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It is studied to what extent the QED bremsstrahlung effects may obscure the eéxperi-
mental verification of the standard electroweak theory by means of measuring quantities/distri-
butions related to T spin polarization in the v production process around the Z, resonance.
In'the presented investigation the following effects are taken into account: single hard brems-
strahlung froim e® and ©, leading one loop corrections of the standard theory, longitudinal
spin polarization of e and the spin polarization effects in T+~ decays All numerical results
are obtained using a Monte Carlo event generator for the combined 'r production and decay
process. It is shown that the radiative effects are definitely less snable on the top of Z, than
off the peak. They depend strongly on kinematical cut-offs used to eliminate the hard brems-
strahlung effects. Also a number of analytical calculations are presented, notably a new
simple parametrization of the hard bremsstrahlung spin amplitudes.

PACS numbers: 12.15.1i

1. Introduction

The last two decades brought up a new picture of fundamental interactions of elemen-
tary particles. Standard Model based on the gauge group SU(3) * SU(2) « U(1) and three
families of leptons and quarks seems to agree rather well with a wide range of the presently
available experimental.data.

Even though Standard Model is renormalizable and anomaly free, presence of about
20 free parameters in the basic theory is a strong indication of our incomplete ms1ght in the
underlying dynamics.

The QCD sector of the Standard Model agrees rather well with pxperlment although
it is plagued with problems due to confinement and weakly convergent perturbative expan-
sion.

On the other hand, electro-weak interactions as descnbed by the Glashow-Salam-
-Weinberg model [1] are free of these difficulties and theoretical predictions can be obtained
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in principle, with high precision. The QED sector of the Standard Model is confirmed
by experiment with high precision and over a wide range of energies and processes. In
particular, QED radiative corrections are in spectacular agreement with experiment.

Situation in the remaining non QED part of the GSW model is different. Even its
basic assumptions, like universality of coupling constants in the fermionic sector and gauge
nature of intermediate heavy bosons are rather far from being fully confirmed by experi-
ment.

The e+e— scattering experiments of SLC and LEP [2, 3] will open a new field for precise
tests of the GSW model in 2 more complete form.

Due to complexity of the modern high energy experiments, to presence of multi-
particle final state phase space, and to complicated structure of cut-offs used to define
observables, it is often not enough to present theoretical predictions in a form of formulae
or tables. A definitely better method of representing theoretical predictions is to implement
them in a form of the Monte Carlo event generator. Then, the influence of all apparatus
effeets and cut-offs on the measured observables can be brought under control much more
easily.

Background problems, often present in the data analysis, are also more efficiently
handled using a packet of the M. C. programs. Typically, a M. C. event generator used
to analyze data for one process is also used to estimate background for another process.

In this paper I will concentrate on the combined process of production and decay
of t-pairs in the Z, region. A unique property of this reaction is that the spin polarization
of the final state t-lepton cam be measured using its decay products (without any additional
investment in the detector). This measurement will play a role of the important data point
for the.precise tests of the Standard Model, almost as important as Z, mass or muon
forward/backward asymmetry.

In practice, the polarization measurement, as other quantities measured in ete~
scattering, will be a subject to familiar problems, which are due to a complicated interrela-
tion of the experimental cut-offs with the QED bremsstrahlung effects. Fortunately these
effects are calculable and, in the data analysis, may be accounted for with arbitrary preci-
sion. To this end one needs a good M. C. event generator simulating T pair production
and decay, which includes QED hard bremsstrahlung and other QED/GSW radiative
corrections. The M. C. programs of this type will be indispensable in the precise compari-
sons of the GSW model with the experimental data in LEP/SLC experiments.

Since the ultimate precision goal for-many measurements in LEP/SLC experiments
is 1% or even less (one expects to measure Z, mass and width with accuracy up to 10-
-20 MeV Muon forward/backward asymmetry with accuracy of 0.002 and t polarization
with accuracy of 0.015 [4]), therefore on should envisage 0.1% accuracy level as a desired
target for the M.C. program dedicated for T production and decay process. This means
that terms of order («/n In (S/m2))?, o/n In (S/m?) and o/n should be kept in the calcula-
tions. Terms like m?/S for S ~ M2 may be safely neglected.

The goal of this paper is twofold. First it collects spin amplitudes and related formulae
needed for the next Monte Carlo program [5] of the ultimate precision 0.1 7. On the other.
hand, it also presents some numerical results obtained using the intermediate Monte
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Carlo program, based on the modified muon Monte Carlo program of Ref. [7], which
serves to estimate effects of radiative corrections in SLC/LEP] energy range with accuracy
of about 1%. More precisely it takes care of all effects of order a/r In (S/m?) and of many
effects of order afn, in a complete GSW model, including hard QED bremsstrahlung.

2. Spin amplitudes and photon spectra

It is known [8, 9] that spin amplitudes are very useful in numerical calculations of
differential cross-sections especially in the case of processes with spin effects and/or for
processes with a large number of Feynman graphs.

Spin amplitudes are shorter and easier to control. They will certainly be used to facili-
tate many calculations in the order O(«*) QED processes; like double bremsstrahlung
[10], or multifermion final states [9]. The above methods, based on spin amplitudes, are
especially efficient when combined with the M.C. integration over the phase space.

The reasons for great simplifications resulting from the use of spin amplitudes, as
compared with classical method based on calculating analytically contributions to the
differential cross-section prior to numerical evaluation, are rather simple. Typically number
of terms in an analytical expression for the differential cross-section is roughly proportional
to the square of number of Feynman graphs (note that there are 8 graphs for the reaction
ete— — v+t~ and 108 for the reaction ete- — e*eete), while typically a number of terms
in spin amplitudes grows linearly with the number of graphs.

Analytical formulae for the differential cross-section also become longer when one
allows for many polarized particles (both in the initial and final state). In the Monte Carlo
calculations combined with methods based on spin amplitudes this problem can be solved
by the numerical contraction of spin amplitudes with density matrices or decay distribu-
tions [11].

In this Section I shall present spin amplitudes for the process ete~ — t+t—(y) in a form
suitable for the precise (~0.1%) M.C. calculations around Z, peak.

Contributions from different QED gauge invariant groups of graphs are separated.
The amplitudes are expressed using a set of independent variables which nicely parametrize
spin amplitudes, and which may also be used to parametrize in a natural way two or three
particle final state phase space. This parametrization will also be useful in constructing
an efficient Monte Carlo algorithm.

Spin amplitudes and phase space are normalized as in [13]. The formulae are in a form
ready for the extensive fast and exact numerical evaluation. In particular our formulae
do not contain numerically large contributions which cancel one another, and thus leading
to machine precision problems. Phases of spin amplitudes are under control, ultraviolet
singularities are removed but infrared are kept in an explicit form.

2.1. Phase space and notation

In this Subsection I shall present spin amplitudes for the process e*e~ — t+T(y)
in the limit 2m/,/S — 0. As in Refs [6, 7] only these terms O(2m,/,/S) in the spin ampli-
tudes are kept which give nonvanishing (in the limit m_ — 0) contribution to differential
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cross-section. These amplitudes will be useful in the future calculations on the higher
precision level (~0.19%). Note that corrections of O(a/n) which result from the collinear
hard bremsstrahlung are kept under control.

In the QED cross-sections sharp peaks are present. This is the reason why parametriza-
tion of the phase space should be carefully chosen such that it suits the structure of the
singularities,

I parametrize the phase space in the same way as in the older calculations for t pair
production at lower energies [8, 11, 14, 15] (see also Fig. 1). A dominant singulariiy (of
infrared origin) is of the type 1/k = EJE, where E, is photon CMS energy and E = \/§/2
is a Center of Mass System (CMS) electron beam energy.

I divide the phase space into two parts: soft, where real photon is absent in the final
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Fig. 1. Kinematics of the a) e*e~ — v*7~, b) ete~ — 1ttty processes. Boxes represent reference systems.
They are connected by Lorentz transformations marked on arrows. Most important reference frames are:
the Laboratory Reference system CMS, the rest system of the v+~ pair QMS, the rest systéms of 7% Jeptons
RS(t%) used to quantize v¥ spins and to simulate decays.in the M.C. algorithm and the et rest systems
RS(et) where the e* polarization vectors are defined, Other intermediate systems were used for calculating
spin amplitudes, to define polarization vectors of intermediate photon, etc. Ri(«) denotes rotation around
i-th axis by the angle @. B{&) denotes boost along i-th axis with boost parameter &
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state or its energy is small, k < k,, and hard, where energy of the photon in the CMS
is higher than a certain threshold value, k > k, (typically ko, ~ 0.01).
In CMS positron and electron four-momenta are defined as follows

D = (E9 07 03 E)s P2 = (E’ 05 05 _E)' (1)

If real photon is absent (or soft) it is enough to introduce two angles 0 and ¢ to param-
etrize a two body phase space, then t+ and 1~ four-momenta are defined in the CMS as
follows

1 = (E, —$,SE, ¢,SE, cE), q, = (E, s,SE, —c,SE, —cE). )]

Here the following short hand notation is used ¢ = cos (6), s = sin (0), ¢, = €08 (@),
5, = sin (¢). The element of the two particle phase space (multiplied by the flux factor) is
2.2

d Lips, = 2% 4o 3

ips; = 7o dQ. 3)

Here dQ = dcdgp, m, and m, denote-electron and © masses. I list also here some variables

and abbreviations used later to define spin amplitudes: c, = cosh (y.) = E/m,,

¢, = cosh(n,) = Ejm,, { = (S—M?)/S, y = 'M|S. M, I' denote Z, mass and width (on
Z, peak).

In the hard photon case, in addition to its energy k, one has to introduce four angles
01, 0;, ¢y, @, to parametrize the 3-body. phase space. Here 6, denotes an angle betwéen
photon and et momenta in the CMS system, 6, denotes an angle between photon and
Tt momenta in the QMS system (see Fig. 1). Angles 0,, 0, parametrize in a natural way
the collinear bremsstrahlung singularities of initial and final states. An angle ¢, is defined
(up to a sign and +7/2) as an angle between two planes, one defined by photon and e+ mo-
menta and another defined by photon and T+ momenta. A ¢, angle, like the angle ¢ in the
soft photon case, orientates a whole event around the beam axis. For exact definition of
angular variables see also Fig. 1.

In the following, the other short hand notations and abbreviations will be often in use:
€1 = ¢€os (61), ¢, = cos (0y), s; =sin(f,), s, = sin(6,), c,, = cos(p,), ¢ 02 = €05 (@2),
8o, = 8in (@1), 3,, = sin (¢,). Also, the photon energy k will be sometimes replaced by
a hyperbolic angle ¢ related to k as follows: s, = sinh (¢) = k/(2\/ 1—k), c; = cosh (£)
= 2-k/VI-k). ‘

With these definitions the element of the three particle phase space (multiplied by the
flux factor) can be written as

2.2

mem.
265 kdkdcdc,dep,dp,, )

d Lip83 =

and the four-momenta of 1+, 7~ and y can be parametrized in the CMS system as follows

2k k — .k
ql = (—~—2_~ - "2— Cz, 525¢2c¢1 \/l—k + E'Smsx
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2-k

= $4,0152C4, \/1 -k — 51€25p,5 Coy (- E— Sq

+CISZC¢2 \/l—k + ""'2‘_5102) +S¢152S¢1 \/l—k s
k —  2—k
- ?cl—slszc¢z \/l*k + “—2" C1C2),

2—-k k —  k
9z = —2" + '502’ = 528¢,Cp, ‘/l_k + E_vsmsl

2—k k

+55,€182€,, \/1 -k + 51€25¢,> Cp, (- —2— 5¢

22—k —
-C132c¢2 'Jl k - ""2_- 5162) "'S¢152S¢2 '\/l—k Py

k —  2-k
—_ -—2—Cl+slszc¢2 ‘\/l—k - 2 CIC2),

k = (k, ~ks,,s51, kcp 81, key). )

I complete the parametrization of initial and final state degrees of freedom 'with defini-
tions of spin states which will be used in spin amplitudes. In both the soft and the hard
parts of the cross-section ¢ = +1 and 7 = +1 denote twice the helicities of e+ and t+.
The structure of spin amplitudes is more transparent if instead of taking e~ and 1~ helicities
we define variables & and J which say whether helicity is conserved or not (along electron
or 1 fermionic lines) e.g. & = +1 if helicities of et and e~ are reverse, in opposite case
& = —1. Variable G denotes circular polarization of the photon.

2.2. Virtual photon and Born spin amplitudes

Using conventions introduced in the previous Section and definition of the coupling
constants of Z, to initial and final state fermions in a given helicity states g, = v+éa,
g, = p+7a Born spin amplitude may be written in the following way:

’(M:; +)BORN = (—' Iez _E—T) (qq (O) + gegtBZ(O)) (31 + C),

M f‘rf)BORN =9 (M, ~)PORN =0,

(M; +)BORN = 09

(M. Dporn = 0, (6)
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where

1
B’y(k) = 1——.7(’ BZ(k) =

{—k+iy’ ™

and g, g denote initial and final state fermions’ charge in the electron charge unit. For
definition of B,(k), B,(k) see also Section 5.

Spin amplitudes for virtual corrections of O(a/n) are nonzero like the Born amplitude
only in the case of both & and J being equal to +1. They may be expressed in the

following way
S m S m
MYRT _ pBoRrN | p 2 el L p !
& i \m?’ A o m2’ A

cec‘l
S

+ M+ (— ie*qq )(-—-H«,,(S))(Ef-l~ <) ®

A denotes photon mass used to regularize infrared singularities.

ReFyx,)) = —[~1+3 7 +i@- (+A-h (LG, ©)

2

4dm 4m? 4mf
M) =~ 00 (U55) <00 () 100 () +i-0®. @

Here 9,,(2) = 2a/n(—5/9 +1/31n (2)) but J,,4 is calculated using parametrization based
on substracted dispersion relations and experimental data on hadronic ete~ total cross-
-section e.g. [16, 17, 18].

Contribution from the box diagrams can be separated into two parts: two-photon
boxes and Zg-photon boxes MEOX = MY+ M?%, where

~ CeCr
M = (qq) (- ie? —:—) (e1Z,+Z,)B0), (11)
and
.~ o~ L, Cely
M!? = g.gqq ( —ie? —S-) (etX, +X,;)B(0), (12

or taking only the leading contribution proportional to the Z, Born amplitude [6]
(1% accuracy level)

Z — ogad ;o2 Sl
M = g.g.4q | —ie S (er+ )Y BZ(0). (13)

In the above formulae the following functions were used:

Z, = ol 2In 1-c 11:1('1~2 +in | +In 1-c
" 1+c S) ! 1+c¢
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+3In? (——2—~> ~11In? (T) —Li, < > ) +Li, (——2—>} , (14)

where the arctan function is continuous in infinity and is defined such that arctan (0%+)
= 0, n. Functions X; and X, can be calculated in a simple way from functions ¢ and
¢ of Ref. [19]. X; = — (€% +cch), X, = ~(cc®+c¥). Formulae in [19] although exact
are rather lengthy. Functions X, X, can also be reconstructed from function f(s, ¢, %)
of [20]. It was checked in Ref. [19], that the approximate formula for y—Z box agrees
numerically with the exact one quite well, provided S~ M2,

Virtual photon spin corrections for the pure QED part of the spin amplitudes are
obtained by taking a m, — O limit in the formulae of Ref. [8, 12]. Virtual corrections for
the Z, exchange graph were reconstructed from the cross-sections given in [6, 7]. It was
once again checked analytically and in the case of Z,-gamma boxes numerically, that in
this way one obtains the same results for virtual corrections as in [19]. Imaginary part
of function F, can be found in [19], but it is irrelevant to any measurable quantity in the
QED O(u/n).

Using notation introduced in Section 2.1 soft and virtual part of the cross-section read
as follows

(do Hysorr = {IMEORN|2 1.2 Re (MYFT(MED*™)*)}d Lips,

d0_+ + \SOFTPH
&t d Lo . 15
+ <d Lipsz) PS> (13)

Contribution from the soft photon cross-section (do} */dLips,)*°* T ¥ which cancels infrared
singularities of virtual corrections will be defined at the end of Section 2.3.3. Photon mass
plays a role of a dummy parameter and none of the final numerical results depend on it.
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2.3. Bremsstrahlung

In the following I shall present hard bremsstrahlung Spin amplitudes for ete~ - Tty
process with v and Z, exchange in the S-channel taking m, — O limit. The amplitudes
with only y exchange were obtained directly from the amplitudes of Ref. [8] by taking
m, — 0 limit. The amplitudes with Z, exchange were calculated in a similar way as in Ref.
[8] and the limit m, — O was also taken. This limit was taken in such a way that most
of the terms O(2m,/,/S) in the spin amplitudes were dropped. Kept were only those which
lead, on the level of the differential cross-section, to nonvamshmg contributions of order
O(o/n). It was checked that formulae obtained in this way reproduce the non polarized
cross-sections as given in Refs [6, 7]. It was also checked that up to the overall phase these
spin amplitudes coincide with the spin amplitudes of [21] (except of terms proportional
to fermions’ masses).

Soft bremsstrahlung contribution was taken from Refs [8, 19]. It was also calculated
independently and found to agree numerically well with the approximate formulae given
in [6, 7]. Photon spectrum of [6, 7] was reproduced. It was also checked that the photon
spectrum. of Ref. [6] (formula 3.18) referred to as approximate is in fact exact.

2.3.1. Spin amplitudes

The hard bremsstrahlung spin amplitudes, calculated in the way explaineci above,
can be written in the following way

1
MarG = N 2 {qexp( C) —2+s er(k)

1

+ q €Xp (— IG()vZ) —2 + 8‘!(0)} e1Go

Mz =0,
-  exp(=&) . c '
st(;- = % Nh ———— 4 ¢Xp (lG‘pZ) ~22—1—7 D-—clz,t(k)Leer
e ) ce ‘+Sl
+ - 1 1. C2 : 7
Mc‘r_G =7 Nh — 4 DS,-CzT(O)NCTG' ’ (16)

& & %+ss
Here the following functions and definitions were used:

CeCy
¢8E3’

K. = —(e1+cys¢;5) cosh (E+iGpy)+545;

&=c¢y, N,= y =exp(—§),

—G(tc, +¢c,) sinh (E+iGg,),

L. = (¢, —Gecy) (c2+G),
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Neg = (€1 +Gg) (¢, — G10y),
-Det(k) = anv(k) + gséfBZ(k)’
(Kol = —{—ce(e+¢165) +5155¢,, —5,(Geey + Grey) . ‘ an

The above spin amplitudes are shorter than the corresponding formulae for the differential
cross-section. Relations between spin amplitudes for bremsstrahlung from initial and final
states as well as relations- between Z, and pure QED contributions are clearly visible.

It should be noted that in the case of soft photon limit these spin amplitudes seem not
to coincide, as expected, with Born amplitudes multiplied by an infrared factor (e.g. they
.are complex and depend on photon circular polarization). This, however, stems out from
the use of different parametrizations of the phase space in the soft and hard cross-sections
and is of pure kinematical origin.

2.3.2. Photon spectrum

Due to simplicity of the hard bremsstrahlung spin amplitudes, in our parametriza-
tion of the phase space, the integrations over the angular variables may be performed expli-
citly and, as a result, I obtain the distribution of the photon energy do/dk. This result
will be used as an important ingredient in the construction of the next M.C. program [5],
therefore I shall present it here in this Section.

I start from the differential cross-section

d“ig uqu 1*d Lips, (18)

and the result of integration over the angular variables reads as follows

dot* = o, {2iq2 ! "[“’“ 9 (m( S ) —1) - "—] DR
i k 2 m?
@, L[1+(1-K?( (5 B kj]
s22g L [‘*‘7“ (m (m> .-1) oo

+2 = qi(~3e) Re [D(ODXO)] (1-K) (_ .._)} dk

k(1—k
d0;+=aog‘q ( )

(1D~ (0P + 1D, (R 1dk,

dos” = 00— 7 —-[(D -,(0)12+|D“(0)12]dk (19

where o, = 4a27/(3S).

Note that the spin conﬁgura’uons which do not conserve he11c1ty contribute to the
integrated hard bremsstrahlung cross-section. Their contributions are smaller than those
of the helicity conserving configurations, and they do not contain the infrared singularity
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1/k. In fact their contributions tend linearly to zero for small k. Furthermore, they do not
contain leading logarithmic terms In (m2/S), In (m2/S). That is why they may be neglected
in the leading logarithm approximation, but should be kept as a contribution to corrections
of order O(«).

2.3.3, Soft bremsstrahlung

Due to infrared singularity, contribution from soft real photon has to be integrated
analytically and later combined with the virtual photon contribution. The soft photon
cross-section is given by

(do +)SOFTPH _ {1M?t0RN1251 +Re [(MgoxN * (_iez f_g‘fg)
cecT
S

(e7+0)8.2:B7(0)0” + | —ie®

2 . .
(et + C)geir)lez(O)lztS:‘;]} d Lips;, (20)

where

&' = q%65(m.)+q°85(m.)+ i,

siom = - 2 {22 (™) |1n (252} (™
== [ron (5o 2) (3
n? 1102 m’
T3t (?)}

. _a - 1-c¢ 2Ek, 2f1-¢
oL, = nqq{4ln<l+c)ln< p >+ln (2 )
1+ 14 . (1=c
—In? (Tc) +2 Li, ("2“5) —2Li, <_§_C>}’

, 4u , , ;.

8 = —[n(C+in)~In (ko +in]

(1410 (e jin(i 2
{-a (1+ (T)) e “(m)}’

2
3 = 2_“{q2 [—I—In (.Ti>]§|: rctan (ko-—;)
- S J1vL. v
(- ] (25
—arctan | — = )| +4” (1 +In )
y S

[lnC+ip)—In({—ko+ iv)]} , (21
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and k, denotes upper limit on the photon energy to be considered as soft. The function
arctan (x) is defined in such a way that arctan (+o0) = +n/2.

Taking only dominant term 6' one can formally write spin amplitude for the soft
bremsstrahlung as '

(M:; +)SOFT PHv = (M:;-F)BORN %5!. (22)

Obyiously this amplitude cancels out infrared singularity of virtual corrections.

It was checked that formula (20) reconstructs contribution of the soft photons as given
in Ref. [19]. It was also checked numerically that formula (20) agrees well (at 19 accuracy
level) with the approximate formula given in Refs [6, 7].

3. Chiral limit of density matrix formalism

Until now I discussed only spin amplitudes for the production of t pair and cross-
-sections in pure helicity states. In the practical applications, in order to calculate Cross-
-sections, spin amplitudes hdve to be combined with density. matrices of incoming et and
with t* decay. This point was elaborated in Refs [8, 15]. It was also extensively discussed
in Chapter 2 of Ref. [11]. Since the density matrix of electron and positron mixes contribu-
tions of differént helicity states, one cannot, in general, represent the cross-section as a non-
coherent sum of cross-sections in different helicity configurations. Later in this Section
it will be proven that it can be done so, when the following assumptions hold:

I — polarization vectors of e+ and e~ are parallel to their momenta'.
II — ultrarelativistic limit is taken i.e. terms m.E, m.,/E are sufficiently small.

In general the differential cross-section for the process ete~ — t+1-, ¥ 5 X% can
be written as follows:

do = Z Z E‘;ngabcd(ﬁ)x(%z)xld Lips, d’flxcd"g’- (23)
KK’ abcd
Here & = (1, %,), & = (1, &,) and Z,, &, denote positron and electron polarization vectors
in respectively RS_l(e*) frames (see Fig. 1). Index K numbers various 1 decay channels.
We will call &, polarization four-vectors. The other four-vectors (73.2)F are related to
1% decay product momenta. Differential cross-section of 1¥ (with polarization vector
®,,) decay in its RS(t¥) system reads ‘

3 .
dPl,z = ;((ZO)K'F -2;1 d’a(ia)x)dff,b (24)

where diX, denote elements of the t* decay phdse space in the decay channel X.

1 This condition may be softened to a requirement of averaging observable quantities in the angle
around the beam direction before comparing the results of calculations with the experimental data.

The procedure of averaging eliminates the effects of transverse polarization. This point was discussed
in [22]. This proof holds only in the leading log limit. In general however, one gets contributions from the
collinear hard photons which may not disappear from the cross-section in the m,, — 0 limit, even after
averaging around beam direction.
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~Tensor R is related to spin amplitudes by means of contraction with Pauli matrices
i

o', i = 1,2,3 supplemented with 0® = I

TN oA fEELTT * d
abcd = % z z aeco-s & Mzer ") (Mzar tt) 0':,,0', 3. (25)

In the case of the hard bremsstrahlung additional summation over photon polarization
is included implicitly in the definition of tensor R. In the simple case of one prong decay,
when only one charged particle is observed, D%, i = 1,2, 3 forms a vector proportional
to momentum of the charged decay product? [23, 24]. In this case it is possible to average
partially the decay distribution over the angle around 1* direction. This leads to significant
simplification of the formula (23). The sum over the indices a, b, ¢, d =0, 1, 2, 3 reduces
only to 0 and 3. One is left with only 16 elements of the tensor R.

Let us express polarization four-vectors ] and &5 as a linear combination of the polari-
zation four-vectors of pure helicity states (pure in the quantum mechanical sense) £%.

Ee_*— = (19 0: 0’ il), 5‘;,2 = p:ZE‘:— +p1—,25€-’ (26)

where p; 5 are interpreted as a probabilities of finding right/left handed e* and left/right e~
in the beams.

The same can be done with the four-vectors 74 and 75. They can be also represented
as a linear combination of &*. '

G DK = af [ DFEH) + (a7 E )] @27

Now, by contracting (Ei)"'vectors with tensor R and using its definition (25) the for-
mula (23) may be rewritten as follows

do = ;fplpz"lM *d Lips, (Z ai(qy) dr) (; a3 (¢35 9% dr3), (28)

where Z a¥ ,(g},,)"dr,,, represents the differential cross-section for the decay of ¥ in the

pure he11c1ty states.

The above shows that differential cross-section for production of 1¥ pair can be
generated in a M.C. program as an incoherent sum of cross-sections for various helicity
configurations of e*, e, -, t+. Therefore in the M.C. procedure longitudinal spin polariza-
tion may be implemented in the following way: first e and t* helicities are chosen ran-
domly accord.lng to integrated cross-section. Then t production and decay is simulated
as if e* and t* were 100% polarized according to the chosen helicities. Note that this
procedure, which is generally not valid due to general quantum mechanical principles
[25], is applicable here due to our assumptions I-IL

2 In the case of multiprong decay this three vector is a combination of the momenta of the decay
products. '
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4. Simplified Monte Carlo for ete~ — tHt~(y) -

The formulae presented in Section 2 will be useful in constructing a M.C. program
[5] dedicated specifically to the t¥ production and decay process in the framework
of GSW/QED, up to a very high accuracy. In this Section, however, I shall present an
alternative M.C. algorithm which was used to obtain numerical results presented in the
next Sections. These calculations are of the intermediate precision level (~19%) because
they do not include contributions of O((af/n In (S/m?))?) and some of O(afr) (notably some
genuine GSW terms), but they may be performed more easily and also earlier using a modi-
fication of the existing M.C. program for ete~ — ptp~(y) [7). The two processes, p* and
1% production, are physically quite similar (identical coupling to Z, etc.) and furthermore
4m?/S for S ~ M? is quite small. The only problem is that M.C. program of Ref. [7] does
not include 1 polarizations which, as was shown in the previous Section, are necessary
even in the m, — 0 limit (helicity conservation).

In the following we shall show how to do a modifications of the existing analytical
calculations for ete~ — p*u-(y), and the corresponding M.C. program, in order to include
spin polarizations.

Since e~ will be polarized in SLC experiment I shall also include e* longitudinal
polarizations in the presented formulae.

Let us start with the following observation: if one works out the Born cross:section
for the reaction e*e~ — T+t~ in the Z, region with the classical techniques with traces over
strings of Dirac matrices then it can be geneially written in the following way:

do ~ {Tr [P —m) (1 + 75600 (P2 +me) (1 +75¢5)]

x Tr [y gy —m) (1 +ys@)0( g2 +m,) (1 +756,)]+2 Re
B,(0)

x Tr [(v7" +aysy") (Fy —m) (1 +ys¢r 7" (Z2 + m) (L +7s993)]
x Tt [(59, % @95,) (g1 = me) (L-+ 7@ g2+ m) (1 +758)] o (0)
x Tr [(vy" +aysy) (Fy —m.) (1 +78) (07’ +ay") (F2+ m,) (1 +758)]

x Tl' !_(5‘)?“ + dYS‘ya) (ﬂ': - n“t) (l +y5;3’;) (5?»'5' a}’v) (9/2 + mt) (1 +YS;5’2)]} d Lip52~ (29)

Here w,, w,, @,, @, denote polarization vectors of e*, e-, 1%, T°, @, = Wi, = ~1.
‘Now, in the chiral limit this formula can be rewritten in the following way:

do ~ { Tr [y 2,0 +eys)y" 71 +€99)] Tr [y, g, (1 +19)p, g2(1 +1'y5)] v
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+2 Re Tr [(y* +aysy") i (1+eys)" Pa(1 + £'5)]

Bz(0)
Tr [(Fy,+ dysy,) g1 (L +7ys)y, gl + 7ys)]

BLOF Tr [(oy" + aysy") 72 1(1 +eps) (07 +aysy") Z(1+£'y5)]
VA

+

Tr [y, + @ysy,) g1 (1 +7175) By, + aysyy) g1+ 7'75)]} d Lips,. (30

Here &, —¢’, 7, —1' denote helicities of e*, e~, T*, T~, respectively. By means of collecting
all ys matrices together formula (30) can be rewritten as follows

1 1
do ~ {Tf [y 7' 7] Tr [n. g1 421 (Co +Re 5,0) ¢+ 1B,O)7 Cz)

1 1
+3 Tr [ysy" 717" 22 Tr [vs7,. 4170421 (do‘*‘Re B,(0) d;+ B,(0) dz)} d Lips,, (31)

where

¢o = (1+&e’) (1 +17),

¢y = 2[v(1+ee)(1 +77) +ad(e+e) (+7)],

¢, = [(@®+v7) (1 +28') +2va(e+€)] [(3>+ %) (1 +17) +28a(c+7)],

do = 2(e+¢) (x+7),

d, = 4[ad(l +ee') (1 +77") +od(e+8) (v +7)],

dy = 2[2va(1 +2&')+ (v +a?) (e+&)] [206(1 +77) + (7" +47) (z+7)]. (32)

In these expressions one finds again familiar terms ¢, ¢y, €3, do, d1, 4> Which were used
in the program [7]. As a result the v differential cross-section has the same structure, only
factors c¢o, ¢y, Cz, do, dy, d, are now dependent on fermions’ helicities.

This result applies to a whole soft part of the cross-section. Things get more complicat-
ed in the case of the hard bremsstrahlung. The set of coefficients (32) has to be extended.

¢y = [v(1 +ee)+a(e+¢)] [a +17)+ 17(1 +1)}
—[a(l +ee') +o(e+&)] [(1 +17) +d(z +7)],
d, = [v(1+ee’) +a(e+e)] [ +17")+B(r+17')]

+[a(l +ee) +o(e+e)] [3(1 +77) + (e +7)],
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¢, = 2[@*+a®) (1 +ee') +2va(e+&)] [ +a) (v +7') +204(1 +7')]

—3 [0 + %) (e+&) +2va(1 +ee)] [(3 +a%) (L +7' )+ 25a(r+7)],

dy = 2 [(*+a®) (1 +e£") +2va(e+¢)] [(5*+ @) (1 +1')+28a(1 +17')]
, +1 [(v® +a®) (e+&)+2va(l +ee)] [(5* + &%) (1 +17') +28a(x +7')]. (33)

I get also, for helicity nonconserving configurations, the contributions to the cross-section
which cannot be directly represented in the language of coefficients ¢,, ¢4, ... But because
these residual contributions from helicity nonconserving configurations, as pointed out
in Section 2.3.2, are small (1%). 1 shall omit them for a moment. Neglecting above contri-
butions the whole spin dependence of the cross-section may be confined to the coefficients
Co> Cis C2, C3, Cay do, dy, d, d3, d,.

Thus in order to simulate the T pair production process I may use an old muon program
[7] provided the appropriate redefinition of coefficients c;, d; is made.

5. Radiative corrections of the GSW model

A number of independent groups [26-33] have calculated one loop O(x) GSW radJatlve
corrections to the lepton/quark interactions. The calculations may differ in the choice of the
renormalization scheme and in the choice of the input experimental data, but generally
the tendency i$ to use on-shell renormalization schemes because they can accommodate
classical QED bremsstrahlung calculations in almost unchanged form and the experimental
data on mass of Z, and W* may be used directly as the input data. Furthermore, some
large logarithms coming from trivial corrections of the vacuum polarization type may be
easily located and hidden in the lowest order (or input) parameters like M, a, G, M,,.

In the numerical calculations presented later in this work we aim at keeping
O(a/n In (S/m?)) terms and some O(x/n) terms (with respect to lowest order). The trivial
large logarithms effects are however taken into account by including vacuum polarization
corrections to the y and Z, propagators and using a proper definition of M and sin? fy,.
The remaining GSW effects are then of O(a/r) and are numerically rather small. I postpone
their inclusion to the forthcoming work [5].

In practical terms, I have made the following modification of the Z, propagator
both in the soft and hard bremsstrahlung part of the M.C. program:

1

Z(S) = ’
&) = soaesirm ST IES)

34)

where ITZ4(S) is defined in Ref. [27], formula (2.2.30).

The effects due to above modifications are-added during the final rejection procedure
in the M.C. algorithm. This rejection was already present in the program of Ref. [7] and
its purpose was the introduction of some interference terms. The efficiency of the program
is not diminished by this modification.

The initial parameters in the program are appropriately redefined. Z, mass M is treated
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as an input parameter and coupling constants are calculated again in terms-of sin? Oy,
but now with sin? 8y, = 1—M?%/M?2. Since W mass My, is not known precisely enough,
it is, therefore, calculated using M and muon life time, from formula (3.1.4) of Ref. [27].
The width of Z, is the necessary input parameter of the program and it is taken
as I' = Im (IT¥(M?))/M. This I' plays only the role of a dummy parameter in the genera-
tion of the raw events, prior to final rejection. The final rejection introduces 1132 in Z,
propagator with full S dependence both in the real and imaginary parts. The photon
vacuum polarization IT,.(S) in the program is also replaced with I124(S)o f Ref. [27]. For
JS < 10GeV, I14(S) is corrected to be compatible with the results based on the dispersion
relations approach [16, 17, 18].

The above procedure introduces the most important GSW effects. The contributions
which are still left out, are of O(x) i.e. numerically rather small, but should be included
in the future version of the M.C. program, aiming -at a higher precision level.

6. Numerical results

In this Section I present some numerical results obtained using the M.C. program
described in Section 4. They mainly concern the measurement of the t polarization in the
Z, region.

- The following input parameters were used in the calculations: M = 93 GeV,
Myep = 30 GeV, myges = 100 GeV. The mass of the W boson My, = 82.02 GeV, was
calculated out of M and the muon life-time. This yields sin® 8y = 1—(My/M)* = 0.222.
The width of Z, was found to be I' = 2.56 GeV.

Before some specific results are shown, let us recapitulate some basic properties of the
corrections due to QED bremsstrahlung. One may expect that since the leading logarithm
expansion pafameter a/n In (§/m2) ~ 0.06, the radiative effect should not be much higher
than just 6%. The examples of the total cross-section and muon asymmetry in Ref. [6, 7]
demonstrates however that such corrections may be well above 100%.

These large effects are related to the events with hard collinear bremsstrahlung out
of e beams. Quite fortunately they are usually rather easy to remove from the data by
applying standard cut-offs like maximum acollinearity and minimum energy.

It is perhaps worth mentioning that the above kinematical amplification of the radiative
effects takes place for quantities which are strongly varying when S (S > M?) gets reduced
(due to injtial state bremsstrahlung) to S = M?2. This effect is weak on the top of Z,.

In the presented results I shall try .to eliminate the above trivial kinematical effect
wherever it.is possible by means of suitable kinematical cut-off’s (like in the experiment).

In Figs 2 and 3 I examine the influence of the radiative corrections on the t- polariza-
tion in the ete~ — t+1-(y) process. The 1~ polarization is, of course, not a directly meas-
urable quantity but I show these plots in order to get an idea about radiative corrections
to 1~ spin polarization, neglecting (for the moment) problems related to its measurement.
In order to get rid of the effects related to hard initial state bremsstrahlung (especially for
S > M?) we employed the cut-off E,/E > 0.2 on the photon energy- Such a cut-off cannot
be realized in the'experiment directly because the photon momentum is lost in the beam
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Fig. 2. =~ polarization as a function of the CMS energy. The solid line corresponds to the cross-section
with radiative corrections; the dashed one to lowest order (no beam polarization). Figs 2a, 2b correspond
to different energy scale. Cut off E,/E < 0.2. The average over 4z angle is taken

pipe (in most cases) and 1~ momenta are not measured directly. Nevertheless this cut-off
corresponds roughly to some more complicated set of cut-offs defined later in this Section
using momenta of charged decay products.

In Fig. 2, the 1~ polarization is plotted as a function of /S— M, with and without
radiative corrections, taking unpolarized e* beams. As we see the radiative corrections
are of order —4—129; and are larger for S > M?2. It should be noted that 1~ polarization .
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Fig. 3. v~ polarization as a function of the CMS energy. The solid line corresponds to the cross-section with
radiative corrections; the dashed one to lowest order (pure left handed electron beam). Figs 3a, b correspond
to different energy scale. Cut off E,/E < 0.2. The average over 4n angle is taken

for unpolarized e* depends weakly on S in S > M? region and therefore it is not prone
to the problems due to initial state bremsstrahlung.

This is less the case for the 1~ polarization when beams are polarized. In Fig. 3 the
similar, as in Fig. 2, plot is presented for left-handedly polarized e~ (and e+ unpolarized).
Since in this case T~ polarization depends rather strongly on S for § > M2, we observe
that radiative corrections are bigger in this region of S than in Fig. 2 and-are of order of
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40%;. This sizeable effect would have extended to much higher CMS energies if my cut-off
on photon energy were less restrictive. In Figs 2 and 3 the 1~ polarization was evaraged
over the 1~ angular distribution.

For a right handed electron beam polarization one obtains a plot analogous to Fig. 3
but with the reversed sign 6f the 1~ polarization.

In Figs 4 and 5 I show some distributions which are also related to t polarlzatlon
but are directly measurable in the experiments, using t* decay products.

Fig. 4 shows the energy distribution of nt+ (normalized to the unity) originating from
Tt decay. The other side 1~ is assumed to decay into one prong channel (n-v, Q‘V,IC“VV, LVWY).
The production process ete~ — t+1-(y) is taken here at § = M? and only rather mild cut-offs
are employed: & = (s, p-) < 45° |p| > 1GeV, |p.| > 1GeV-and 0, > 15°, where
P+ are momenta of the charged 1* decay products and 6, is the angular distance of p, from
the beam pipe. As it may be seen in Fig .4 the radiative corrections for t polarization mea-
surement the top of Z, peak, for unpolarized e~ are rather small, of order of 5% but
are significantly bigger than for t polarization itself.

In Fig. 5.the same distribution is shown for left handed e~ and for § = M +10 GeV.
Here, since we expect strong effects due to initial state bremsstrahlung we employ more
stringent cut-offs Z < 20°, [p,| > 5 GeV, 8, < 15° which correspond roughly to E,JE<0.3
(as was checked by inspection of the corresponding photon energy distribution). In this
case even more restrictive cut-offs cannot eliminate influence of the initial ‘state bremsstrahl-
ung. Radiative corrections are bigger than in Fig. 4 and are of order of 257;. Also, the
distribution departs from the linear shape due to radiative corrections and cut-offs. The
above effect in the case of the left handed electron beam is even larger.- A

Having in hand a M.C. program it is easy to calculate many other cross-sections and
distributions for the simulated process. I conclude my presentation of the numerical
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Fig. 4. Energy distribution of = from the v+ decay for. CMS energy of Z, mass. Solid line corresponds
to the cross-section with radiative corrections, dashed one to the lowest order (no beam polarization).
Cut-offs (defined in the text) were included
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Fig. 5. Energy distribution of =+ from the v+ decay for CMS energy 10 GeV above Z, mass. Solid line
corresponds to the cross-settion with radiative corrections, dashed one to the lowest order (left handed
electron beam). Cut-offs (defined in the text) were included

results here, with the following remark. As it is seen from Figs 2 and 4, the influence of the
QED bremsstrahlung on the measurement of t polarization on the top of Z, is not very
strong (~4%) and therefore it does not decrease the quality of this observable as a good
candidate for a data point in the precise tests of GSW electroweak theory. The influence
of the QED bremsstrahlung on the t polarization off Z, peak will be stronger and more
difficult to eliminate.

7. Summary

The 1 production process has a number of characteristic features which, on one hand,
make it very interesting (for the purpose of the precise tests of GSW theory) but, on the
other hand, they create some technical problems.

In this paper I show how some of these problems, mainly connected to the spin struc-
ture of the process (in the presence of the QED bremsstrahlung) may be properly handled
and solved.

In the first part of the work I calculate spin amplitudes for the production process
and I calculate also some important distributions relevant for the construction of the Monte
Carlo algorithm.

The following effects are included in these calculations:

1. Z, exchange in the resonance form.

2. QED/GSW 0(1Y;) radiative corrections together with single bremsstrahlung from
electron beams and final state .

3. Longitudinal spin polarization for the initial and final state fermions.

4. Mass effects.
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In the second part of the paper, I show how to connect generation and decay parts
of the © production process, all the time having in mind the construction of the M.C.
algorithm. In particular, I discuss in detail how one may take advantage of the fact that
the 1 mass is relatively small (compared to Z, mass) i.e. I discuss the question how to take
properly chiral limit, not loosing or deforming spin effects in the final results. Here in solving
properly these problems, the results from the first part of the work were rather helpful.

In the last part of the paper I present some numerical results which were obtained
using the M.C. program based on the existing program for muon production and some
ideas developed earlier in the paper. In the calculations all effects 1-4 listed above are
included. Spin effects are introduced in the chiral limit. Missing are'still some numerically
small but finite mass effects, and some (also numerically small) one loop GSW radiative
corrections.

Having at hand a M.C. program it is rather easy to produce a multitude of distribu-
tions, cross-sections asymmetries etc. I concentrate on such numerical results which would
,show how important (numerically) are radiative effects on the measurable quantities related
to spin polarization of the 1.

As expected the most drastic radiative effects due to initial state bremsstrahlung can
be usually eliminated using an appropriate cut-offs. The strength of the remaining effects
depends on the center of mass system energy (on the distance from the top of Z,, résonance);
on the strength of the cut-offs, on the beam polarization and other factors. In the presented
examples corrections vary from 29, to 40%,.

Generally it seems however, that these effects can be brought under control, and it is
unlikely that they could prevent the use of the 1 polarization as a probe for precise tests
of the GSW theory. :
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tion, to Dr. S. Jadach for invaluable guidance and coopgration in many stages of this work
and to Prof. A. Kotanski for help in preparing the final version of this paper. Very warm
hospitality of the Centre de Physique des Particules de Marseille, where this-work was
completed, and helpful discussions with Prof. J. J. Aubert and members of Marseille
Particle Physics Group (especially Dr. E. Kajfasz) are also acknowledged. I thank W. Ku-
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