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Dilatation effect of life-times of “micro-clocks™ shows a controversy between the relativ-
istic and quantum symmetries connected with quantum nonlocality that has recently been
discussed in connection with Bell’s inequalities violation., This controversy can be overcome
within the hypothesis of internal spacetime R, of “relations” by making “events” of Min-
kowskian spacetime L, analyzable.

PACS numbers: 03.30.4p

1. Time dilatation and its measurement

Let us start with a general remark that proper-time and proper-space intervals, Ty and
L,, of classical macro-clocks and macro-rods represent #wo internal absolute characteristics
of those objects that also create the metrical spacetimes of both Galileo (G,) and Min-
kowski (L,). The relativization of time and space intervals by the L, geometry is thus
secondary to the absoluteness of 7, and L, and connected with measurement which,
as such, introduces the outer world. interacting with entities measured. However, empty
L, deals with only one L-invariant four-interval x? = (X, —X;)? (X, , denote two events)
and so the L, geometry has to deal with a negative balance “—2+4+1 = —1”. The same
balance of the G, geometry is equalized (“ -2+ 2 = 0”), because G, deals with rwo G-invar-
jant time and space intervals which directly parametrize the absolute characteristics
T, and L,. It turns out that the negative balance of the L, geometry leads to a controversy
between the quantum symmetry Q and the relativistic-classical symmetry L while describ-
ing the dilatation effect of micro-clock. Our intension is to present that controversy and
then, to solve it within the hypothesis of internal spacetime R, put forward in paper [1].

Let At* = T, be the time interval of the “moving” clock in its rest-frame S* and
A4t = T the corresponding time interval registered by the clocks of the reference frame
S where our clock moves. As

At = T(At*~VAZ*[c*); T =(1-V*[c?)™3, (1.1)
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the classical world-line attached to the clock implies that AZ* = 0 and hence, from (1.1),
‘we obtain the dilatation effect

T =TI'T,. 1.2)

The classical world-line attached to the clock implies that together with sharp localiza-~
tion (4Z* = 0), its velocities ¥'* and V are sharply defined (4¥* = 4¥ = 0) which implies
that the dilatation factor T is sharply defined too (4" = 0), However, the two.constraints,

"4Z* = AV* = 0, are in conflict with finite inertia M of micro-clock 4, since

4Z* 2 h[AP* £ (h]M) (1/A*V*). (1.3)

Indeed, if AZ* — 0 then A(I'*¥*) = co hence A" — 0o and the dilatation factor, together
with the dilatation effect, cease to be defined. On the other hand, if AV* — AV - 0 which
makes the dilatation factor sharply defined (AT - 0), then AZ* — . This quantum non-
locality makes it impossible to draw the dilatation effect (1.2) from (1.1). A paradox!
As seen from (1.3), the two constraints 4V* = AZ* = 0 remain consistent with the un-
certainty relation prov1ded 'M — 0. Then, h0wever, one regains the classical macro-
-clock with classical world-line, like in the mathematical limit & — O which characterizes
the classical framework, where both uncertainties AZ* and AV* are a priori equal to zero.
In order to explain why this paradox does not interfere with experiments which
determine the life-times of “relativistic” micro-clocks and prove the dilatation effect,
let us analyze two kinds of those experiments. They will correspond to relatively long and
short life-times of micro-clocks Ay, In the first kind of experiments (i), T is measured
directly, i.e. inthe “x” spacetime of a given lab-system, while in the second (i), it is measured
indirectly, in the “p” language, bv measuring the suitable dispersion (uncertainty) of
energy of Ay. |
(i) For relatively long-living A,,’s direct measurement of the life-time 7" and its dilatation
(in a given laboratory) is possible if the lengths / of tracks of 4,,’s fulfill strong inequality

I=VT>a, (1.4)

where V is the velocity of 4, and a is the diameter of the spot (e.g. in the photographlc
plate) created by A4, colliding inelastically with “atoms” of the medium. For high-energy
A,/’s their energy losses for creating obserVable tracks and hence the decrease of the I factor
are very small, AT'/I" <1 (though finite 1), and so the dilatation factor remains defined
quite well (though ‘not sharply). This picture might give an 1mpresslon that the classxcal
trajectory (world-line) of a micro-clock is its adequate characteristic. However, that would
question the completeness of quantum description of micro-object 4, by “y” function
and does not solve the paradox itself. The point is that inelastic collisions do not create
the dilatation effect, ,but merely make it directly observable prov1ded that the strong
inequality (1.4) is fulfilled.

The clue to the success of quantum (complete) description is in what Helsenberg calls
[2] the “quantum-potentiality” expressed by nonlocal “¢” describing an individual micro-
-object and opposed to the local “classical-actuality” of any registration of a sp6t by macro-
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-devices. Therefore, the dilatation effect must follow from the uncertainty relation
T = h/AE, , (1.5

where 4E is the energy uncertainty of an individual (unstable) micro-object 4,, of the
following meaning. If ¥ denotes the internal energy of A,, then, in the rest-frame S* of
4y, E* = W and 4E* = AW hence,

T, = hjdAW (1.6)

should denote the proper life-time of 4,,. Consequently, AE which enters (1.5) must be
due to the uncertainty of the internal energy W only and so, the quantum description of ‘
A, requires T to be subject to the dilatation effect; T = I'T,,.

Let us emphasize that direct registration of the spots which create the track of Ay
itself excludes the determination of AE. In other words, the measurement of the track
of A, excludes indirect measurement of its dilatation effect, which can be seen as follows.
The energy uncertainty E due to inelastic collisions resulting in a registable spot is of the
order of

OF = (CE[OP)AP z V(h/AX) = V(h/a),
where 4X = a and hence, a L V(R/OE). As | = VT = V(h/AE) > a,
0E> AE )

which just means that AE disappears in the energy fluctuations of the order of dE.
(if) For short-living 4,’s / = VT can be even smaller than the atomic radius and hence
the condition (1.4) cannot be fulfilled. Then we are forced to determine T indirectly but,
according to (1.7), this measurement must be performed on the decay products of 4,, and
not on 4, itself. Then let us analyze a typical measurement assuming that 4, decays
into N stable particles 4, (J = 1, ..., N) with known masses m, (dm, = 0). Let the asymptot-
ic momenta p%® and hence the energles e = c(mic*+pPH'? of A, in the k-th decay-
-event of A%, be measured with any accuracy. Thus p® = (p%; (i/c)e®) denotes the
four-momentum of A% (p{*? = — m3c?) and, according to the energy-momentum conserva-
tion

P® = Z piR (1.8

Ji1

is the four-momentum of A} after its decay which thus realizes a sharply defined mass
M® of A determined by P®, However, the statistical nature of quantum predictions
forces one to deal with a rich ensemble of A%’s in order to determine the energy uncertainty
of an individual micro-object 4,,. Meanwhile, in a fixed laboratory we deal with short-
-living A4,’s of different and a priori uncontrollable (though a posteriori measurable)
momenta P, Therefore, the only quantity determined by P®”s and free of uncontrollable
spread of P*’s is the L-invariant internal energy W = Mc? of A, where,

W® = (= P02 = pBe2, 1.9
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The sufficiently rich sample of W ®’s determines the invariant internal energy W, = Mc?
as the mean value of W®’s, and the dispersion AW = AMc? of W®’s which, by virtue
of (1.6), determines ‘the proper life-time T, of an individual particle 4,,.

Thus indirect, much like direct measurements of T are free of the paradox and con-
sistent witH the relativistic symmetry, however, and here is the point, indirect measurements
cannot prove whether T from (1.5) is or is not subject to the dilatation effect, because we
can only determine T,. In the next Section we show that the statistical aspect of the
measurcments of T conceals a controversy between the relativistic symmetry L and the
quantum symmetry Q which concerns an individual object A,, described by “p”.

2. Quantum-relativistic controversy

The wave function is characteristic of an individual isolated micro-object and hence
the uncertainty 4M of the mass of 4,, must be attached to each micro-object 4,,. According
to the L,-framework which regards L, as the first background not only of the classical-
-actuality of events (“Alles ist Coincidenz™) but also of the quantum-potential relations
and by virtue of (1.8), A, should be in a state superposed of different P’s, as P? = —M2¢? or,

E = (W*+P%)'2, 1)
where E is the total energy of 4,. The Legendre transformation
V = 0E/oP = ¢*(PJE), (2.2)

which introduces the classical language of velocities and constitutes the classical Hamilton-
ian equations, implies that

E=TW, P=W[HIV; I ==V} 12 (2.3)
and .
OPJoW = I'(V/c*) # 0 (except S* where V = 0). Q.49

Assuming that A4,, is at rest in S* hence P* = (0,0, 0; (i/c0)W), the same relations (2.3)
follow from the Lorentz transformation of P. Thus V denotes a sharply defined velocity-
between S* and S and hence, the uncertainty of energy 4E from (1.5) and the corresponding
uncertainty of the momentum which follow from (2.3) are equal to

AEY = TAW, AP" = (AW |cHI'V. 2.5

The index “L” has been added to the uncertainties of the energy and the momentum in
order to emphasize their relativistic origin. Note that according to the classical language
of velocities of the L symmetry, the momentum P depends a priori on the internal energy
W of A, as stated in (2.4). Finally, from (1:5) and (2.5)

TY = hJAE* = T,/ # I'T, (except S* where I' = 1) 2.6)
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which just expresses the quantum-relativistic controversy. This controversy can also be
seen as a consequence of the negative balance of the L, geometry which has to deal with
only one L-invariant P2. The life-time problem, however, calls for two L-absolute quantities
W, and AW.-As seen from (2.4), in the nonrelativistic (NR) limit ¢ — o when L, —» Gy,
the Galilean momentum P becomes independent of the internal energy W of 4,,, i.e.,

oP%10WC = 0. Q.7

Thus, there is no quantum-NR controversy, as it was to be expected, because the equalized
balance of the G, geometry is strictly connected with the absoluteness of Newtonian time.
Let us neglect the relativistic symmetry L for a moment. Then the quantum symmetry
Q enables one to regard P as an independent variable and, at the same time, to maintain
the expression (2.1) of the energy E. In fact, the momentum operator P = —ihg/oX is
a priori independent of the internal state and hence, of the internal energy of 4,, and so its
eigenvalues (in a fixed' S!) become independent variables, which, much like in the NR-
-framework, cf. (2.7), implies
3PJOW = 0. (2.8)

Taking into account (2.1) and (2.8), 4E = 4E? amounts to
AE? = (BE[0W)AW = AW|I; T = (1+c2P* W22 (2.9)
which, by virtue of (1.5) and (1.6), results in the correct dilatation effect
T2 = h/AE? =T'T,. (2.10)

The quantum-relativistic controversy (2.6) together with the proper answer (2.10)
as to the dilatation question of 7" given by Q symmetry (2.8) strongly favour the hypothesis
of internal spacetime R, of “relations”, which would precede the external spacetime L, of
“events”. According to that hypothesis, quantum states “¢” do not represent “‘event-
-shapes” in L, but “relation-shapes” in R3 — cf. Sect. 3. As a matter of fact, the same
suggestion follows from the spacetime nonlocality of y recognized for the first time by
Einstein [3] and proved in a spectacular way by recent experiments [4] violating Bell’s
inequalities [5]. The peculiarity of microphysics consists in the fact that the registration
of an individual micro-process (such as the decay of micro-object 4,,) can be done only
once by a'single lab-system [6], say, on a given photographic plate. Therefore, in spite of the
fact that the decay products of a single particle 4,, create the four-momentum P® (in L,)
determining a sharp mass M®, cf. (1.9), the state 9 of an individual unstable 4,, which
contains (“‘potentially”) different masses M is not necessarily embedded in L,. According
to Ry, y represents a relation-shape in R,, which, as will be shown, remains consistent
with the Einsteinian principle of relativity. Let us remember that indirect measurements of
T do not question the L, geometry of measurement but, as a rule, provide us with 7= T,
without proving or disproving the dilatation effect. Thus the statistical nature of quantum
predictions would conceal the controversy (2.6) ensuring that the L, geometry is adequate
for any measurement, but it does not cancel this controversy, because it concerns an
individual micro-object A4,,.
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3. R, geometry of relations

In order to explain how a physical continuum different from L, can be introduced
without violating the Einsteinian principle of relativity, let us remember the difference
between the L, and G, geometries. Note namely that the metrical relations of both G,
and L, space-times can coincide in some fixed reference frame S*, which means that

X* = XOx g% = (O 3.

where (X, t) and (X%, (©) denote the events in L, and Gy, respectively. However, in spite
of the coincidence of metrical relations (3.1) in S*, the L, and G, spacetimes are different
because of the difference of the symmetries of their points = events. Otherwise, we could
never discover the relatxvxty theory, i.e. the true symmetry L of events suggested by the

L symmetry of the Maxwell equations. The difference between R, and L, also concerns
their symmetries only, however; the analogy ceases to work here, as the hypothesis of R,
must be consistent with the L symmetry of directly observable events.

The R, geometry recognizes the directly unobservable “relations” between ‘micro-
-objects as preceding “‘events” of L,. According to an old thesis of Landau and Peierls [7],
free four-momenta P, of particles “A” scattered to the asymptotic zone of infinitely heavy
“bases” (in Bohr’s terminology [8]) are the only directly observable quantities of quantum-
-relativistic objects. The same is assumed in the S-matrix theory as parametrized by the
Mandelstam variables. This, together with the non-commutative algebra of the “x—p”
canonical variables, enables one to introduce the internal spacetime R, of absolute rela-
tions. According to [7] it must be required that if relations are referred to infinitely heavy
“bases” (measuring tools), as implied by any measurement, then the symmetry R # L
of relations must convert into the symmetry L of events of L,. In this way, events would
become analyzable in terms of the more elementary relations of the R, geometry.

The internal spacé R; extends in a way the absoluteness of classical space relations
referred to a given ““basis” which remains static (in its own rest-frame) even that interacting
with another entity. Consequently, the hypothesis of R, must take for granted the fact that
isolation of a micro-system precedes its observation (measurement) by the outer world
equipped with the “bases”. Following the Landau-Peierls thesis, let us consider the class
of auxnhary L-invariant observables G(p?) where p is the four-momentum built from P,’s.
We start with defining the three-dimensional space R of L-absolute momenta g as a space
where the functions F(g2) are embedded, such that -

K¢ =G0p* = ¢ =0). (3.2)
The unitary Fourier transform
F(y*) = nh)™ § d*qF(q*) exp [i/h(gy)] (3.3)

which expresses the non-commutative, quantim-canonical algebra thus determines the
L-absolute relation-shape F(y*) embedded, by definition, in the three-dimensional internal
space R; of ‘“relations” y. At the same time, the L, four-geometry determines the cor-
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responding L-invariant function (distribution).

G(x?) = (2nh)™* | d*pG(p®) exp [i/h(px)], (34)

where, following the translation invariance of G(p?) in L,, x = X,— X, denotes the relative
four-coordinate in L,. As spanned on the L-invariant four-interval x2, G(x?) does not
represent any event-shape and, according to (3.2), we shall say that F(y?) and G(x?) represent
“the same” relation-shape in R; and L,, respectively. This will be denoted henceforth
by “=7,

F(y*) = G(x?). (3.5)
Definitions (3.2)-(3.4) imply the numerical identity

+ o

§ dxoG(x* —x3) = F(x* = y?). (3.6)

From now on, R, is recognized as an independent space that precedes L,. The L-abso-
luteness of R; means that any object embedded in R; is automatically L-absolute. Thus R; is
different from any space ES” of the reference frame S in L,. Note that the so-called ““semi-
-relativistic’’ models [9] which assume the L -framework distinguish some reference frames
S*. As pointed out by Dirac et al. [10] and other authors e.g. [11], these models conflict
with the Einsteinian principle of relativity.

In spité of “the sameness” (3.5) of c-numbers F and G, laws of motion in R; can go
beyond those in L,, because g-numbers in R;,

0 =0(4q); 4q=—ihdjdy, (3.7)

cannot be translated into the L, geometry language. In spite of that, the L-absolute laws
in R; expressed by (’s will provide us with L-absolute c-number characteristics, which
can be translated into the language of the L, geometry of measurement — see Appendix L

The internal energy operator / of a two-body system is an example of an L-absolute
g-number in Rj, which, according to the Einsteinian energy-mass relation, can be taken
in the form

h = c[(M3c2+¢)'* +(Mic® + ¢ ]+ V(). (3.8)

The relation-shape ¥(y?) denotes the potential of the internal force that acts at a distance
in R, and fulfills the third Newtonian law. According to (3.5), V(y?) describes “the same”
relation-shape as the L-invariant function (distribution) U(x?) = ¥(y?)in L,. The L-abso-
luteness of R; implies that the Schroedinger equation,

ihdjory(y, ©) = hy(y, 1) (3.9)

defines the L-absolute internal time continuum 7 (r) which completes R; to the four-
-dimensional internal spacetime R,. As the internal symmetry R of Eq. (3.9) and hence
of R, consists of rotations in R; and translations in 7, R, = R3(y)x7 (7).

The internal angular-momentum j = y A g represents another L-absolute g-number
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resulting in L-absolute internal angular-momenta (hj,j = 0,1, ...) which, very much like
spins, represent off-spacetime characteristics in agreement with R, # L,. Weak four-
-parameter symmetry R of R, makes room for a much wider class of dynamical models
than does the strong ten-parameter symmetry L which is exceedingly restrictive for any
dynamics [12] and in the classical and canonical relativistic mechanics it even results in the

“no interaction theorem” [13]. With the factorization of the R, relations from the outer
world of L-symmetric “bases” a problem arises that of the relationship between the char-
acteristics obtained in R, and their measurement. This is analyzed in more details in [1]
and here let us illustrate it by the following example

The internal energy eigenvalues W, = M,c* of h of an isolated system “AM+A1”
are a prxon L-absolute but, since R, precedes L,, no four-momentum is a priori attached
to “Ap+A,”. Itis only a posteriori, when the eigenproblem hy, = W, is solved in R; that
the relativization of W, can be performed. It consists in attaching to W, the four-momentum
P, such that P> = —M2c%. Only now can we speak of the rest-frame S* of “A\+4,”
in L,, where E¥ = W, and P} = (0,0,0; iM,0).

In the NR limit (¢ = ) y = x = X5 — XY, where the analytic form of x2 is independ-
ent of the reference frame Sin Gy, like the analytic forms of G(x?) = F(y?) are independent
of S in L,. At the same time v — t°, where t° coincides (up to an arbitrary additive con-
stant) with the G-absolute Newtonian time. Thus RS = lim R, becomes embedded in G,

[iud- o]
and hence the hypothesis of internal spacetime becomes superfiuous. The equalized balance
of the G, geometry makes the question of priority of relations over events in G, physically
meaningless. Nevertheless, since NR quantum mechanics gives, as a rule, the relation-
characteristics (as parametrized by the relative space coordmates in Gy), it strongly favours
the R,-relationism.

The second limit M, — oo, when one end (4,) of the relation y- between stible objects
Ay and A, becomes a “basis”, is crucial for the hypothesis of R,. After subtracting from
h the infinite term M,c? representing the internal energy of ‘4,, Eq. (3.9) converts into
a one-body (4,,) equation which can be rewritten in the L-covariant form. The “basis”
A; drops from equations of motion and the following metrical coincidences take place:

y=X* t=1t%+a,; ¢q=P* (3.10)

where S* is the reference frame where the “basis” A4, is at rest and localized at the origin
of E§. Thus X* and P* denote the space coordinate and the momentum, respectively,
of A, in S* but, as known from (3.1), this does not imply that R, converts into L4. The
reason that besides the metrical coincidences (3.10), $* can be identified with one of the
reference frames in L, is the L-covariant structure of the limiting equation (3.9). Thus
the symmetry L of R, makes R, coinciding with L,. Consequently, the real “basis” A, can
be replaced by the mathematical reference frames S in L, and this Lorentz limit of R,
creates the outer world of 4,,, while 4, gets a classical world-line which in (3.10) became
identified with the r*-axis of the rest-frame S* of 4,. Together with it, X*, * can be identi-
fied with the event represented in S* and P*, with the space part of the four-momentum
P = (P; iE/c) also represented in S*, where P? = —M?2c%. Finally, the internal potential
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V(y) in R, can be relativized by the four-potential U where,
U* =(0,0,0; (i/c)V(y = X*)). (3.11)

Thus, from the inside of the isolated system “A,+4,” the L, geometry has been repro-
duced of the asymptotic zone of the measuring “bases”.

A most striking consequence of the Lorentz limit of R, which creates the outer world,
and which would explain a well-known discontinuity between the two-body Bethe-Salpeter
and the one-body Dirac equations [14] consists in a transition from the relation-shape
V(y?) = U(x?) off spacetime to the event-shape U(X) which, as seen from (3.11), remains
static in S*. ,

For noninteracting and stable particles, i.e. in the case of pure kinematics, the Lorentz
limit of R, does not impose any physical constraints, because, without changing the physics,
Ay can be arbitrarily heavy and hence, the resulting equations of motion in R, become
L-invariant. The equivalence of the R, and L, kinematics was to be expected because
of the assumed structure of /# and by the very fact that kinematics makes no. use of the
quantum non-commutative algebra. However, if the system contains an unstable particle,
the limit M, — oo will preserve the metrical coincidences (3.10), but it will not result in the
Lorentz limit of R, — see Sect. 4.

Let us emphasize that the R, geometry deals with two L-absolute intervals,

r=|yl and A4t, (3.12)

which proves that, except for the Lorentz limit of R,, the points (y, 7) of internal spacetime
R, are directly unobservable. Indeed, directly observable events determine only one L-abso-
lute four-interval x? (negative balance of the L, geometry).

A singular situation occurs in the presence of an external field which is an event-
-shape such as U from (3.11). Then U defines the four-velocity u = cn of the “basis”
Ay, where n*-= (0,0, 0; /) and we gain the second L-invariant (nx) which together with
x? equalizes the negative balance of the L, geéometry. Indeed,

[x* = (x*4+(nx)»)'"?* and At* = —(nx)/c (3.13)

represent two, space and time, proper intervals of S*. This would explain the well-known
success of relativistic dynamical models dealing with external fields. Of course, the very
presence of any external field (event-shape) in equations of motion spoils the full isolation
of the physical system in question. The corresponding laws of motion are then L-covariant,
thus consistent with the theory of relativity, but the symmetry L of empty L, ceases to be
the internal symmetry of those laws.

4. Dilatation effect in R, framework

The equalized balance of the R, geometry, cf. (3.12), enables one to overcome the
quantum-relativistic controversy (2.6). As the “R,-relationism™ rules out the one-body
problem (as an elementary one) let us introduce the second, besides the unstable A,
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auxiliary but stable object 4, with mass M,(4M, = 0), thus creating a two-body system
“Ap+A,”. We also assume that 4, does not interact with A4,,, which guarantees that
the structure of A, and hence T, = 1/AMc? remain unchanged. An example of weakly
interacting unstable system is discussed in Appendix II.

Making use of complex “internal energy”, the eigenstate of the L-absolute momentum
g of our two-body system in R, takes the form:

¥ = Aexp [i/h[qy—'c{[(Mo—iAM/2)2c2+q?]"2+(M}c2+q2)‘/2}r]]. (4.1

In order to solve the problem of the relationship between the prediction of the R -frame-
work as concern the dilatation effect and the mehsurement (always performed by the.
classical “bases™) let us assume that M, — co. The resulting metrical equalities (3.10)
then solve this problem although, M, — co does not result in the Lorentz limit of R,.
The point is that complex M implies complex “momenta” P and hence, divergent solutions
for [X| — oo, which means that the Klein-Gordon or Dirac equations with complex mass-
-parameter are not L-covariant. In other words, in spite of the limit M, — o we are
restricted to the symmetry R of R4, which means that the real “basis™ 4, cannot be replaced_
by. mathematical reference frames parametrizing L,. Consequently,. assuming that
AM|M < 1 and introducing instead of ¥, y = ¥ exp [i/h(Mc*7)], after M; — o0 we get

v = Aexp {i/h[qy—c(M3c* + ¢%)"/%c]} exp (= 1/2T*), 4.1)
with
T* = (1+¢*/M3c%)'*T, = (1+P*M2c?)'*T, = I'*T,,

but y remains an L-absolute relation-shape of A, and real “basis” A4, in R,. This is
consistent with the fact that indirect measurements of 7" do not prove the dilatation effect.
By taking into account that © = t*+a,, from (4.1') we get,

lpl* = |BI” exp (—1*/T*), 4.2)

where T* = I'*T, is the interval of the L-absolute internal time of the two-body system
“Ap+A;". Thus T* denotes the relaxation-(life-)time of the state v of that system. Since
A, is stable, the instability of the whole system “A,,+ A4, is due to the instability of 4y,
only and hence, T* describes the dilatation effect of the life-time of 4,, with regard to the
“basis” 4,.. Of course, one may just as well take another “basis” 4} instead of 4,, which
would result in another dilatation factor I'*’. However, the new life-time T%* = I'*'T,
again means an L-absolute relation-characteristic of the two-body problem of the “A+ 47"
system and not a relative one-body characteristic of the L, geometry. The latter would
bring us back to our controversy (2.6).
Taking into account that complex “mass” of “A4,+ 4,” is equal to

M = [(Mo—idM[2)* + ¢*[*]'* +(M + 1c*)'? = Mo—idH |2, (4.3)
where
AM = AM|T*,
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we see that the two life-times T, and T* have in fact the same geometrical nature of the
proper life-times of A, and “4y,+A4,”, respectively, as

To = h/AMc?, while T* = hjAMc>. 4.4

Both life-times are determined by L-absolute uncertainties of the corresponding L-absolute
masses M and .#. In Appendix II we make use of this fact in evaluating the proper life-
-times T of mezo-atom in the n-th bound state. It is remarkable that bound states maintain
the exponential decay law of the constituent muon, in spite of the fact that the bound muon
has different Fermi momenta. This conflicts with the classical-like motion in L, and,
results in an experimental test of the R, hypothesis, which will be discussed separately.

5. Remarks on R,-relationism

The R,-relationism shows that the state (4.1") of “4,,+ 4, relaxes to zero if only .
one of its constituents is unstable. Indeed, a variation of one member of any relation modifies
the whole relation! The R,-relationism would then unravel the “mystery” of the “collapse
of the wave packet” vastly discussed in connection with Bell’s inequalities violation [15].
Of course, this réquires a separate analysis, but the following oversimplified (since classical)
example illustrates the “‘realism” of relations.

No classical example can illustrate the behaviour of a non-commuting observable
and the difference between the R, and L, geometries, the more so that there is no “classical
limit” of R4. Nevertheless, the following example embraces some aspects of relations alien
to events and therefore it can be helpful in understanding the very “relationism”. Let the
two parallelograms 4; and 4, be at the two ends of a large distance r,, and the relation
“@” in question, the ratio of their hights Ay, &,,

p = hylh,. (5.1)

Let the measurement of 4, performed by an external device 4; be connected with turning
the 4, about 90°, so that the new hight of 4, becomes equal to its width 4} # k, from
before the measurement. Then the relation (5.1) suddenly changes into a new one

y' = hy/hy # hylhy =y ' (5.2)

without perturbing A,. This shows the nonlocal nature of the relation ¢ as opposed to the
local character of the attributes &, A} of A, and A, A, of A,. Note that the “local” attributes
hy, By of A, as well, as h,, b5 of A, also express some relational attributes of the four
points which determine a parallelogram. The sudden change of p.into y’ does not, however,
question their realities in the realm of relations.

Bohr, who much like Einstein, recognized the L,-framework was, after Einstein’s
arguments [3], forced to definitely give up the realistic interpretation of the quantum-
-potential relations described by the wave function. He recognized “y” as the maximal
“information” to be obtained from all possible (“‘conmiplementary’ ) experiments- per-
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fomed with the help of classical (real!) devices [8]. However, this interpretation of “y”
restricts unjustifiably the (NR) quantum mechanics to a subclass of relations referred to the
“bases” when, as we know, R, converts into L,. Whereas, the electron-proton relations
of the hydrogen atom structure are hardly reducible to “informations”. The atomic struc-
ture represents a relation-shape of the electron and proton, which, according to the R, -rela-
tionism, exists in R, independently of any measurement (“information”).

The “quantum-motion” described e.g. by (4.1') provides us with another, nontrivial
example of the relationism. Note that ¢ from (4.1') is multiplied by the relaxation factor
exp (—1*/2T*), where no correlation occurs between the position y = X* (of 4y with
regard to the “basis” A,) with the time ¢* of the relaxation factor. This shows that the
quantum-motion does not represent any “transport” of 4, in spacetime. The classical-like
correlation between the space and the time localizations of A, in L, requires: (i) non-
-stationary states of a wave packet and (ii) the scattering states of “A,+4,” when its
constituents are on their mass-shells. Then indeed,

(X*S = VFEe*—12); V& = (0E*[oP*),
and ‘
exp (—1*/T*) = Cexp [-n(X* (VS THL;  n = VIV (5.3)

Of course, (5.3) says nothing about the magnitude of the dispersion {(4X*)?>'/* around
{X*) which can be much larger than the mean wave length %, = h/|Pg|, thus preserving
the wave aspect of the quantum-motion.

Let us emphasize that the lack of correlation between the space and the time localiza-
~ tions of the constituents in stationary states of a composite system is of particular
importance in understanding the quantum-motion inside a bound state when the
constituents are off their mass-shells. Then, their Fermi momenta ¢ do not determine the
fixed value of internal energy level W,. Consequently, in contrast to scattering states, the
bound states are directly unobservable {1].

APPENDIX I
Relatzon-shapes in Ry and L,

“The sameness” of c-number relation-shapes F(y?) in R; and G(x?)in L, — cf (3.5)—is
restricted by the convergence of the corresponding integrals which express the quantum
non-commutative “x—p” algebra. Let us illustrate this by a.few important examples.
() Let G(x?) = x2. Since the integral (3.6) is divergent, there is no relation-shape in R,
which would be “the same” as the four-interval x? in L,. At the same time, if F(y?) = y?,
neither F(¢?) nor G(p?) exist and hence no relation-shape exists in L, “the same” as the
distance square y? in R;. Perhaps, the quarks are confined because of the lack of isomorphy
between the R, and L, relation-shapes. , v
(ii) Let F(y?) be the Yukawa potential in R, F = exp (—xr)/(dnr) (r = |y)), that describes
the action-at-a-distance in R,. By analytically extending F(¢2 = p*) = G(p?) = ((K*+p»)*
to negative p?, one obtains G(x?) = 4°(x?; ), where “C” denotes the contour of integration
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in the complex p,-plane, while 4 is the corresponding Green’s function (distribution)
of a scalar particle of mass x. Thus

exp (—kr)f(4nr) = 49x*; x). ' [¢5))

(iii) Loosely bound systems, as e.g. atoms, are well described by the NR-framework in
RS embedded in G,. However, according to the R,-relationism, internal wave functions
in R§ do not represent event-shapes, but relation-shapes. Therefore, since L and not G
expresses the true symmetry of events, the relation-shapes obtained in RY must be identified
(in their analytic forms) with the relation-shapes in R,. For example, when y(r) represents
the internal ground state wave function of the hydrogen atom (v, = exp (—r/2R)/(8nR?)'/?)
obtained from the NR Schroedinger equation, the distance r between the proton and elec-
tron must be identified with the L-absolute interval |y| in R5. Thus, the elastic form factor
Fy = |9o|? becomes an L-absolute relation-shape, Fo(y*) = exp (—r/R)/(8nR?) and hence,

Fo(y®) = Go(x*) = —(2R®)7'0/0p(A°(x*; B)); B = 1/R. (L.2)

The conclusion would be that for loosely bound states (e. g.v atoms) when strong inequality
g% < mZc? (m, — electron mass) is fulfilled by almost all Fermi momenta g, the NR-frame-
work provides us with correct L-invariant atomic form factors [1]

Gu(x?) = Fu(y”) = v;i()w(”).

APPENDIX IT .
Life-times of mezo-atom

The electromagnetic interaction between the muon and the nucleus in mezo-atom
(with single muon) results in loosely bound systems, which justifies evaluating the proper
life-times T& of mezo-atom in the n-th state following the formula (4.4). The internal
energy levels W, of such atoms can be taken from the NR Schroedinger equation completed
by the energy-mass relation hence,

W, = (M +m)c*—(1/2n*)a’Z%uc*; u = m/(1+m/M), (IL1)
where m, M are the muon and the nucleus masses, respectively, n = 1,2, ... and
o = “1/137”. If Am denotes the uncertainty of the muon mass then

To = hjdmc® = (2.19703+0.00004) x 10° sec. (I1.2)

is the proper life-time of free muon. According to (IL1),
AW, = (dW,[dm)dm = [1—(1/2nD)a*Z*(1 + m/M)~*]dmc?.
Consequently, in the same accuracy up te «?, the proper life-times T$? = /AW, amount to
T = [1+(1/2n3)a*Z*(1 + m/M) ™ ] T,. (IL.3)
Of course, the largest dilatation occurs for » = 1 when

TV = [1+(*Z%/2) A +m/M)"*]T,.
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Assuming that M = AMy, where My is the nucleon mass and 4 = 2Z—1 (in order to
contain the hydrogen mezo-atom when A = Z = 1), we get:

TEAZ) = {1+(2*Z%2) [1+m|QZ-1)My]"*} T, (11.4)

which, as a function of Z, is plotted”in Fig. 1.
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