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UNIQUENESS FOR SOME CLASS OF (NONFERROMAGNETIC)
LATTICE SYSTEMS OF CONTINUOUS SPINS

By R. GIELERAK
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We consider lattice systems of continuous spins which correspond to the trigono-
metric perturbation of the Gaussian superstable two-body interactions. Using some correla-
tion inequalities of the Ginibre type we prove uniqueness of the tempered, translationally
invariant Gibbs states whenever the pressure is differentiable at the coupling constant.
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1. Introduction

Inrecent years, a great attention has been focused on statistical mechanics of systems
of unbounded spins [1-6]. The aim of this note is to contribute to the problem of unique-
ness of the corresponding equilibrium Gibbs measures. A variant of the Dobrushin
uniqueness theorem has been formulated for some class of unbounded-spin systems in [5}].
In the case of ferromagnetic local specifications several uniqueness criteria have been proved
in [1-6]. In this note we consider systems that correspond to the trigonometric perturba-
tion of the Gaussian measures. The uniqueness criterion we prove in this note does not
depend on the validity of the FKG inequalities and is valid for nonferromagnetic interac-
tions. Our result may be formulated as follows: differentiability and independence of the
tempered boundary conditions of the infinite volume free energy field for positive trigono-
metric coupling uniqueness of the tempered, translationally invariant equilibrium Gibbs
measurc. Independence of the free energy of tempered boundary conditions can be proved
actually for a class of superstable two-body interactions [1]. Further assuming the FKG
inequalities to hold we prove uniqueness of the tempered Gibbs equilibrium measures
without the assumption of translational invariance. The main ingredient of the proof
is a collection of some correlation inequalities of the Ginibre type.
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2. Preliminary definitions

On the lattice 2" we consider a random field Z' € x —» s, 2 R'. The configuration
space of the system is thus Q = {R?" 3 s}. The restriction of the spin configuration s € Q
to the given A « Z” will be denoted by s,. From the denumerability of Z” it follows that
Q is a polish space for the product topology. We denote by f§ the product Borel o-algebra
of Q and for A < Z® we denote by p(A) the corresponding sub- o-algebras of §. The configu-~
ration space Q has the following decomposition property: Q = Q(A) ® Q(A°) for any
A = Z® which implies also = S(A) ® B(A®). Asusual, in the case of noncompact configu-
ration space we have to consider some distinguished Borel subsets of Q of seme reasonable
spin configurations in order to exclude some pathological situations. For this, let us consider
two Borel subsets of Q:

S(Z) = {s|_3 sup d(0, x)™s,| < oo},

N>0 xeZv
where d(0, x) is the standard Euclidean distance on Z’, and with
Ry={seQ Y s2<N*Qj+1);V,=0}
Ix[<Jj

we define the set
R = U RN‘
N=1

The set s'(2”) naturally arises whenever we have to deal with the positive-definite two-body
interactions and the set R in the case of superstable interactions. It is easy to see that
R < 5'(Z%). Let us consider also the set of fastly decreasing configurations:
S(2") = {se Q| V sup(1+|x])"|s;| < oo}
N>0 xe2v
It is easy to see that the collection of the norm {}|-||ytny=1,., Where ||s|ly
= sup (1 + [x])V]s,| defines a nuclear topology in the space s(Z") and then a rigging
S@2) < I(Z") = s(2)

is the Hilbert nuclear rigging. In particular, s'(Z") is the nuclear space in the topology
of the weak dual of the space {s(Z"), || - ||x}. Therefore, we are in the situation where the
Minlos theorem works,

Let A be a symmetric strictly positive operator on the Hilbert space /,(Z") and such

that the bilinear form (s, 4s) being restricted to s(Z") ® s(Z%) is then continuous (in the
topology of s(Z")). From the Minlos theorem then follows that the functional

T 4(@) = exp —1 (2, 4a) .0
defined on the space s(Z") is the characteristic functional of some Gaussian measures

15(ds) supported on the space s'(Z") i.e.

ru@ = | &*ui@), @2

where (a, s) = Y a, - 5, is the canonical pairing of the dual pair (s(Z°), s'(Z")).
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Now we come back to the definition of our systems. For each finite A < Z” and for
each spin configuration #,. in A° we define a Gibbsian probability distribution of s, condi-
tioned by 4. via the following formulas: (with f,. = s5,.):

Eg(dsitse) = (Ze(t4e)) " exp (— ) J(x — y)s,s,)

xed
yedu d
2
i
xexp(- 5 E sf) I l exp (z cos as,) I I ds,, (2.3)
xeAd xed xeA

Zt4) = | T] dsc [] exp (z cos as,)

R4 xeA xed

2
x H exp (— m7 s,”c) exp (- Z Z Jsxsy) , 2.9

xed xed yeZv

where Jis a matrix inverse to the operator A on the space /,(Z°). Then J is strictly positive,
symmetric operator on the space I,(Z"%). Parameter o will be chosen arbitrary in the set
{0, 2n). The trigonometric coupling constant z will be assumed throughout this note to be
non-negative and m = 0.

Let G(z) be the set of probability measures on the {Q, 8} with the following property:

peG(z) =
for each finite 4 = Z°

(DLR) poEs = p. (2.5)

Then the set G(z) is called the set of the Gibbs equilibrium measures corresponding to the
local specification (2.3). Its subset G'(z) consisting of measures supported on the set R is
called the set of tempered Gibbs measures.

Throughout this note we will assume that J is translational-invariant and that J(x—y)
does satisfy the superstability condition

3= »IS Ix—p7"7" as x—ylfeo. (2.6)

k>0,e>0

From the last assumption it follows that our local specification belongs to the class for
which the superstability estimates [2] are valid.

3. Correlation inequalities of Ginibre

Let us denote by p73'° the Gaussian measure on the space R/! with mean zero and
the covariance given by 4% = (J,+3m?*1)-1. Then the probability distribution of S, condi-
tioned by #,. = 0 can be written as:

P Adsal0) ar= g = (Z$7@) 7] € =7 %(ds o). (3.1

xed
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Using duplicate variable trick and invariance of the Gaussian integration with respect
to the orthogonal transformations one can easily prove the following collection of the
correlation inequalities (see also [7]).

Proposition 3.1. Forany z > 0,any A < Z2°, A’ € 2" with ' 4" < « the following correla-
tion inequalities hold:

n
E3«(J] cosas,,i0) = 0, (3.2)
i=1
E4(€™%; T] cos Bjs,,0)7 = 0, (3.3)
i=1
Eﬁ"((“’ s)zlo) < <a9 a)A'"A‘ = Z dxA'X:(X, y)a_v’ (3 4)
X,y .
E4«(J] cos as, 5 T] cos B;5,;0) = 0, 3.5
i=1 j=1
Z{0 4, (2 2 Z80(2) - Z4(2), (3.6)
E5(¢™%; T] cos B;5,,10)" < 0. 3.7
i=1

Other correlation inequalities hold for the arbitrary boundary condition. Let us denote
by E,(—10,s4) the expectation value with over respect to the tensor product measure
E4o(ds;10) ® E4o(ds)|sse).

Proposition 3.2. For any z >0, A < Z" the following correlation inequalities hold
0 € E (] cos (%s,,+0)— T[] cos a;s;,)
i=1 i=1

exp (£0, - Y, &, - cos as, - cos asy) 0, 5 40). (3.8)

E([T <05 (@- 5,,+0) Is(AY)
i=1

3 E{,‘,(Hl cos s, 0). (3.9)

Let us note the following consequence of the inequality (3.8). By lim we mean some well
AYZY

defined kind of the convergence to be described below.

Proposition 3.3. Let us assume that

lim E ,.(cos as,|s4) = lim E .(cos as,j0) > 0. (3.10)
AtZv A1ZY
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Then for any n > 1 we have

lim E 4o( ] cos as,,js4) = lim E (] cos as,,[0) (3.11)
AtZY i=1

AYZY i=1
(assuming the corresponding limits do exist).

Proof: Expanding the right-hand side of the inequality (3.8) in the powers of § we have:

n n
0 < E (] cos as,,0) = E (] cos as, |5 0)
i=1 i=1

n
+6 Y o,[E e(cos as,, Hl c0s a5, ) E 4o(COs as,ls 1)
=

xeZv
—E 4o(cos as, ] cos as,)E 4-(cos as,|0)]+O (%),
i=1

Taking the thermodynamic limit lim (A12") with a, = J, ,, and using the inductive hypo-
thesis (3.10) and (3.11) we obtain:

n
0 § +4[ lim E s(cos as,, [] cos as,,/0)
AtZY i=1

n
— lim E,c(cos as,, [] cos as,ls4)] +C6*
Az i=1

where as it follows from the definition

sup [04(6%)] § C&*
A

for some constant C. Dividing by § we complete the proof by applying induction principle.

4. Uniqueness

Let IT, be an orthogonal projector in the space 1,(Z”) onto the subspace R* = {-s|x ¢ A
= s, = 0}. Then the operator IT,JIT, has a matrix reepresentation J,(x,y) = J(x~¥)
if x,ye A4 and J,(x, y) = 0 otherwise. The family

E%ds) = Za2) 7" exp (=3 X Ja(x, ¥)sxsy)

x,yeA
2
X eXp (— {nz_ Z si) Z ds, 4.1)
xed xed

then defines a system of compatible probability distributions. From the Kolmogorov
theorem then it follows that there exists an extension of the space [,(Z") a unique Gaussian
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measure p(}m. From the superstability estimates [1, 2] we know actually that u‘,’m is supported
on the space R = 5'(Z"). Let us denote by 4,, the inverse of the operator J+3m? - 1. From
the Minlos theorem it follows that the characteristic functional of the measure u) is'then
given by the formula
j‘ l(a s) [} (dS) =e —1/2(a,Ame) (42)
s(2Y)
and that A4, is a continuous operator on the space s(Z").

On the space 5'(Z") let us consider following measure. For A < Z*, |4} < o let us
define:

pa(ds) = (Z(2))~" HA & < ) (ds); (4.3
Zy(z) = [ g, (ds) UA g7 oSk (4.4

The Fourier transform of the measure u,(ds) can be written as

Ty@) = [ €*Vpy(ds) = exp (=5 (@ A,2)

(Zv)
SDIEED I 1) | (e
m=0 x1e€d XmeA
ﬁ [emxx*4m) 1] - | uA(dstIl e (4.5)

From the correlation inequality (3.3) it follows that I" (@) is monotonically increasing in
A, and from the inequality (3.7) we have the following estimate for the Laplace transform

of the measure u,:
j S(%,8) (ds)

We conclude that the unique thermodynamic limit lim u, = u, as a weak limit exists
A

'Re yil
exp( 5 (e, Ama)> . (4.6)

whenever A tends to Z° monotonically and by an inclusion. It is not hard to see that

Hoipa)dsy) = (Z)~! 1 m”xﬂJom(dSA)m(A)

xed

= (Z)7 1 &€ *uy(dsy). 4.7
xeA
Therefore, we have p,, € G(z) as it fulfills DLR equations (3.5).
Let us define
1

Po(2) = lim In (Z,(2)) ™ = lim p,(2) 4.8)
AtZv Atzv
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whenever A1Z" in a certain sense (see below). Quantity p(z) is called the free energy. As

a consequence of the inequality (3.7), p..(2) exists and is a convex function of the coupling

constant z. From the convexity of p.(z) it follows that p_(z) is almost everywhere differ-

entiable function of z (except for some, at least countable, set of points). The value of

z = z, will be called regular for p_(z) whenever p_ (z) is differentiable at the point z = z,.
For any f € R let us define

t

1
Pu@) = - T InZ,(z,0), 4.9)
where
Z(z, ) = Z (tse).
We note also that p, is a measure for which superstability estimates hold. In particular,

from this it follows that u is supported on the set R. Using results from paper {1] we have:

Proposition 5.1. (Thm 3.1 in [1]). Whenever 4,1Z" in the sense of van Hove, then for any
teR

lim p(2) = lim p,(2) = po(2).

n—* o n—*w

From the properties of the convex functions it follows (assuming z, is a regular value
for p,(2)):

1
- lim — pA(Z)§Z=Zo = lim — ﬂz’o(cos an)Ez:zg
Atzv dz Atzy |A|
xed
= 114(008 a50)js s, (4.10)

(by the translational invariance of)

©lim p.(2) L lim ply)
= — -1 Z}iz=ze = — U Z)iz=ze
dz AYZY Pa dz ALZ> ba
. I ,
= lim E .| — COS US|l g0 | = Uep(COS U5, )|, = 1o (4.11)
Atzy |A]
xeA

(On the account of the martingale property of the £, we have that for every ¢ € R the weak
limits p% = w—lim E,(|t,c) exist whenever AtZ' monotonically and by inclusion.)
AtZy

Assuming that p; has a translationally invariant first moment we conclude from the chain
of equalities written above that

U (cos asy) = pl(cos asg). (4.12)

From the inequality (3.6) it follows that . (cos as,) > 1. Therefore we are in the position
where Proposition 3.2 applies.
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Theorem 5.2. Assume that z, is a regular point for p(z). Then the set GT7(z,) of tempered,
with translationally invariant first moment, Gibbs measures corresponding to the DLR
equations consists exactly of one element u.,.

Proof: From Proposition 3.2 and the remarks before we see that for every te R:
lim ,uA(H cos as,) = lim uA(H COS 0s,,,). (4.13)
AtZv i= AtZv i=
That the limits on the right-hand side of (4.13) exists follows from the inequality (3.6).
From the inequality (3.9) it follows that the sequence uf(J] cos as,) has a convergent
i=1

subsequence and is bounded uniformly in A. But every accumulation point of

{uy(I cos as,)} is equal to Lo([] cos as,). Therefore the sequence {u([ T cos as,)}
i=1 i=1 i=1

n

is convergent. The moments {5 (]] cos as,)} do not uniquely determine the measure
i=1

15, but only its restriction to the even part of the corresponding set of observables. But
from the inequality (3.9) it follows in a standard way that also

lim yA(H COS o5, H sin as, ) = p,, H COS 05, H sin as, ) (4.14)
AtzZv i=1 J

assuming (4.12) holds.
Similarly as for (4.5), we find the following expression for the Laplace transform of the
measure p':

H(E®)

= exp (=7 I (=ila,+i( Y, JCx, 1) [ )

yeA©

nl Z ZJ I_‘[(2 (0(ot; — ) + &(o; + 1)) (4.15)

x1ed

X H [exp (—o(—ilo, +i( Y, J(x, )t,) * A%) (x)))— 1]

yvede
X py O(,I__Il 1€°%02) « Z4(2)]Z (1)

Taking into account (4.14) and the simple proved fact that

lim -+ Y (Y J(x p)t,) =0 (4.16)

AYZY xed yéA

implied by the definition of R and the assumed decay (2.6), we conclude from the formula
(4.15) that

w—lim yg = ug.
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The full set G’(z) can be obtained by taking thermcdynamic limits of the suitable convex
combinations of 1. But the infinite volume frce energy still does not depend on such
a generalized boundary conditions (see [1]).

In the case of a ferromagnetic system, i.e. such that J(x, ») > 0 for x # y, we exclude
the assumption of translational invariance.

Corrolary 5.3. Assume additionally to the hypothesis of Th. 5.2. that J(x, ») > 0 for
x # y. Then the set G'(z,) of tempered Gibbs measures corresponding to the DLR
equations (3.5) consists exactly of one element.

Proof: From the assumption J(x, ) = 0 for x # p it follows that the local specification
(2.3) belongs to the class for which a partial FKG order can be introduced into the set
G'(2). From the general theory [1, 6] it is known that there exists extremal (with respect
to FKG order) Gibbs measures. These extremal Gibbs measures are translationally invar-
iant because our local specification is translationally covariant. Assuming two different
solutions do exist in G'(z,) we arrive at the contradiction with Th. 5.2.

Corrolary 3.4. Assume that z, is a regular point for p_(z) and that J is a ferromagnetic
and of finite range say d. Then the unique tempered Gibbs measure y,(z,) has a global
d-Markov property. For definition and some results about the global Markov-property
for lattice spin systems see [8].

5. Concluding remarks

Trigonometric perturbations of the Gaussian measures are rather popular models
in statistical mechanics and the (Euclidean) field theory. In particular, when applying the
sine-Gordon transformation to the neutral systems of particles interacting via two-body
positive-definite potentials (with some regularity propcrties) we obtain a situation similar
to that described in this note [9]. However, the situation obtaired in this context is techni-
cally much more involved. The work along this line is in progress. Another circle of problems
concern the problem of the global Markov property for the Euclidean ficlds. Using essen-
tially the strategy of the present note in paper [10], we extend the uniqueness part of the
work [11] to cover all regular values of the positive coupling constant for the so-called two-
-dimensional sine-Gordon models. In the field-theory context, however, the uniqueness
result is not sufficient to imply the global Markov property of the corresponding Gibbs
field. However, despite the results obtained in this note it secems to be promising that such
a proof may be obtained at least for the sinc-Gordon-like models.

Further problems that may be attacked by the ideas of the present note are the DLR-
-equtions and Markov property for (generalized) random fields obtained by a trigono-
metric perturbation of the (Pauli-Villars) regularized free Markov fields. The work in this
direction is in progress [13}], [14].

Finally, we should remark that the general strategy for the study of uniqueness of
solutions of the DLR equations in the above-mentioned problems has been caused by
a beautiful study of phase diagrams for the class of abelian (compact) spin systems from [12].
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