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CHIRAL SYMMETRY BREAKING IN BARYONIC
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The Bogoliubov-Valatin variational technique is used to describe chiral symmetry
breaking in QCD with a finite baryonic number density at zero temperature. Using the
BCS-like trial vacuum state with the condensate wave function -approximated by
~ exp (—% R3*(k— aKg)®) with a different from zero, it is shown that the chirally invariant
vacuum is unstable for small baryonic density. Our results also indicate that in the high.

baryonic density regime chiral symmetry is restored, presumably in the first order phase
transition. ‘

PACS numbers; 12.38.-t, 12.38.Lg

1. Introduction

An important question of quantum chromodynamics is whether the chiral symmetry
is restored at finite baryonic density and temperature. There is an evidence from lattice
simulation [1, 2}, and from calculation in continuum [3, 4], that at finite temperature without
baryonic background such a transition occurs. However, the effect remains elusive at finite
baryonic number density [5, 6]. Suitable lattice methods have been developed only recently
[14]. In continuum understanding of these nonperturbative effects relies on the QCD in-
spired models.

One such a model, which is based on analogy with superconductivity, was proposed '
by Finger et al. [8). In this scheme nonzero baryonic number density may be simply achieved
[10, 11]. The whole construction [11] is done in quasiparticle basis. The nuclear matter
is built from colour singlet baryons containing three yalence/constituent quarks which
~gradua11y fill Fermi sea up to a given K. It was shown that the chirally symmetrlc vacuum
becames unstable for some finite value of baryon density, beyond which the perturbatlve
yacuum turns out to be a stable one. The results are based on Bogolitibov-Valatin instability
method. In this paper we carry out the instability analysis with a trial function
¢ ~ exp (—L1R*(k—aKp)*))a # 0). As far as the quark selfenergy is concerned, which
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is negative and plays the crucial role in triggering mechanism for the chiral symmetry
breaking, this function has better justification thn thae case with a = 0.previously consider-
ed because in the situation (a # 0) there is fewer pairs destroyed by introduction of the
additional quarks. ' '

In Chapter 2 we outline the generalization of the Bogoliubov-Valatin method to the
case of finite baryonic number density introduced in Ref. [11]. The results are presented
in Chapter 3. In appendices we give mathematical proofs of some of the formulas intro-
duced in Chapter 2.

2. Review of the model

Let us recall the methed presented in Ref. [11], which is based on the variational
approach of Amer et al. [7]. The model QCD hamiltonian for massless quarks interacting
through an instantaneous, forth component Lorentz vector colotr potential reads

- . e - o oaf e LA
H = Z v (x) (—ia- V)w(x)+-§-z Vix-y) (w (x)-z— w(x)) (w*(x)zw(x)),

x x,y,8
2.1

where V() = — V'2|x| and the temporary lattice regulator is introduced. o, A, f = 1, ..., 8
are Dirac and Gell-Mann matrices respectively. y(x) is the coloured massless quark field,
which can be expanded in the chirally invariant basis of free massless spinors

- 1 - - o e
Vo) = =572 Z [ue(l)ba(k) +ve(R)ds* (= k)€™ ™, (2.2)

where b,a(k) (d% (K)) is the annihilation (creation) operator of a quark (antiquark) with
the helicity s and colour a. For the brevity we consider only one flavour f = 1.
‘The trial state |2) is defined as coherent superposition of qq pairs [9]

1 - .
2 = NI (1= shOBSH D (~ B)) 105, @3

~
kySy

where N = H \/ 14+1p*(k) is the normalization factor, f(k) is a trial wave function of
% R A

a Cooper pair and 7 denotes the volume element in the momentum space. |0) stands for

the perturbative vacuum. Equivalently one can use the Bogoliubov-Valatin transformation

to define new creation and annihilation operators

¢()

b,(k) = cos — bO(K)+s sin — ¢( )

d0+( k),

¢()

sd,(k) = —sin —— b2*(—k)+5 cos —— ¢( )

d%(k). (2.4
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The state |Q2)> can be considered as a quasiparticle vacuum provided that

k) Bk P(k) 1

sin —- = ————-— andcos — =

= =, 2.5
2 Vi+Bw 2 V1P @)

The Bogoliubov-Valatin transformation consists in writing the quark field ¢(x) in terms
of an arbitrary spinors u, v

= _ 1 BBy (DVIH(— DV E
p(x) = ;3-,—22 [u (k)b (k) +v(k)ds (—K)]e™ ™ (2:6)
ks

‘Now the spinors ugk), v, (k) need not satisfy masless Dirac equation.
We now introduce the state with finite baryonic number

’ 1 . - - + :
B = | | 50 @b5m 19, @)

$18283
|p} < Kg
with |2 and b}(p) defined by (2.3) and (2.4) respectively. The colour singlet character
of |B) is evident from (2.7). We did not have to introduce the chemical potential to the
description because baryonic number is a constant of motion and we work in zero tempera-
ture. The state |B) automatically represents the sector in Hilbert space with a finite baryonic
background because [11]

K3 -

= (2.8)

s = O;
where o, is the number of baryonic states which can be built from three quarks and equals
four (twenty) for one (two) flavour(s). This propérty of state (2.7) is very important because
this allows for easy monitoring of the influence of ¢g on the stability of various vacua.

In the variational method one looks for the stationary point of the average energy

E[¢] = <B|H|B). (2.9)

oE : o
The résulting gap equation'ga = 0'is difficult to solve analytically for a linear potential.

Instead, we may try to see if the system with chiral invariant vacuum (¢ = 0) is stable.
To this end, we must first calculate the average energy (2.9). The quantity (B|H|B) can
be computed with the aid of Wick’s theorem®. The latter implies that H may be rewritten
in the form

H = &+:Hy:+:Hy:,

! Introduction of the normal ordering to the model was briefly considered in papers [7, 9, 12].
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where

. - 4 ~ o - o,
£=3 Z T [G DA+ —— Z 1 PE-P) Tr [A.BDA-()],

(an)®
- - -
k _kp

1 . R
Hy=%- 2 VE=3) [9* () (4B - A_@)w())es &

n
3k
+ L ¥ ) (— i Vv,
. LN A
H, = Z LVG-3) (w*(x) 5 w(x)) (w*(y) 5 w(y)) : (2.10)
e '

& is the energy of the trial B— V state (2.3). 4. denote the projection operators (k = k/|k]):
As(k) = 3 (11 sin ¢(k) 3 - & cos ¢(k)),
and (k) is the Fourier transform of the potential

P() = a® Y V(e F,

In the case with finite baryonic background (Kg # 0), all operators: £, H,, H, contribute
to {B|H|B). Secondly, to prove the instability, it is ¢enough to find such a test function
¢ that the following expression is negative

4= <B!H|B>l¢¢o—<BlHlB>l¢=o-

In this paper we take into account the following normalized test function

where
2 1 2 a2 o .,
A" = Gariy | R 00e T H(terf (J2a0) (142470
and

erf (x) = \/% f dte % . e
0

Let us expose individual contributions to 4:

4 = 48+ 4E, @2.13)
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where
A8 = A8+ A8 e+ AE (2.14)
resulting from interaction in the vacuum state and
AE = AE,;,+4E s+ 4E,,, (2.15)
comingfrom the mutual intera_ctions among baryonic constituents and the sea. Accordingly
AE ; = AEmf+AEse,f and 4dE;, = AE® + AEPS,. (2.16)

Sandwiching :H,: and :H,: with |B) and collecting nonvanishing contractions allow
us to identify all contributions listed in Eqs (2.14) and (2.16). Linearizing for small ¢(k)
one obtains, after simple Dirac and colour algebra,

A6yin = [(2 )3 P¢2(P), 2.17)
d3 3k . .
B1u0 = | G5 oy VO~ )+ 87005 - @.18)
a3 Pk oL o
48, = 2 # Gy =R, (2.19)
dp ) -
4E;, = —'3J‘ (2'7)3 P¢ (0)0(K¢—p), (2-20)
d3 &k . . . A oA
AER, = Y L V(p—R) [6(p)+ 6201k - pO(Ke~ D), @.21)

Zin"fa?

el = f(z 5 (2) V(p—k) [6°(0)+¢°()]k - pO(Kr—P)O(K—K),  (2.22)

dp &k
4B = 4 | 553 iyt VB~ DPDIMOOKe D), @.23)
; &p &Pk
4B = =2 | 55 o VO -DOOK — PR =), 220

With Gaussian ansatz (2.11) for ¢(p) most of the integrals can be calculated analytically.
_Calculation of A8,;,, A&, and AE,,, are easily obtained. In calculation of 4&,,;; we used
the result [7]

ap - . . g -
. - = — 2.25
j(2n)3 Vp—kp -k = (2.25)
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and the integral (2.19) is done in Appendix A. The results are

3 —a _ . .
48y, G R A (1 +a%eYe™ "+ /m a3 +a0?) (erf (2 ag)+1)), (2.26)
2VO _azaz e =
A8 e = =SR2 Az[ +/m ag(L +erf (\/2ag))], (2.27).
2 [+ 4] [o#]
-2V, dq
A8y = ﬂz’jz J dp J o G(p, g, ag)pe™*? ", (2.28)
-0 0
where
- p)d —_ - 1
G(p, q, 0) = e Hlp-ai~e _ ,—3lpta-o)? + \/E olerf (p+4— o)
—erf (Jp—q|—0))—2pge” ¥P~,
and
-3 2 —(1—
AE,,, = AR [(1+a%0%)e™ " —(1 +(1 +a+a?)?)e~ 1 ~9%*
+ 7 a3 +a%0®) (erf (/2 ag) +erf (/2 (L —a)e))]. (2.29)

It is convenient to calculate AEX, by rewriting the integral in the configuration space
(cf. Appendix B). One obtains

2

V b sin “2— . ( )
sin (ro
AEself 3R:A2 e Jdr" ro - ro F(T, (IQ)
0 2
—e Um0y e 4 [T ag(erf (2 ag)+erf (2 (1—a)e))y , (2.30) -

where

5
1 : 2
F(r,o) = (g sin (rg)+ (——— + —Zr—) cos (rg)) e Ve ¥ '[ dte'” cos (2¢t)
r
0o

[( : -nz ) *'2

6g__a~

dt sin (20t)e” + 4 /7 e ¥ erf (\/2 Q)) +1 fre *’2]

[( ) sin (rg)—2¢ cos (rg)] —Le @ (2:31)
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A AEﬁ,lf is more difficult to derive. Careful treatment of the product of three distributions
V(p— %), 8(Kz—p) and 6(Kg—k) which appear under the integral in (2.22) is required.
The model has the good feature of using only colourless trial states (2.7), thus making the
results independent of any constant added to the potential (2.1)2. This insures a good
infrared behaviour [7, 9]. After lengthy calculations [11] one obtains the following result

e

—4V02 Py
AEZ: = mjdxxe e’y <;>, (2.32)
0
where
TR Lt SN _1_.1__, (2 _ 1
J» 41ny_1 +2w) ) (v e +20,
with
1 . 1
He— —1) = @+y+y)| P — —y+1) for 1<y<2,
. y=1 ' Coy-1
g(y) =
1 1, .
1— — —3(1- 5 for 2<y< oo,
y—1 -y
and

w(y) = min (1, _va) s 0y =~~z‘lz(4+3y_-lj~y3), .

Addition of the principial value prescription to the naive (divergent) result is the final
outcome of the regularization discussed in [11]. ‘
Calculation of AE, is analogous to that for 4&;,. The answer is

AE?ﬁt =

e Ee
4vg
=T rE f dpjd -Se‘*“’“""”G(p, 9, a0). (2.33)
(1] 4]

‘Calculation of 4ET;, is done.in Appendix C. The result reads

e

2
— 0 3 - ( - g )Z
AEf = TR2AZ J‘dppzj(p,vg, a)e”Hpa0,
0
Jo= it
G(p, g, a e
Jdp, ¢, a) = j dgq {_(!Lii)» _ne 0 aa)’} ,
qp

3]

2 The contribution from a constant potential is proportional to the Casimir operator of the colour.
symmetry group and vanishes -between colour singlets.:
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pte

dg (1
j“(p) o, a) —_ J __qi{___ [e—i’(ll"‘q]-aq)z_e—i(p_aq)z
q (P4q

e=pr

+ag \/'g- (erf (p—ag)—erf (Ip—aq| —aQ))] - e'*("""")z} ,

1 et U s
(.0 a) = — Q—:I—)(e Hp-ae) _ p=deii-a)y el p-oe)? (2.34)

Ill

Collecting together all formulas one ebtaiﬁs the following structure for the total energy
difference '

4= f;i) +RVZB(0), | (2.35)

where the dimensionless functions A(g), B(g) can be easily read off from Eqsb(2.26)—(2.34)
and are discussed in the next Chapter.

3. Results

The first conclusion which follows from Eqs (2.26-2.34) is that for zero density chiral
symmetry is spontaneously broken because (the result was obtained in Ref. [7])

4= —= 1-2R*W¢ i—1 N ER))
\/—R 14

can be made negatlve by a suitable choice of the trial function (i.e. of R). For large densi-
ties, however, 4 — 0 because of the Pauli blocking. There is no difference between c’hnrally
symmetric and asymmetrlc state tB) in the limit (K¢ — o0), since introduction of a quark
with momentum % destroys the pair with this momentum in vacuum state. It is apparent
from the definition |2) (2.3). Hence, the answer to the question whether chiral symmetry
is restored in this model depends on the behaviour of 4 for intermediate densities and this
question is studied in this Chapter.

At first we calculate the separate contributions to the total energy 4 which are plotted
in Fig. 1 versus KzR. We perform numerical calculation for @ = 0.5. For small Kg the
large dependence 4 of R is stabilized due to the increase of B(KgR). Hence, there exists
a finite range in R in which 4 is negative. When density raises the kinetig term (function
A(KgR)) gives larger contribution to 4, and 4 becomes positive for all R. Therefore, chiral
symmetry is restored in this model, what confirms earlier intuitive arguments [5] and the
mean field results [6]. The critical value K$ at which the instability of the perturbatlve
vacuum towards the Bogolrubov-Valatm one vanishes is K§ = 0.12 ¥,. Substituting
V, = 400 MeV [13] we have K& = 48 MeV. This in turn gives gg = (33 MeV)>. Similar
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value was found in Ref. [11], where the case g = 0 was considered, although, the various
contributions to the total energy behave in quite different way. The increase of kinetic
energy A(KpR) near KR = O (see Fig. 2), in the case a # 0, partly cancels the decrease of
interaction energy B(KpR) producing in the whole small effect. It seems that the model
is not very sensitive to the shape of the test function. However, the value (¢g) is much smaller
than the generally expected gp = (250 MeV)3. Such discrepancies were also obtained by

AE::H

L RK¢

IS ﬂEuH ’

OBy
— DB

Fig. 1. The energy differences 48y, 485, A4ER,, AEl.'nPt, AEPR., AEPR as obtained from
Eqgs (2.27)-(2.34)

'self*

05 B(YKFE, a=%)

Fig. 2. The kinetic (A4) and potential (B) energy differences as functions of RK¥ (cf. Eq. (2.35)

several authors [7, 9, 10], who indicate that a potential with additional short-range attraction
is needed to describe the quark interaction in the high density regime. We currently investi-
gate the problem. We believe that the addition of the Coulomb potential significantly
improves the results. ‘

We may extend our discussion and look at the optimal size of the qq pair — the mini-
mum in R dependence of 4. The optimal radius depends weekly on Ky showing instability
around the critical point — similar behaviour was found in Ref. [10, 11]. From Fig. 4 we
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Fig. 3. Total energy difference 4 plotted -vs V4R for three values of Kg/V,
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Fig. 4. VoRx-nin' vs Kg/Vy

conclude that the restoration of chiral symmetry occurs through the first order phase
transition in the model. This is in agreement with. earlier predictions [5, 6]. There also
exists a metastable state for densities 0.12 V, < Kr<K§ = 0.31 V,. However, the conclu-
sions about the order of phase transition and the metastable state may be artifacts of the
linear approximation.

1 would like to thank Prof. K. Zalewski for suggestion in choosing the test function
and dr J. Wosiek for many stimulating discussions. I also would like to thank Mr. W. Ku-
bica, University of Rochester N.Y. USA and A. von Humboldt Fundatton, W. Germany
for the computer assistance which made- this publication “possible.
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APPENDIX A

In this appendix we calculate 48, as defined by Eq. (2.19). We use the same defini-
tion of the Fourier transform of the linear potential as Ammer et al. [7]

5 1 2n?
7(q) = lim 82V | 5y — — — 0P |. Al
(q) o0 0 [qZ(qZ_'_mZ) m (Q) ( )

A&#,,, may be written as (§ = k—p)

y2 . )
860 = s [P s~ 07 | R0, (a2
where (¢ = RK})
F@) = 21 | dpp’e” - G(p), @y
and
G(p, q,apQ) = }1 dte~ @+ 2ap) 2 = agt (A4)

After performing elementary integration

1 : s e n
6(p, q,0) = E{e“*""“‘"“’ —e ¥t -\/—2~ Q(erf(p+q+e)—erf(lp—ql—g))}-

(AS)
A&, may be written in the form
5 L@
16V F(q) n
46, = — 0 A | dg 025}~ = FO)}, A6
i = (2ny*A’R? {(j 175m) " am O (A8)
0
1 .
Inserting for T 2 J dq — , we obtain the infrared finite expression for 48,
m q*+m?
1]
- 1% [ (rg-Foy A7)
= AR ) rmE ’

1]

so that, the limit m — O can be taken. Substituting (AS) and (A3) into (A7) we arrive at
result (2.28).



1152

APPENDIX B

The self-energy contribution 4EZf is defined by Eq. (2.21). Using Eq. (2.25) the first
part of the integral may be easily obtained (¢ = RKg)

dp d&’k 2 2V
(2 ) @n ) V(P k)¢ (p)fé p(Kg—p) = W
x [e7¢ w0 - o[ go(erf (/2 ag)+erf (V2 (1 ~a)e))]. (B1)

It is convenient to calculate the second part of 4E%,; by rewriting the integral in the configu-
ration space. One obtains

dp d3%k
G ;’3 Gy TE-R R P8(Ke—p)
3 3
-2 .[ v j (‘;’)’ (‘;’)‘ R D2k - pO(Kz—p). (B2)

At first we perform the integration over %. It is useful to define

I = [ @k¢(kk - pe™F°E, (B3)

I can be rewritten in the form
I = f(r, ag)r - p. (B4)
The function f(r) may be obtained by setting 7 = p in (B3) and after elementary calculation
one arrives at the result (2.31) (f(r, @) = :Zi;—TEF(r, 0)). The subsequent integration,

over p, is easy and we obtain (2.30).

APPENDIX C

In this appendix we calculate the term 4EPR, which is given by (2 24). From this
definition one easily has

2

e
AER}, = fdpp i(p, @, a)e” HPma (C1)

0

2Vs
3R2A2

where j(p, ¢, ) is equal to

. ® d
i@ 0, 0) = fq—‘f (G(g)- GO, (€2)
0
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with G(gq) defined by
1 I —ee
G(p, q,0) = [ dte¥/EFP-Twmi=aaliyy_ /g7 02 Dpay). (C3)
-1

The integration over ¢ is simple. The result reads

G(p, 0, a) = 6(e+p—4q) l:e--a}(lp--ql-ae)z_e"‘l-(min(e(l--a),za+r1—ae))2
pq
T .
+ag /? {erf (min (¢(1 —a), p+q—ag))—erf (jp—q| -aQ))]- (C4)

The-integral (C1) is logarithmically divergent at p = K. We single out the divergent part
explicitly. To do this, it is convenient to split g-integration into three parts

Al: 0<g<Kp-p,
All:  Kg—p < g < Kp+p,
AIIl:  Kg+p. < g < oo.
Accordingly
j=J "™ and J'= JslNG+ REG-

J'and J™ are regular at p = Ky (j' defined in Chapter 2 is equal to J"). Expanding G(q)
in the ranges A1 and AIIT one has-

e=p .
G(p, q, 3=
jl(p’ Q, a) — J‘dq {._(g_.éq.;ig) _2e ip 40)2} , (CS)
o
i} 2 - 4(p—ag)?
J(p,0,a) = — e—+58 (C6)
and
etr
JU - j _d_q{i [e—%(lp-ql—qe)z_e-i(e(l ~a))?
¢ lpg
e—p
+ag /-721 (erf (e(1 —a))—erf (Ip—ql —ag))]—ze‘*""“”} . ((e9)]

Whole singularity comes from the J" term. In order to separate the most divergent contri-

. 1 . .
bution we add and subtract — e~ #P~%* g9 \ % erf (p— a) under the integral in (C7).
pq
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JU splits into parts

etp
JgEG - f i‘i__{i [e—%(lp-ql-ae)z_e—&(lr-—ae)’
q (P9
e—p
a0 |- (erf -4(p-ap?|
+ag '2—(°1‘- (p—ea))—erf(|p—qgl—ag)) | —e 5 (CB)
which has logarithmic singularity at p = Kx(j'" = Jhge), and
e+p
J;‘ING = I f{g_{i I:e—i-(p—mz)z_e—«l‘(l—a)zo2
q (P4
e=p
n .
+ag \/? (erf (o(1—~ a))‘——erf'(p—ag))jl —e ¥p-a0) } . (C9)

Linear divergence of Jing in p = K is explicit after performing the integral (C9)

. -
ngc = ; l:e"*("""")z—e'*“"')z"z-{-aQ \/—Z— (erf (o(1—a))

1 1 1 1
— — - _o—¥pap)? { T
(v ag))] (2(9 -p)®  2(e+ p)z) ¢ (Q -p @ +p> '

According to Ref. [11] the naivg result should be supplemented with the principal value
(#) prescription for the integration of p in (Cl) (j™ = J"+2(Jgng)). Collecting all
formulas together gives (2.34).
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