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The Lund string model is used in estimation of the average time needed for the forma-
tion of final hadrons in high energy collisions. The eng‘rgy—depe‘ndence of the formation
time and sensitivity of results to the choice of the scaling function of the model is studied.
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1. Introduction

It is now well established that the appearance of final particles in high energy collisions
requires a certain time necessary for their formation [1-7]. It is generally assumed that this
formation time increases linearly with increasing energy of the system and therefore may
be large at sufficiently high energies. The concept of finite formation time was introduced
by Landau, Pomeranchuk and Feinberg in their analysis of bremsstrahlung of fast electrons
passing through dense amorphous media [1-3]. They argued that the photon of energy
o and momentum & radiated by a fast electron moving with velocity v appears in the final
state at the time

L 1.1
"ok D
after interaction of the electron. This time can be large for soft, collinear photons emitted
from relativistic electrons [4].

In hadronic interactions the effects of finite formation time are most clearly manifested
in high energy interactions with nuclear targets. The absence of intra-nuclear cascading
of fast particles observed in experimental data [5, 8] is attributed to the fact that due to the
large formation times the fast final hadrons are formed mostly beyond the target, hence
do not interact with nuclear matter. Recently proposed methods of determination of the
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formation time from experimental data [9-12] are based on analysis of attenuation
of leading hadrons produced on nuclear targets.

Assuming the production mechanism similar to the bremsstrahlung (“bremsstrahlung
analogy” [13]) we obtain the following expression for the formation time [6]:

_ 1 N 2k”
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7 1.2)
where: p, w — mass, energy of emitted particle, ky, k; — its longitudinal, transverse
momentum, M, E, v — mass, energy, velocity of primary particle, x = k/E — momentum
fraction of primary particle carried by the final particle,

The bremsstrahlung-like production mechanism seems to work well for soft particles
but is not certain if it is correct for those with momenta close to that of the original particle.
Unfortunately, our present understanding of theory does not allow one to calculate the
formation time from Quantum Chromodynamics. In view of that it seems intéresting to
obtain this quantity using model of hadronization other than the “bremsstrahlung analogy”.

The aim of this work is to estimate the formation time in the framework of the Lund
hadronization model [14]. This model reproduces well experimental data [15] and provides
a definite space-time description of hadronization [16]. The paper is organized as follows.
The main assumptions of the Lund string model specifying the space-time description of
hadronization are reviewed in Sect. 2. Our calculation of the formation time are outlined
in Sect. 3. Sect. 4 is devoted to the discussion of the x-dependence of the formation time.
We present our conclusions in the last Section.

2. Space-time picture of hadronization

We apply to the description of hadronization a simple semiclassical picture proposed
by the Lund string model [16].

According to this model, in a high energy hadronic collisions coloured objects (quarks,
diquarks, antiquarks) are separated. The separated sources of colour create a thin string-
-like colour field between them. This field is constant along the string, i.e. the amount of the
field energy per unit length is constant:

Es = Kl, (2.1)

where E, is the energy of the string, / — its length, x — string tension, x = 1 GeV/fm [14].
The field can be broken by the production of qq pair; this splits a meson from the string
(cf. Fig. 1). It is assumed that in each process

string, — string, + meson .2

there is a universal way of partition of the energy of the string, between the meson and
the remainder-string,. It is described in terms of scaling function f(z) defined as [17]:

f(z)dz = probability that the meson will take the fraction z of string, momentum. (2.3)
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Fig. 1. Space-time picture of hédronization in the Lund model. A quark g;- produced at the point A and
an antiquark q; produced at the point B form at the point C a meson m;

Space-time and energy-momentum space descriptions of hadronization are closely
related; if we introduce the light-cone variables:

xF = t+x,
p* = Exp, (2.4)

we obtain the following relations between momentum of a given meson and space-time
coordinates of production points of partons — its constituents [16]:

+ +
pi = K(xi—1—xi+),

pi = K(x; —x;_y). (2.5)
t
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Fig. 2. Space-time description of hadronization in massless approximation
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Following [16] as a hadron production point we define the point of the first crossing
of partons — its constituents (e.g. point C in Fig. 1).

The formation time is a frame-dependent quantity. We discuss the situation cor-
responding to the case of leptoproduction in the laboratory system. In that case the string
of colour field is stretched between a quark g, kicked out by the current with initial energy
E and remaining diquark. We will use the simplified version of the Lund model with one
type of quark and one type of meson, we will also neglect the masses both of the’ quark
and of the meson. In this approximation all the qq palr and hadron production points will
lie on the line x~ = 0 (Fig. 2).

3. Estimation of the formation time
Consider a hierarchy sequence of mesons [17, 14]:
9od1 91q: 92qs - Gim1Gi -
m; m, m; ..My

arising from the subsequent breaking of the string through creations of qq pairs; the first
in rank meson contains the original quark qq. If the i-th in rank particle carries the fraction
x; of the initial energy E, the values of scaling variables at successive production steps are:

Xi

= — 3.1
1- Z Xk
k=1
Inverting (3.1) we obtain:
n—1
X, =z, [] 1=2). 3.2
i=1

According to the definition of hadron production point, the first in rank meson is produced
at the time ¢, = © = EJk. The time ¢, of the production of i-th in rank meson coincides in
massless approximation with the time of the production of (i—1)-th qq pair, hence we
obtain (cf. Fig. 2): :

i-1

i-1
=1l— Y x) = tk];ll (1—=2z). 3.3)

As the values of the scaling variables z; at each production step are independent,
the probability of creating a hierarchy sequence of mesons in which k-th in rank has thée
fraction x; in dx, of initial momentum is [17}:

Prob (X, X2, «oy X, - )dx,dxz H f(z)dz, (34

where f(z) is the scaling function defined in (2.3), the relations between x; and z, are given
by (3.1) and (3.2).
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Consequently, the inclusive probability that the #-th in rank meson will carry the frac-
tion x in dx of the initial momentum is:

1

1 n-1
P,(x)dx = dxg dz, ... E[) dz, f(z,) ...f(z,,)é(x—z,,kg1 (L—z)). (3.5)

The average number of mesons carrying the fraction x of the initial momentum regardless
of their position in rank is the sum:

D(x)dx = Y P, (x)dx. (3.6)
n=1
The function D(x) is nothing but the quark fragmentation function [18]. In a similar way

we obtain the expressions for the probability that #-th in rank meson carries the fraction-
x in dx of the initial momentum and is produced at the time 7 in dr:

P)(x, dxdt = dxdt jldz1 jldz,,f(zl) o f(z0)
o o

n—1 n-1
*8(x~2, [1 (=23~ [T (-2, 3.7)

and for the average number of mesons carrying the fraction x of initial momentum and
produced at the time ¢ regardless their position in rank:

D'(x, t)dxdt = i Py(x, t)dxdt. 3.3
The ratio:
D'(x, 1)
fin = ) (3.9)

is the probability distribution for production at the time ¢ a meson carrying the fraction
x of the initial momentur. '

We will estimate the formation time 7; by the average time of the production of
a meson with the fraction x of the initial momentum:

2 }J duD'(x, 1)
- __0
t(x) = jd:g;(:) = 5w (3.10)
0

Because of the d-function of time in (3.8) and (3.9) the integral in the numerator of (3.10)
can be easily performed and we end up with the formula:
T(x) E T(x)
D(x) « D)’

3.1

Te = 7T
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where

T6) = 3, T,

1 1 n~1 n—-1
T (x) = g dz, ... g dz,d(x~z, kl—:Il (1-2z)) * f(z,) g A -z)f(z). (3.12)

It is clear from (3.11) that the formation time depends on:
1. the initial energy of the system. This dependence is very simple, 7, ~ E,
2. the momentum fraction x carried by the produced meson. The x-dependence is given
by the function
T(%)

o(x) = oK (3.13)

4. The x-dependence of the formation time

In order to obtain the detailed form of the x-dependence of the formation time we
have to determine both D(x) and T(x) (cf. (3.5), (3.6), (3.12)). To this end we apply the
standard Mellin transformation technique and calculate' their transforms D(p) and 7(p).
The infinite series defining D(x) and 7(x) are transformed into simple geometrical series
and we acquire compact expressions for the Mellin transforms:

~ _ Iy(p)

D(p) = =1,(5)’ 4.1)
= Is(p)
T(p) = i) 1—1 41 . “4.2)

The functions Io(p), I,(p) are expressed in terms of the scaling function f(z) as follows:

1
Io(p) = g dzz" 7 'f(2), (4.3)
1
I,(p) = g dz(1—-2)""'1(2). 44

Inverting D(p) and 7(p) and applying (3.13) one obtains the shape of the x-dependence
of the formation time. '

We have determined the function g(x) for different scaling functions f(z) used in the
Lund model®.

! The different scaling functions we have used are plotted in Fig. 3.
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Fig. 3. Scaling functions of different versions of the Lund model used in calculations of the formation time

A. Simple Lund model

This version of the model uses flat scaling function:

f@) = 1.

The function g(x) corresponding to (4.5) is:

g(x) = x(1-In (x)).

B. Stardard Lund model

The appropriate scaling

f@)

function has the form:

= (c+1) (1-2)5,

c =03-0.5.

4.5

(4.6)

@.n

‘The corresponding x-dependence of the formation time for ¢ = 0.5 reads:

g(x) =x {% (A=x)""In

1+(1—x)'?
1-(1-x)?

(4.8)

_%,

The curves corresponding to the function g(x) for simple and standard version of the
model are plotted in Fig. 4.
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Fig. 4. The x-dependence of the formation time in simple and standard version of the model
Fig. 5. The x-dependence of formation time in the symmetric Lund model

C. Symmetric Lund model

Recently introduced symmetric version of the Lund model [19] uses the following
scaling function:

£ = N (1=2)"exp (~f2), 49

In that case the Mellin transforms 7(p), D(p) are too complicated to be inverted analyti-
cally and we inverted them numerically [20]. We considered the scaling function (4.9)
for a = 12 and several values of B. The resulting curves for g(x) are plotted in Fig. 5.

Although obtained. from a very different scaling functions (cf. Fig. 3) all the curves
of g(x) are rather similar to each other. They grow nionotdnically in the whole range
of x. This gives a specific time-ordering of production processes : slow particles are pro-

2 This value Qf a is normally used in standard applications of the model [14].
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duced earlier than fast ones [5, 6, 7, 16]. The x-dependence of the formation time in the
Lund model is not linear. The curves of g(x) grow much faster at small (for x = 0.2
g(x) = 0.5) than at large values of x. Consequently, the formation time is not proportional
to the final energy of the produced hadron.

The detailed shape of g(x) is rather weakly dependent on the choice of the scaling
function f{z); the space-time relations of particle productions are determined mostly by
kinematics of the model.

5. Conclusions

The formation time is an important and interesting parameter of hadronic interac-
tions. We have estimated it in the framework of the Lund string model. Qur results can
be summarized as follows: -

1. The formation time of a final particle depends on the initial energy E of the system
and on the fraction x of this energy carried by the particle. This dependence factorizes
in the form:

E
w(E, ) = — g(x).

2. At fixed initial energy E the formation time rises with increasing x, it means that
soft particles are produced earlier in time than the fast ones.

3. The formation time is a nonlinear function of x. Consequently, it is not proportional
to the energy of a prdduced particle.

4. The shape of x-dependence of tht formation time is not very sensitive to the choice
of the scaling function f(z).

We close the paper with a few comments:
a) We neglect in our calculations the mass of the produced mesons. Inclusion of the mass
effects will make the formation time the function of mass and Q2 also. We expect however,
that this dependence (especially for large x) should not modify our predictions signifi-
cantly.
b) The process of hadron formation seems to be determined by the dynamics of colour
confinement, Consequently, the time scale of the formation time should be given by the
quantity characterizing ‘confinement. This makes the role of « in our formulae quite natural.
¢) The measurements of nuclear attenuation of fast particles leptoproduced from nuclear
targets [10] should allow one to determine the formation time from the data. These measure-

ments can help to answer the question if the space-time picture of hadronization provided

" by the Lund string model is correct.

The author is indebted to Prof. A. Bialas for his help and encouragements. Thanks
are also due to Profs. B. Andersson and G. Gustafson for many helpful discussions on the
Lund model.
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