0 and r = o, while a change in alignment is observed when equation
(26) is valid. However, the same has been restored by ascribing large value to the integer.

The nonlinearities in the Yang-Mills field equations (8) have been overcome through
ansatz (27) in the case of spherically symmetric source distributions and through the initial
values (18) and (19) in the case of non-spherically symmetric sources. The solutions (35)
differ from the purely electric case [1] in that we have an additional term in terms of poten-
tials of equation (27). A similar observation may be made with respect to solutions (26).
The energy of the solutions given by equation (38) has been found to be finite if 1 — A(r) ~ r*,
where & > £, which implies that ¢,(r) and g,(r) must be more singular than r~%? in the
case of non-spherically symmetric source distributions, The deviation from spherical
symmetry gives rise to multipole moments whose arbitrary number must vanish in order
to obtain the static solutions.
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