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DUFFIN-KEMMER-PETIAU PARTICLE WITH INTERNAL
STRUCTURE
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The Duffin-Kemmer-Petiau equation for a spin-0 or spin-1 particle is interpreted as
the point-like limiting case of a new relativistic wave equation for a tight system of two Dirac
particles. In the new wave equation, masses of two Dirac particles appear additively, in con-
trast to the familiar Breit equation where their kinetic energies are additive. From such
a two-body relativistic wave equation an equivalent set of radial equations is derived when
the internal interaction is described by central potentials. Then it is observed that for
a Coulombic internal potential the new wave equation admits no physical solutions

corresponding to 'S, states. A possible advantage of this fact for composite models of W
and Z bosons is pointed out.

PACS numbers: 11.10.Qr

As is well known, the Duffin-Kemmer-Petiau equation for a free spin-0 or spin-1
particle can be written in the form [1]

B(y.+72) - P—M]p(X) = 0, 1

because the Duffin-Kemmer-Petiau 16 x 16 matrices may be represented as f* = 1 (v +75),
where (v}) = (8, ﬁ,&i), i=1,2, are two commuting sets of the usual Dirac matrices.
In the quark model, when the point-like limit is applied to quark-antiquark states, Eq. (1)
can be used to describe the external motion of a free pseudoscalar or vector meson. In this
case M is an effective mass matrix. Thus, in the quark model, it is natural to consider
Eq. (1) as the point-like limiting case of a relativistic wave equation for a tight system of two
Dirac particles (a quark and an antiquark). Writing down such an equation as

[y1 Pi+y2 - p2—2m—S(x —x,)]9(x, x2) = 0, @

where x} = x3 and p} = pJ (for equal times), and introducing X = % (x; +X,), x = X;—X;
and P =p,+p,, p = 3 (p;—p,) we obtain

[7 (1472 P+(y.—72) - p—2m—S(x)]p(X, x) = 0, 3
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where x° = 0 and p° = 0 (for equal times). Here we assumed that p°p(X, x)i,oco = 0. This
new two-body relativistic wave equation reduces to the DKP equation (1) when —(y; —v,) *p
+2m+S(x) > M and (X, x) = p(X). In the centre-of-mass frame, where P = (E, 0),
we get from Eq. (3) the following stationary wave equation for the internal motion:

[3 By +BIE—(7,—7,) - p—2m—S(X)]p(x) = 0. )

Note that the familiar Breit equation [2] gives in the centre-of-mass frame a different
internal motion equation which has the form

{E~(By71=B272) - D=1 +B) [m+3 SE®)]p(x) = 0 (%)
if there is only an internal scalar potential S(x) additive to mass. If beside the scalar potential
S(X) there is also an internal vector potential ¥(x) additive to energy, we substitute E — E
— V(X) in Egs (4) and (5). In contrast to Eq. (2), the Breit equation is not relativistically
covariant, even in the free case. Hence, in relativistic considerations it is usually replaced
by the covariant Bethe-Salpeter equation [2] which, however, even in its reduced one-time
form [3] is hard to handle for relativistic bound-state problems [4]'. In the nonrelativ-
istic limit Eq. (2) and the Breit equation go over into the same two-body Schrédinger
equation.

In the present note we discuss the new wave equation (4) in the case of central potentials
V(r) and S(r) (where r = |x[). We derive the corresponding set of radial equations and
show that for a Coulombic potential V(r) = —a/r and a nonsingular S(r) Eq. (4) (in contrast
to Eq. (5)) has no physical solutions describing 'S, states. However, for F(r) less singular
at r = 0 than 1/r the 'S, physical solutions to Eq. (4) can exist. It implies that Eq. (4)
cannot be valid in QED (say, for positronium), though this argument does not exciude
the use of Eq. (4) in non-Abelian gauge theories where the asymptotic freedom causes
a softening of the Coulombic singularity in V(r).

In order to find the set of radial equations equivalent to Eq. (4) we follow the procedure
used in Ref. [5] for the derivation of radial equations from the Breit equation (5).

As the first step, we split Eq. (4) into components in the double Dirac representation
where we get p = (yy,,,) with the indices §; = =+ 1 being eigenvalues of the Dirac matrices
B;, i = 1,2. Then, we go over to the wave-function components

' b 1
£O}=PO\_/1§(W++-_*:¢——)9 §0}=%(51—62)P1\T§(w+_iw_+) (6)
and
x}=p 3 wetv, AV 1Gioaap L p. v -
XO o\/j YVi-LTY-+)s xo 70, 2 1\/2 seEY_),

where 0;, i = 1,2, are two commuting sets of the usual Pauli spin matrices and
Py=3(1-6,"3,), P, =%3+13d,) ®

! Note that Eq. (2) can be derived from the Bethe-Salpeter equation by means of the last Ref. [3].
Then, in general, S(x) is an integral operator describing two-body interaction in a relativistically covariant
one-time way. This covariance is spoilt, however, if the perturbative series S&) (corresponding to a given
Bethe-Salpeter kernel) is broken off,
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denote the projection operators on states with total spin s = 0 and s = I, respectively,
s(s+1) being the quantum number of §2 with S = 4(¢, +a,). Note that (61 ~02)Po
= P; o(d;—0;). In terms of the components (6) and (7) Eq. (4) (containing V(x) as well
as S(x)) splits into three independent subsets of equations:

$(E=V)P°—ip- ¢ = (m+3 ),

z(E=V)¢$ = (m+3 S)¢°,

—ipp = (m+39)¢ (©))
and
FE=-Vx+ipy’ = (m+391",
TE-V+ipxd° = (m+5 )y,
ip- 7" = (m+% )y’
—ipxy =(m+3 S)° (10)
and finally y = 0. We can see that the “large-large” components y.; are included into

the subset (9) when s = 0 and into the subset (10) when s = 1. Thus, these subsets of equa-
tions describe in a relativistic way a parasystem and an orthosystem of two Dira. particles,
respectively.

As the second step, in the case of central potential V(r) and S(r) we eliminate from
the subsets (9) and (10) the angular coordinates by applying the multipole technique intro-
duced in Ref. [S]. To this end we expand the vector component 5,‘q45°, ¥ and ¥° involved
in Egs (9) and (10) into three parts: “electric”, “longitudinal” and “magnedc” defined
for ¢ as

Pe(X) = X (X) = Pp(r)Y;u(%),

- 0 R .
¢u(x) = (a_i —2x> “P(x) = SN Yju(x),

-

Pu(X) = (x x %) " P(X) = Pu()Yn(%) (11)

(259

and analogically for [ﬁo, x and 7°. At the same time the scalar components are presented as

P(X) = G(r) V(%) (12)
and analogically for ¢° and 3°. Here, x = X/r and 0/0x = ré/dx—x0/dr, implying x> = 1,
x-8/0x =0, 9/ox-x =2, (8/ox)? = —L[* = (3/0x—2X)?, xx0/ox = X x8/ox = iL,

xx L = id)ox and §/6x x d/ox = iL. Note that the Hermitian conjugate to 9/8x is — d/0x
+2x. In terms of the multipole components (11) we get

SR 1 C) N PSRN ¥ C)
P(x) = XPpg(x) %% jG+D) (xx ag) i(i+1) (13)
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and analogical expansions for Ei;", 7 and 2". Hence

, H¢L ¢M
= |igel* + , 14
lipe!l”+ (J +1) 14)
where || || denotes the norm in Hilbert space. Note that for s = 1 states the relation

Jie = eL, holds, where ¢ is any of three vector operators x, ¢/dx and x x 8/dx appearing
in Eq. (13) and J= i+§ stands for the total angular momentum, while (for s = 1 states)
the total spin § acts on e according to the formula (S,e), = —igyne,. Thus, the three terms
in Eq. (13) are three different eigenstates of J? and J, with the same eigenvalues j(j+1)
and m, where j=0,1,2,... and m =, ..., —j. Then, making use of the formulae (11)
and (12) as well as analogous ones for other components we obtain from Eqgs (9) and (10)
for any given j three independent subsets of 5+6+4 radial equations (cf. Appendix),
7 of them being algebraic equations. Making use of the algebraic equations to eliminate
7 radial components we get finally for any given j the following three independent subsets
of 2+4+42 first-order differential equations:

(i) subset including s = 0 “large-large” components

[(E52) -2 cnr o] otmes (S + 2) =0
2 dr r

d
~(m+3 S)pe— 5’4’ =0, (15)
r

(ii) subset including s = 1 “large-large” components with negative parity

E-V\ d 1
(5] ~omstsp|aromst s Lovs@-n T st -o,

B2
(5——-) —<m+—;-S)2] —(m+i5) (i + 1) St (E— V),(,+ Dy =0,
i dr r
[ JG+1 . d 2\ 0., 1

- —(m+38S) ]l +(m+5 8| — >XE+7 (E-V) T= 0,

[ jG+D) . d 1 jG+1)
Il (1+%5)2}¢&—(m+-§-5)(;+7 -3 (E-V)=— - % =0,

(16)

(3]

(iii) subset including s = 1 “large-large

-V
[(E ) _iGEY +ZS)2]XM+<m+—i—S)(i+i)¢‘i=°’
2 dr r

components with positive parity

2

d 1
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For all s = 1 components the triplet (E|, {L|, (M| can be expressed through the triplet
I =j—1],{ = j+1l, {I = j| (with I being the orbital angular momentum) by means of the
transformation

i . j+1
El = -—l=—l+\/————— = j+1],
<Ej \/2j+1< i1 2j+1< j+1

Ly \/1+1 . \/ j ,
- [l =1t i =
JiG+D s =il 31 L=
M
== 18
ViG+1) 1%

So, we can see from Eqgs (15), (16) and (17) that the “large-large” components contained
in the subsets (i), (i) and (iif) correspond to: (i) /=j=>0 with s =0 (!j; states),
(i) a mixture of I = j—1 and [ = j+1 with s = 1 (3(jF 1); states) and (iii) I = j > 1 with
s = 1 (%, states), respectively. All components contained in the subsets (i), (if) and (iii)
have, respectively, the total parity: (i) P = n(— 1), (il) P = y(—1)’** and (iii) P = n(—1Y’,
where n = +1 for a fermion-fermion system and n = —1 for a fermion-antifermion
system (called sometimes the fermionium). Note that (E| = </ = 1|,{L| = 0and {M| = 0
if j =0, thus ¢g = ¢y, ¢ = 0 and ¢y = 0, etc. for j =0

Eliminating ¢ from the subset (i), Eq. (15), one obtains the following second-order
differential equation for ¢:

E-V\* 1 d* j(j+1) 1 dsS d
—_— e (M4 S s — — = 0. 1
l:( 2 )+ r drzr r? (m+z5) 2m+S dr dr]¢ (19)

If ¥(r) = —afr and S(r) is nonsingular at r = 0, Eq. (19) implies that r¢ ~ r’ — 0 for

2
r— 0, where y = 1+ \/(j-%—%—)z-(;) with 0 < & < 1. Then, the second equation (15)

gives rpp ~ '~ for r — 0, so ¢ withj = 0 does not satisfy the regularity condition r¢g = 0
at r = 0. In this case, therefore, no S, states exist.

Similarly, eliminating ¢ from the subset (i), Eq. (17), one gets the second-order
differential equation for y:

E-V\* 1 &  j(j+1 - 1 ds/d 1
=7 2 LT mersyr e 22 =0. (20
[( 2 ) + rar r? (m+25) m (dr+ r>]XM (20)

If again V(r) = —a/r and S(r) is nonsingular at r = 0, Eq. (20) gives ryy ~ * — 0 for
r — 0 and then the second equation (17) shows that r¢? ~ r’~' for r - 0. Here, however,
@y does not violate the regularity condition r¢? = 0 at r = 0 because j > 1.

Finally, the subset (i), Eq. (16), leads in the particular case of j = 0 to the second
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order differential equation for yg:

E-V 2+ 1 4 2 (4L 5y 1 ds(d N 2\ o (‘) -
_— — —t— — —(m+>3 - —— 4 — =
2 rdrr 1’ 2 2m+S dr \ar ' 1 )| 2D

and to the relationship between x5 and »°:

<i + i) 0 1 Y
xe = (m+z S)L. (22)
dr r

For the same V(r) and S(r) as before, Eq. (21) shows that ryy ~ r’ for r —» 0, where y =
+1 /9—a2 Then, Eq. (22) gives ry® ~ ¥’ for r - 0, so x° with j = 0 satisfies the regular-
ity condition ry® = 0 at » = 0. Hence, 'in contrast to 'S, states, *P, states exist (as well
as 3S,, 3P,, *P, and all other states with j > 1).

Thus, in the case of a Coulombic V(r) and a nonsingular S(r) the use of Eq. (4) is not
allowed, at least in a physical situation where an 'S, state exists. However, if V(r) has
a weaker singularity at r = 0 than 1/r, as is the case in non-Abelian gauge theories, our
argument no longer justifies such a conclusion.

Note that the counterparts of Eqs (19) and (20) in the case of Breit equation (5) with
central potentials ¥(r) and S(r) have the form [5]

E-V\* 1 d* i(j+1 1 dv d
- )+ = ——Zr—J(’ f) —(m+i8+ — — —[¢° =0 (23)
2 r dr r —

and

E-V\* 1 d*  j(j+1) . 1 av(d 1
== S AL A 182+ —— — | —+ |2 =0 (
|:< 2 ) + rodr r? (m+25) +E—V dr <_dr+ r)]XM 24)

respectively, while the counterparts of the second Eqgs (15) and (17) are, respectively,

d
L (E-V)get - ¢° =0 (25)

and
1 ~ 40 d 1Y\
7 (E=V)¢L— d—+_ xm=0 (26)
r r

(for the complete set of radial equations following from the Breit equation cf. the last
reference [5], where the same components (6) and (7) are used but without factor 7 in the
case of ¢, ¢°, y and x°). Here, the regularity condition at r = 0 is satisfied both by ¢°, xy
and ¢g, ¢ (even when j = 0), if our case of a Coulombic V(r) and a nonsingular S(r)
is considered. The essential disadvantage of Breit equation is its relativistically non-covariant
form, even in the free case.

Of course, we should remember that in our radial equations only central (thus static)
potentials ¥(r) and S(r) are taken into account. Then, the nonstatic (i.e. “magnetic” and/or
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retardation) corrections [6] are to be considered perturbatively. Note that the static term
B1B:Vs(r) added to E— V(r) does not change the form of Eq. (4) with ¥(r), in contrast
to Eq. (5), because (B;+p2)B1f2 = B1+ o

In conclusion, one may formulate the conjecture that in non-Abelian gauge theories
the new equation (4) (with potentials ¥ and S) is relevant as being a natural two-body
extension of the relativistic DKP equation for a spin-0 or spin-1 point particle. An alterna-
tive conjecture one may make is that the relevance of the equation (4) is not necessarily
tied to non-Abelian gauge theories, but rather to the subelementary level of matter where
leptons and quarks and/or W and Z bosons are built up of hypothetical preons [7] carrying
(at least some of them) spin 1/2. In the case of this alternative conjecture Eq. (4) is not
valid in QCD (say, for quarkonia), though it can be used in preon models.

Then, considering in particular a preon model where the W and Z bosons are compo-
sites [7] of two spin-1/2 preons, one might speculate that the puzzling experimental absence
of the corresponding spin-0 composites we still witness [8] is connected with the option
that in such a preon model the internal potential ¥ in Eq. (4) is Coulombic or nearly
Coulombic. In this way !S, states may be excluded (while 3Py, states are lying higher than
38, states).

Eventually, we would like to point out that the essential difference between the new
wave equation (2) and the Breit equation is the additivity of ““masses™ y; - p; in the former
case versus the additivity of kinetic energies B: - p; in the latter. As conjectured in this
note, such an unconventional property of the new wave equation may be connected with
non-Abelian gauge theories (and so with the confinement) or alternatively with preon
models. It is worthwhile to mention that a similar unconventional feature appears in the
spinless relativistic wave equation proposed several years ago by Feynman, Kislinger and
Ravndal [9] for a confined quark-antiquark pair,

[P+ —2m” + (3, = %,)*Jp(x,, %) = 0, 27

where “masses” squared p? are additive. It was observed recently [10] that, if one wanted
to carry out in the FKR equation (27) the Dirac-type squared-root operation

VPi+pE > 9y pity: Pas (28)
one should introduce two anticommuting sets of Dirac matrices (y!) = (B, B):
{vt, 7} = 288" (29)

Then, one would obtain the wave equation of the form (2) but with y’s satisfying the
Clifford-algebra relations (29) (and with 2m — / 2m). The unconventional spin-1/2 particles
whose Dirac matrices would obey the anticommutation relations (29), i,j = 1,2, ..., N,
were called the non-Abelian Dirac particles [10]. In the present note we do not take into
account such an option, considering Eq. (2) with y’s commuting for i # j, what cor-
responds to the conventional Dirac particles.
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APPENDIX

Complete set of radial equations

(9) subset including s = 0 ““large-large” components

1 o [d 2 1 1
F(E=V)¢$"— (a—i; + ”") ¢p— — ¢ = (m+7 S)¢P,
r r

LE-V)6 = (m+1 )"
d
-2 = (m+1 6,
.
s = (m+ )b,
0 = (m+1 b

(ii) subset including s = 1 “large-large” components with negative parity

d
7 E-Vret — 2’ = (m+% Sz,
jUg+1)
FE-Vn- 2 = (m+% S
1 0 1 0 1
T (E=V)xe+ . M = (m+7 S)xe,
1 — 0 i 1 0 — 1
T (E-V)xL— d + — ) dum = (m+3 Sy,
r r
d 2 1
(— + —) B+ — 1 =(m+3 92,
dr r r
JjG+1) d 1
- XE - <’_ + — ) =(m +% S)¢1?/1,
r dr r

(iii) subset including s = 1 “large-large” components with positive parity

T (E=V)tm = (m+% S)tw

jG+1 d 1
T E-V)m+ ; P+ (3; + 7) $L = (m+3 Oitms

(A1)

(A2)
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1
- — (m+15)¢L,
(i + i) ” = (m+1 54, (A3)
dr r

REFERENCES

[1] Cf. e.g. Umezawa, Quantum Field Theory, North-Holland, Amsterdam 1956, p. 85.

[2] For an early review cf. H. A. Bethe, E. E. Salpeter, in Encyclopedia of Physics, Vol. 35, Springer,
Berlin-Goéttingen-Heidelberg 1957,

[3] E. E. Salpeter, Phys. Rev. 87, 328 (1952); G. Feldman, T. Fulton, J. Townsend, Phys. Rev.
A8, 1149 (1973); cf. also W. Krolikowski, J. Rzewuski, Nuovo Cimento 2, 203 (1955).

[4] Cf. e.g. W. Krolikowski, Acta Phys. Austr. 51, 127 (1979); and Phys. Rev. D29, 2414 (1984).

[5]1 W. Krolikowski, Acta Phys. Pol. B14, 109 (1983) (Erratum and Addendum, Acta Phys. Pol. Bi4,
707 (1983)); Acta Phys. Pol. B15, 131 (1984).

[6] For a recent summary of the spin-dependent forces in nonrelativistic quarkonia ¢f. E. Eichten,
in Pief-Fest, Proc. of the Twelfth SLAC Summer Institute on Particle Physics, Stanford, July 1984,
SLAC report 281, p. 14.

{71 For a recent review cf. M. E. Peskin, Talk at the International Symposium on Lepton and Photon
Interactions at High Energies, Kyoto, August 1985, SLAC-PUB-3852, December 1985.

[8] For a recent summary cf. A. de Rujula, Concluding talk at the High Energy Physics Conference
of the European Physical Society, Bari, July 1985, CERN-TH 4267/85, September 1985.

[91 R. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D3, 2706 (1971); cf. also K. Fujimura,
T. Kabayashi, M. Namiki, Prog. Theor. Phys. 44, 193 (1970).

{10] W. Krélikowski, Non-Abelian Dirac particles and the third quantization, Warsaw University
report, IFT-14-85, October 1985 (unpublished). For a point-like limiting case of a system of two non-
-Abelian Dirac Particles cf. W. Krolikowski, Acta Phys. Pol. B17, 813 (1986).



