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LIGHT FRONT SOLUTION TO PROBLEMS OF CONVENTIONAL
APPROACH TO DEEP INELASTIC ELECTRON-DEUTERON
SCATTERING
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We present a model light front calculation of the inelastic electron-deuteron scattering
within the conventional two nucleon approximation. The results lead to the clear interpreta-
tion of the convolution formula expressing structure functions of the deuteron by structure
functions of nucleons. Several ambiguities of this formula, including the West-f correction
and the Bodek ambiguity, are resolved. We use a simple quark model for the nucleon structure,
guided by the counting rules. In extracting the neutron structure from the deuteron and the
proton data we find that the dynamical off-shell effects in the nucleon structure functions
are larger than the properly calculated smearing corrections.

PACS numbers: 13.60.Hb, 14.20.Dh

1. Introduction

In this paper we present a systematic analysis in light front dynamics of the inelastic
electron-deuteron scattering within a conventional approach. The conventional assumption
is that the deuteron is a loosely bound state of a proton and a neutron. One neglects other
Fock components like e.g. sectors containing mesons, resonances, or hidden colour states
of quarks at short distances. In fact, the deuteron would be unbound werec it not for these
other components but the deuteron binding energy [1] ¢ = 2.224579(9) MeV is so small
that one hopes to still have a good description neglecting them. Their contribution to the
deep inelastic deuteron structure is not considered in this paper which is devoted to specific
problems of the conventional approach itself.

According to the two nucleon approximation in a high energy electron-deuteron
collision a single photon transfers a momentum g from the electron to one of the nucleons,
(—¢* = Q* ~ from a few to hundreds of GeV?). The photon is absorbed by the struck
nucleon leaving the spectator nucleon untouched. For example interference effects among
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quarks of the struck and the spectator nucleors are consequently neglectcd according to the
two nucleon approximation. The spectator nucleon is directly counted in the final state.
The inclusive cross section for electrons can be expressed by the deuteron inelastic tensor
W§'. The conventional two nucleon incoherent approximation amounts to writing a formula

W5'(D, @) = 3 | d*pa(p)W'(p, q), )

N

which 1s supposed to follow from a diagram of Fig. 1. However, without detailed model
calculations of such diagram Eq. (1) contains factors of ambiguous meaning.
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Fig. 1. The incoherent impuise approximation to the deep inelastic deuteron structure. Our convention
is to denote the active nucleon by p and the spectator one by n. We read the diagram from the right hand
side to the left hand side

The ambiguities are expected to be small, of the order of a few percent, but the desired
accuracy is also high. For example, the extraction of the neutron structure doubles the
error, and the dfu ratio in nuclcons, being one of the most important properties of nucleons,
contains an even more magnified error. Note also, that the so called EMC effect, i.c. the
striking difference between the structure functions of deuteron and the structurc functions
of heavier nuclei, is of the order of 109. The EMC cffect raised a lot of spcculations about
the building blocks of nuclei, if they are really protons and neutrons as free ones, or il
there are other important constituents in nuclei. Therefore it is essential to remove ambi-
guities which already show up in the simplest approximation like that of Eq. (1), in prepara-
tion to the more complicated questions mentioned above. This paper shows how the light
front dynamics [2] answers some specific questions concerning Eq. (1) within the two
nucleon approximation. Considering the diagram of Fig. 1 with the spectator nucleon
directly counted in the final state we face the following problems:

1) Is the spin averaged deuteron structure W5" factorizing into a scalar density like
o(p), and the spin averaged off-shell nucleon structure W{’?

2) What is the physical interpretation of the function g(p) and how is it related, if at
all, to the Schroédinger wave function ¥(p) of deuteron?

3) How is the off-shell nucleon structure tensor Wi*(p, q) related 1o the free nucleon
structure tensor?

4) Is it possible to find a connection among the free nucleon structure functions and
the off-shell structure functions of virtual nucleons from Eq. (1) such that the longitudinal
deuteron cross section vanishes in the limit g2 — 0, without ad hoc corrections?
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5) Does the formula (1) lead to the parton model expectations in the Bjorken limit?

6) How to extract the neutron structure functions from the proton and the deuteron
data?

There exist many attempts to bypass these problems in the literature [14, 18-22].
For completeness we shortly discuss these approaches in Section 6. Here we only mention
that we do not completely agree with any one of them. Only the light front approach admits
Eq. (1) in the two nucleon approximation of Fig. 1 without artificial corrections invented
to remove unwanted features. Moreover, the light front approach is well prepared for
including other scctors of hadronic components without intrcducing new principal dif-
ficulties on the phenomenological level [2, 3]. The urgent need for such a consistent approach
originates also from the fact that problems of the same kind are met in extracting quark
properties from hadronic structure.

The remainder of the paper is organized as follows.

In Sec. 2 we consider the kinematics of the electron-deuteron scattering and describe
the basic dynamical reasons why the light front approach is so much favoured to other
schemes.

Section 3 outlines the derivation of the deuteron wave function, giving us the density
o(p) in Eq. (1). Before treating the deuteron structure WS" we first make a simple model
of the nucleon, in terms of an active quark a, and a passive core ¢, guided by counting
rules.

Section 4 contains detailed calculations of the nucleon struscture functions. They are
expressed by the virtual Compton scattering amplitude on the active quark, smeared with
the nucleon-quark-core wave function. We do not consider perturbative scaling violations
and carry out calculations on the level of a simple parton-like picture.

The main Section 5 shows how the deuteron structure functions can be expressed
by the off-shell continued structure functions of the nucleons in the two nucleon approxima-
tion of Fig. 10. The smearing of the virtual Compton scattering amplitude on the active
quark is different in the nucleon belonging to the deuteron than in the free nucleon. We call
this effect the dynamical effect, and discuss its size, in the ratio to the properly calculated
effects of the Fermi motion, and its influence on the extracted neutron structure function
Fon().

In Section 6 we briefly discuss other methods used in the analysis of eleciron-deuteron
scattering.

Finally, in Sec. 7 we summarize our basic results.

2. Basic kinematics and dynamics

This Section contains rudimentary facts simplifying the light front approach 1o the
deuteron structure, in comparison to other approaches, [2, 3]. We describe the absorption
of a virtual photon by a target. The photon carries spatial momentum transfer
g, (Q* = —g? > 0), emitted by the electron observed in a laboratory. The target has
a four-momentum D, M? = D?, being at rest in the laboratory. Two momenta ¢ and D
distinguish a class of zero-vectors n defining light fronts yx = x+ = 0. Once we use one
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of such light fronts to develop the light front dynamics of the photon absorption by the
deuteron we can approximate the deuteron by its two nucleon Fock sector, and the problems
listed in Sec. 1 are altogether resolved.

The class of zero-vectors is given by the following equation

_ 2xD+4q +\/ 2xM @
= 2xM +v Mty
where
2
D
=2 e (3)
2Dq M

-

and the otherwise arbitrary four-vector { satisfies conditions
(D=(g=0, ¢=-1 *

The same definition of y can be used in elastic, quasi-clastic, or inelastic electron-
-deuteron scattering, as well.

To explain the meaning of # we go fo the rest frame of the deuteron, i.e. the laboratory
frame, where we have

D =(M,0),
q = )
(=00, Tlg )
SO
nO:I’??:\/ZjI)\C/IAiI!-v{-*_ 2x1\3+v' ©
Then, rotating the spatial coordinate axes in such a manner that
e, = -n, ()

we get a configuration depicted in Fig. 2. The freedom left to the vector ¢ in Eq. (4) means

that the z axis has to lic on a surface of the cone defined by the vector ¢ and an angle
0 .

o = arctg — . This freedom amounts to a choice of the azimuthal angle ¢ fixing the direc-
v

tion of ¢* in the transverse plane. In the deep inelastic limit when Q and v tend to infinity,
2

while — is kept constant, the angle o tends to zero. Therefore the z axis tends to the
v

vector ¢ direction, but, although o — 0, we always have —g? = (g1)? = Q? - 0. In other
words the properly chosen vector ¢, points along the vector —g in the laboratory, in the

. const
sense that the angle « between these vectors tends to zero like —-Q— Nevertheless, the
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Fig. 2. Kinematical configuration in the laboratory frame, with the z axis chosen according to Eqgs. (2) and
. tgx = g, and & goes to zero in the deep inelastic limit, but g> = Q32 is always equal to g* = —gt2,
"Y

because g+ = ng = 0

transverse component g- = g —(-ézfi)'e'z tends simultaneously to infinity, |g*] = Q, and the
relation —g2 = Q2 = (g*)? is always satisfied. It is this subtle deviation of the z-axis from
the vector ¢ which is necessary to develop the light front dynamics curing problems listed
in Sec. 1.

Now we explain how the above choice of kinematical configuration is motivated
by the principles of the light front dynamics. The formula (2) for the light front vector
n follows from the conditions:

n* =0, (82)
nqg =0, (8b)
#D = M. (8¢)

We usc the null-vector n (condition (8a)) to develop the light front dynamics [2, 3]
The condition (8b) gives

0=ng =in"qg +inq"-n'q¢* =q* = ¢°+¢ )

where we used the normalization condition (8¢), and Eq. (7). In the light front dynamics
the + component of momentum is conserved, and is always positive. Therefore, the limit-
ing value g+ = nq — 0 eliminates contributions from pair creations by the photon. Using
the + component of the electromagnetic currents (so called “good currents” [7]) we elimi-
nate the seagull contributions. Finally, our relativistic expressions for form factors look
like the nonrelativistic integrals with wave functions [4]. With the only exception, that
the wave functions are now the correctly boosted light front wave functions, with the prop-
erly adjusted light front direction. The deuteron wave function is described in Sec. 3,
where we also show the unique resemblance between the light front two nucleon Fock
component of the deuteron and the nonrelativistic Schrédinger wave function for the two
nucleon bound state.
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The light front dynamics is invariant under three independent Lorentz boosts. Thanks
to this advantage one can take into account relativistic effects of the motion of nucleons
inside the deuteron. It is sufficient to know the structure of a nucleon at rest.

Thus, in order to derive the formula (1), we are led to the light front form of dynamics,
with the particular light front definition following from experimental conditions, and the
conventional approximations, which we are forced to make.

3. The deuteron wave function

Our calculation of the deuteron structure tensor W§® is guided by the old-fashioned
light front perturbation theory [2, 3]. In this Section we show how the relevant deuteron
vertex, used in the calculation, can be related to the known deuteron wave function (see
also Sec. 6 for the discussion of the ambiguities encountered in other approaches). 1t is
sufficient to consider the deuteron at rest, because the light front dynamics is invariant
under three independent boosts.

The state equation in the light front dynamics is written as

PT|IM> = MIM) (10)

and it corresponds to the equation P°|M) = M|M) in the time-instant form of dynamics.
Elimination of all other Fock components leads to the effective two nucleon equation,
called the Weinberg equation [5], with the effective interaction Vg, (see Fig 3). We
introduce the relative momentum of nucleons

k=3(p-n), (1)
which in the center of mass of the nucleons takes the form

k=(0,k), Kk*=—-Fk (12)

n = Vi Om
Q—
O

Veﬂ' = > _C/ +
mesons
b

Fig. 3. a) The effective Weinberg equation for the two nucleon component of the deuteron state. b) An

example of the effective nucleon-nucleon interaction in the approximation of one meson exchange. The blobs

in vertices denote form factors. Only the two nucleon component of the deuteron is considered in the conven-
tional approach
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Changing variables (k+, k) to (k) = (k3, k') we get

1 4 1
dk* d’kt = — | dk® — d’k*
p+ n+ M f M > (13)

k

-~ o0

Mgz

where M, = 2Jm?+k? and m is the nucleon mass. The Weinberg equation reads

- ak’ - o .
d(k) = Go Z f 2Ry, Vee(le, k5 M)g(k"). (14
2 o

spins
isospins

The propagator G, is equal to

4
= MG v =)

0 = (me+k*) ! (15)
where ¢ is the deuteron binding energy.

The propagator in the fully relativistic Weinberg equation is exactly the same as in
the nonrelativistic Schrddinger equation. All relativistic features are built into the effective
potential, and into the integration measure d°k’/M,.. Therefore the Weinberg wave function
approaches the nonrelativistic wave function, evaluated in the appropriate potential.

To decide whether the Weinberg and the Schrédinger wave functions differ by a factor
like (M;)'/* (see Sec. 6) we consider an extreme case of the effective potential following
from an exchange of a very heavy meson of mass § > m. Then for momenta |k|, [K'| < &
the kernel ¥ in the Weinberg equation, and the appropriate potential V3 in the Schrodin-

-

ger equation (the limit — 0 of V) are independent of the momenta k and k’. There-

fore, for momenta II—EI ~ m <9, in the integral equations
>’k

—k> = =S
(k) me+k’ ) (27)*2M,

Valk, s M)$(K)

1 kg
me+kir ) (2n)*2M,,

Prrllng) = VarCkm, aow) * ren (k) (16)
we can neglect the k-dependence of both Vi and Vig. It is transparent that the Weinberg
wave function ¢(k) differs from the Schrédinger wavs function ¢ye(kpe = k) only by
a constant factor, independent of k, even for |k|~ m. The well-known form
r-1exp (—\/ mer) of the deuteron wave function, outside the range of a potential, being
the Fourier transform of (me+Kk2)~!, has its universal relativistic counterpart in the light
front wave function, no matter how small the range of the potential is.

There is no ambiguity in the light front dynamics how to identify the relativistic wave
function with the nonrelativistic one. The ambiguity is resolved by the Weinberg equation.
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The widely discussed factor Jm?+ 2 (see Sec. 6) is not present in the wave function.
Nevertheless it is present in the integration measure in relativistic formulae.

The deuteron has spin one. In the light front dynamics the angular momentum operator
depends on the interaction. However, the effective potential Vg is known only approxi-
mately and the angular momentum problem is not solved exactly. This is the weakest point
of the light front approach. It can be bypassed using a particular basis of spinors [6], and
classifying the angular momentum eigenstates according to the rules given by Leutwyler
and Stern [7], with the particular spin labels identified with the nonrelativistic ones. This
is possible thanks to the unique property of the light front spinors that they do not undergo
the Wigner rotations under three independent boosts, under which. the light front dynamics
is invariant [6]. Therefore the spin labels, carried by these spinors, can be identified with
the nonrelativistic Pauli spin indices, which are not influenced by the motion of a fermion.

The deuteron vertex function is given by the formula

go = DY (p~+n" =D7)2Q2n)*6*(p+n—D)- & - it,. a7

T, is the isospin matrix. The wave function & contains appropriate matrices giving

¢ [ ko ks .\,
(usp) (us,,)pds (7] = Xsp [‘I)O(k) G'S \/2‘ <3 iéz _US)] sza,,: (18)
where the spin indices s,, s, refer to the special spinor representation 4 from Ref. [6] and
§ is the deuteron spin vector in its rest frame [8]. If the outgoing deuteron forms the last
vertex of a diagram one omits the factor 2(21)*6*(p+n—D) in gp.

The normalization of the deuteron vertex follows from the deuteron current j at
zero momentum transfer, calculated according to Fig. 4. One uses the vertex factoriza-
tion property of the light front rules [9] and, within the two nucleon approximation, one
can write

d’k
(27:) \/ 252

if the proton charge is normalized to unity. The proton is in a virtual state, and its quark
content, i.e. its quark Fock space expansion, is continued off-shell in the minus component

($5+¢2) =1 (19)

! n j
[ |
| |
Fig. 4. The deuteron current Jjib at ¢ — 0 normalizes the deuteron vertex function gp. Two broken lines

depict the intermediate states. Their denominators cancel the denominators factored out in Eq. (17), after
summing the orderings of the external electromagnetic vertex
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of the total momentum P~. Therefore, the normalization of its charge, as well as for the
neutron, provides a nontrivial sum ruie for the off-shell continued structure functions,
which we use in Sec. 5.

4. Simplified model of nucleons

We construct a model of nucleons assuming that their structure can be approximated
by an active valence quark a, and a passive core ¢ [3, 10, 11]. The core ¢ represents all
states accompanying the photon absorption by the active quark, Fig. 5. The quark-core
model for the nucleons is imbedded in the deuteron in the next Section, where we calcuiate
the deuteron deep inelastic structure.

Our simplified model of nucleons describes some basic properties of nucleons, relevant
to the analysis of the deuteron structure function, because:

1) It respects the light front spin conservation in the hard elastic scattering [3].

2) It gives the asymptotic behaviovr of elastic nucleon form factor F,(Q?%) ~ (0%

3) It satisfies the condition that in the deep inelastic scattering for xg; — 1 the active
quark carries the spin of the nucleon.

4) It gives the structure function F, = xF, behaving for x » 1 as (1—-x)}

5) It possesses the unique off-shell continuation in the deuteron, according to the light
front rules.

6) It fulfills the charge sum rule.

7) It fits thé experimental data for F,(x) for x 2 0.3 (sea quarks are not explicitly counted).

To keep control of the off-shell behaviour of our nucleons in the deuteron we treat
the momentum-dependence of the nucleon-quark-core vertex as in the tree diagram in Fig. 6

%Qﬁh

C

Fig 5. Matrix element of the electromagnetic current between the initial nucleon of momentum p, and the
final state of momentum p+g¢, approximated by the quark-core model

w s
\ U Uia)glip)

E—] —
7 = 5 *,(a)“.mm

[ 4 (4

Fig. 6. The momentum-dependence of the nucleon-quark-core vertex, denoted by yp(a). It is assumed
to be given by the tree diagram, The vertex matrix 5 = p* plays an essential role in our derivation of Eq. (1)
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The additional vertex, marked by a dot on the quark line, resembles the valon description
of the quark distribution in nucleons [13]. The two intermediate states, contributing two
denominators in perturbation theory, are necessary to reproduce results of counting rules
[3]. We use the notation, which is useful in the later application to the deutercn, and write

v(@) = N(p) [a*(p™—a™ —cT)]™? = N@) [(p—c)* ~m]]™2. 20)

In deuteron the minus component p— is replaced by D——m, so we have

- pPem o pPe-n)?
p = T L d p = D -n = -—-——-—+——— ,
p p
ptt =p* 21

and the normalization constant N(p) = N(p®) changes to N(p?), which is fixed by the charge
sum rule (24).

The nucleon-quark-core vertex is constructed to contain ;{ = 9+, to conserve the light
front spin, and to make it possible to derive Eq. (1}, as is explained later. The vertex 5 yields
also the conserved elastic nucleon current jp.

According to Fig. 7 the elastic nucleon form factor, extracted from the + component
of the nucleon current j,, is given as follows

d +d2 s
YT F(QY) = Z f ﬁz,—.,w;*( ) o - A+ mer™ (d + mpfwi(a). (22)

¢

We shail omit the sum over flavours and charges ¢; in the following equations,
neglecting differences between the up and down quarks distributions, which are interesting,
but are not directly relevant to our present analysis. The nucleon vertex description,
including the flavour-dependence, based on the QCD sum rules, and on the concept of
an effective quark mass, combined with the perturbative QCD, is presented in the second
of Refs. [4), and in Ref. [12]. Using an abbreviation

_1_3 J‘ff._. J d2 S - J[dc] a-i—,.L = p+.1._c+..L (23)

P

Fig. 7. The elastic nucleon current ji~ (g% = 0)
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the normalization condition at Q2 = 0 (which is the charge sum rule) reads
a+
Fu® = [ 141 St = 1. @4

The inclastic electron-deuteron scattering cross section is

do o> E
i0.dE = O° T(l Z]“}:) "o @

Se3e’

where the nucleon structure tensor W." beyond the resonance region can be expressed as
(see Fig. 8)

l '
GREDY 3| ) W s ra—a - 15 @6)

d 02
q
a
¢ P

Fig. 8. The deep inelastic nucleon structure tensor we

The nucleon current j; is

Jy = U@ W (@d+mfi(p) (4p* a*)™ Py (a) @n

Note that neither a—, nor p-, nor the masses occurring in the sums over spins enter
in Eq. (27). This feature enables us to derive Eq. (1) in the next Section, and it follows from
the property of the light front vector # that #* = n* = 0. The nucleon tensor W}" calcu-
lated in Appendix from Eq. (26) for g, v = +, 1 has the form

o) B ) ). o

where the structure functions W, and W, are

1 1 .
Wie(g®, pg, p*) = 5;[[«] S0P e —dT =) 1 lv(@)* (29> +8(a*%)?),

Wz.,(q?.pq,p’)s—;;z j[ c] +6(p +q"~a'""=cT) 31y, (a)]*8a*%.  (28b)
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In the Bjorken limit ¢— — c©, 0% - o, Q% 2pq = xp; fixed, the argument of the
delta function simplifies to

a*? 2 at :

6(p'+q'—a"-—c')=-Q—-2-6(a+—g), > =X = Xg;, 29)

and the structure functions become
Fy(p*, x) = 2mW, = N(p*)x™* [—mxi+ g —p’]-s,
Fx(p, x) = vW, = xF,(p* x). €]
The normalization condition (24) results in the sum rule

1

J‘ dxfii:—’i) =1 (31)

0

For x — 1 the structure function F, behaves as (1 —x)* and Eq. (30) can reproduce
the experimental data for x 2 0.5. For x < 0.5 the active quark does not have to carry
the spin of a nucleon, and the vertex y is not sufficient. In our phenomenological estimates
of the dynamical effects in the deuteron we improve in Sec. 5 Eq. (30) for x < 0.5 by the

substitution
2 2 -3 v —3
m m m,
x7TH—= +—= —p*| x| pt+ — —-p*}| . 32)
x 1—x 1—x

‘From the Regge behaviour of the parton-proton amplitude [11] it is expected that
a ~ }. The parameter u2, replacing the effective quark mass divided by x is of the order
of the nucieon mass. Note that the phenomenological improvement Eq. (32) preserves
the essential dependence on p?, which goes over to (D—n)? in deuteron, as shown in the
next Section. The resulting proton structure function F, is plotted in Fig. 9.

04}
z(x)-.‘ o..

3t '-‘\

02t /

014

02 04 06 08 X
Fig. 9. The proton structure function F(x), given by Egs. (30), (31) and (32), for m. = 0.85 GeV,
# = 0.9 GeV, and # = 0.67. The points represent the fit to the data at Q% = 15 GeV?, from Ref. [14]
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5. Nucleons in deuteron
A. Structure functions of the deuteron

The deuteron structure functions are caiculated by imbedding the nuclcon model
of Sec. 4 into the deuteron inelastic current according to Fig. 10. Beyond the resonance
region the deuteron inelastic tensor is given by (cf. Egs. (26) and (27))

neutron

W=y > o > [ > Jaan > fra

P = proton Sn

x(2n)20%D+q—a' —c—n) - j&  jy. (33)

O

Fig. 10. The deuteron inelastic current expressed by the active quark current according to the nucieon model
from Fig. 6. The deuteron vertex gp is given by Eq. (17) in Sec. 3

where the deuteron current is

<, - . - D*
ip = Zu(a (A +mpfu(p) (4p™a™) ”Zw;(a)—a—.r@,," (34)

Sp

and the deuteron wave function ¢, is expressed by the matrix @ from Eq. (i7). Both
nucleons are described by their on-mass-shell spinors. The sum over their spins in the
intermediate Fock state (off-shell in total P™), averaged over the deuteron spin, factorizes
into

(95+03) + (Z+m). (35)

Such factorization does not occur if one uses the Feynman rules with (7 +m) in the
numerator of the active nucleon, and the deuteron vertex like e.g. SC (see also discussion
in Sec. 6). There one obtains not only terms like (# +m) - ¢ which could result in the off-
-shell continued structure functions times the scalar density g, but also terms proportional

to (p? —m?)- I', which contain matrices I" different from (Z+m), and do not lead to
Eq. (1.



From Eq. (33) it follows that the deuteron structﬁre tensor is

neutron

W = [ran (2= 2 Ywseod 4 [ e o

p = proton

1 -
4 T +Tr[ﬂ(f»+n1.)7“(¢ +m,)y (d+m.)ﬁ(/+rn)]—6(p +q —a' " ~-c), (36)

where
p=D-n (37

By comparison with Eq. (A.1) for the nucleon structure function (see Appendix)
we get that Eq. (36) is selfcontradictory. Namely, the momentum-dependent nucleon
vertex y;(a) is continued off-shell from p to p, while the spin trace in Eq. (36) contains the
on-mass-shell momentum p, as the necessary condition for the factorization property in
Eq. (35). Therefore, without the essential property of the light front vector n given by

JiZ=0 (38)

the. factorization, and the off-sheli continuation are contradictory.

The intermediate states in the x+-ordered perturbation theory are off-shell in the P-
component of the total momentum. In other words, one continues off-shell in the total
momentum along the light front vector 5. This is the continuation y,(a) » y;(a). Neverthe-
less, the spin sum (74 m) contains the on-mass-shell momentum p, and the nucleon mass
m which are the same as for free nucleons and are not continmued off-shell. These follow
from the fact that there are no seagull diagrams for composite nucleons. Fortunately, the
troublesome sum (g +m) is sandwiched with nucleon vertices which we have chosen to
contain f{ conserving the light front spin. Hence

Mp+myf =2p*y (39

and the nucleon structure functions are uniquely continued off-shell from p to p, see Eq. (21).
The same mechanisn; eliminates seagull contributions from the j* current matrix elements
[3]. Our mode! provides a selfconsistent example in which the deuteron structure tensor
Wp' calculated from the diagram of Fig. 10 is factorized according to Eq. (1).

Repeating the steps from the Appendix and changing variables n*, n* to k according
to Eq. (13) we get the result

neutron

. - 12
-m p
Wip J dskf(k);: Wip+ T Wz,].

P =proton

nsutron

.. m[p
Wip = Z fd’kf(k);—; e sz]- (40)

p = proton
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We discuss this result in the deuteron rest frame. The deuteron structure functions
W.p and W, depend on the variables ¢ and Dg = 2Myv.
The smearing function f(k) is

1

D= oy Jorr

(¢o +63), (41)

where ¢o(7€) and ¢2(7€) are the light front deuteron § and D wave functions, respectively,
discussed in Sec. 3. They can be identified with the nonrelativistic wave functions, if the
solution to the Weinberg equation, explaining the experimental results including the weight
(m*>+ k%), is not available. Nevertheless, the interpretation of of p) in Eq. (1) is clear.

B. Identification of the virtual nucleon structure functions

The structure functions W, and W, in Eq. (40) arc given by Eq. (28), with the replace-
ment p — p. We use Eq. (28) in the Bjorken limit in next Sections to discuss the dynamical
off-shell effects. Here we consider the identification of the virtual nucleon structure functions
independently of the particular model Eq. (28), but preserving the general properties of
the light front scheme.

The structure functions W, and W,, are functions of two momenta p and ¢q. The
momentum transfer g carried by photon is defined by the external electron and it is the
same both for the free and the bound nucleon. The momentum g is not modified in the
identification of the virtual structure functions, Thresholds in the bound nucleon structure
occur with the variations of the invariant mass (D—n+¢q)? = (p+4q)2. To preserve the
threshold behaviour one has to treat the virtual structure functions as functions of the
final mass W2 = (p+q)> If (p+4g)*> < m?, then the structurc functions vanish. Once
a model-independent description of the p>-dependence of the virtual functions is not
available one can try to identify the virtual structure functions with physical ones, according
to the above rules, without separate variation of p2. However, such a procedure in con-
ventional approaches (see Sec. 6) violates the physical condition [10] that the deuteron
longitudinal cross section should vanish in the limit Q2 — 0, i.e.

4no
op = . [Q Wap— WID:]WO 42)

In the light front approach this condition is satisfied as follows. The physical nucleon
structure functions treated as functions of g2 and W? satisfy the analogous constraint

Q_p2 W2p" Wlp Q2->0; 0, 43)
where
Wq+Q?
y = 2L HOHO (44)
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From Eqgs. (40) and (43) it follows that for 92 - 0

neutron

4na
oy =

SRR [ s 1] Wi 5

In contrast to the conventional approaches we have always g+ = 0. Therefore,

p=proton

Wg——-zp"a" =p’v (46)

and the condition Eq. (42) is satisfied without invoking ad hoc corrections. In other words,
we have satisfied the identity

Pq = pq (47)
giving v; = v, and being once more the manifestation of the fact that the light front dynam-
ics is developed on the properly chosen zero hyperplane, as was explained in Sec. 2.
C. Moments and sum rules

In the Bjorken limit Eqgs. (40) give scaling structure functions
neutron

3 ~2 X
FID_‘ZMW!D—' Z J‘dkf(k)_FIP( ’T)’

=proton
neutron
- - PhFF, (72,5 4
Fyp = vWyp = f()Zp Pay, (48)
p =proton

where

3
=P K
ve g =41 \/m2+§2> @)

and from Sec. 4 wc have

2 -3
~2 M~y
sz(P z) = N(p“)z* ( + 1 —P) ,

1
1p = ;FZp' (50)

F

The threshold condition 8(y— x) matching with the conservation of the positive value
of the plus component of the total momentum, is implicitly included.
The moments of the deuteron structure functions

MP = }dxx"FzD(x) (51)
0
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are calculated by inverting relations Eq. (49) or Eq. (13)

-’Ez _ Ei‘l2+4(y___})2m2

- (52)
4y(1-y)
Changing the order of the integration over x and y in Eq. (51) we get

neutron
My = Y (&Kl jdzz"sz(p 2) (53)

p = proton

where

2 = (D—n)? = m*—4y(me+Kk?), (54)

and it depends on y and k*2. Without this dependence the n-th deuteron moment M? would
be the following product

My = My, - (M +My). (55)
The off-shell effects complicate the product form in Eq. (55) into the convolution in
Eq. (53).
For n = —1 it follows that
1 neutron 1 ~
F z : F )
fd _gn(x) _ sz 2p(P”, 2) ’ (56)
X z
o p=proton 0O

where, in fact, the r.h.s. of Eq. (56) is independent of p2, thanks to the sum rule in Eq.
(31). Thus, we are led to the parton-like picture with the satisfied charge sum rule, even
if we include the dynamical off-shell corrections. The light front approach resolves the
contradiction with the parton model expectations encountered in the conventional ap-
proaches (see Sec. 6).

D. Deuteron Fermi smearing corrections

To show the size of the Fermi smearing effects in deuteron we assume that the nucleon
structure function F,(p?, z) in Eq. (48) is independent of p>. Then Eq. (48) gives the following
smearing expression

1

Fap(®) = dee(y) [sz( ) +Fyy (")] (57)
y y

where o(y) = M j dzklf(k'). For example, the Hulthen-Sugawara wave function [15]
bo ~ (me+k?) N2 +EH7L, A% = 0.05 GeV? (58)
gives

2(y) = A[(me+3) "' + (A2 +6*) "1 =22 —me) * In (A2 +6*) (me+6)7'], (59)
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where 62 = m*(y—3)?y*(1—-y)-!, and the normalization constant A is given by
1
J; e(y)dy =1, (60)

following from Eq. (19). The momentum sum rule is
1

=1 =J o) (y=%dy = 0. (61)

0

The .ize of the Fermi smearing effects is shown in Fig. 11. One defines the smeared
structure function

1

Fy(x) = f o()F (23) (62)
84

x

x
which corresponds to the structure function Fy (5) . This rescaling by factor 2 is implicitly

introduced in the following considerations. The smearing ratio R(x) is

F(x)
R(x) = . (63
(x) .60 )
1” Ly L ¥ ¥ ¥ ¥ T ¥ T
Rix)
1025 [ i
10 ===
\
\
0950 |- \ -
\
\
I \\ ]
oro} -
|
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Fig. 11. The deuteron smearing ratio R(x) from Eq. (63), for the example of the proton structure function
Fy(x) from Ref. [14], for Q? = 10 GeV?, and the soft core Hulthen-Sugawara deuteron wave function
from Ref. [15]
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The shape of R(x) depends mainly on the nucleon structure itself, and is practically
independent of the detailed bebaviour of the density g(y). Because g(y) is sharply peaked
around y = , the following formula

F, = F4+3 - (xX’F') - <@2y-1)%», (64)

describes the shape of R(x) including the rapid variations of R(x) for x > 0.6. The ratio
of (x2F3p)’ to F,p rises to infinity when x approaches 1. However, for x < 0.6 it is of the
order of —2, while {((2y—1)?>, for the deuteron is equal to about 0.49,. Therefore the
properly caiculated Fermi smearing for x < 0.6 amounts to the following relation

Fyp = Fpp+Fon (65)

which is of accuracy much better than 19, The relation Eq. (65) is exact for x = 0 and
at x = xq, where x, ~ 0.6, it is the zero point of the function [x?(F3p+ F3y)]'. The validity
of Eq. (65) at x, is a consequence of the sharp peaking of g(y), around y = %, corresponding
to x = 1, see Eq. (62). The expansion Eq. (64) is very useful in the analysis of the EMC
effect [16].

E. Dynamical effects

The dynamical effects in our model calculation follow from the p?-dependence of
the nucleon structure functions. From Eq. (50) we get

2 -3
~ r}‘lc
Fap(p?, 2) = N(m®—d*)z* <ﬂ2+ N —m2+d2> . (66)
where
d* = m*—p? = 4y(me+k). (67
For a free nucleon the value of d? is equal to zero.
The dynamical change of the shape of a bound nucleon structure function arises as

follows. The positive correction d? enlarges the denominator in Eq. (66), and it diminishes
F, as it is shown in Fig. 12. There is no change of the shape in the perturbative region,

04t
Fz(x)'° * e,
03f

02t

01

0.2 04 0.6 08 X
Fig. 12. The dynamical change of the bound nucleon structure function in the deuteron, caused by the

presence of d2 in Eq. (66), and compared with the fit to the proton structure function Fzp at 0% = 15 GeV?,
from Ref. [14]. The full line is for the free, and the broken line for the bound nucleon
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where z — 1, and thie value of the d2 correction is negligible in comparison with m2(1 —z)~*.
The normalization constant N(m?—d?) has to become larger than N(m?), to preserve the
sum rule Eq. (31), following from the charge conservation law. Effectively, the structure
function Fy(p?, z) is smaller than F,(m?, z) for small z, and larger than F,(m?, z) for large z.
Their ratio at z = 1 is equal to the ratio N(m?—d?)/N(m?).

Finally, using result Eq. (65), we can write

Fop(x) = sz(<l~’2>o, x)+ F2N(<I;2>D’ x). (68)

The ratio of the proton structure function F,p({p*)p, X) to the free proton structure
function F,p(m?, x) is plotted in Fig. 13. The size of dynamical effect depends on para-

o 05 =1

Fig. 13. The ratio of the averaged virtual proton structure function F,({p?>p, x) to the free proton structure
function Fa>(m?, x), after imposing the charge conservation constraint. It is shown by the dashed line. The
dotted line represents the Fermi smearing effect

meters y?, m?, and « in Eq. (66). Note that the x-dependence of the denominator in Eq. (66)
is governed only by the ratio s = (m?— p?)/mZ, which was found to be equal to 0.097 in
Sec. 4, in order to reproduce the experimental behaviour of the proton structure function
F,p, see Fig. 9. The corresponding value o = 0.67 is close to the expected value 0.5 [11].
Therefore, the size of the dynamical effects directly depends on the ratio of

m? —{p*p = (d*p ~ 2{k*yp ~ 0.02 m? (69)

to the core mass m2. In Fig. 13 we took m, = 0.85 GeV, assuming that it lies between two
constituent quark masses, and the nucleon mass.
The above example shows that the dynamical effects are bigger than the smearing

corrections for x < 0.6. From Eq. (64) we see that the smearing corrections are of the order

72
of & <f71;> , i.e. 0.5%, while from Eq. (68) we get the dynamical correction of the order

D

m? m?
power — 3 in Eq, (66), implied by counting rules, and the factor 2 from the number of nuc-
leons 4¢{3>p = 2 in Eq. (67). If we allow an off-shell continuation of the bound nucleon
structure, varyiug only G, in the nucleon wave function ¥ = G,¢, without alteration of the
vertex function ¢, then the factor 3 is replaced by 2. Therefore, our conclusion about
the size of the dynamical effects is more general than the tree diagram model used in the

present calculation.

d? k?*
of 3< > =2-3- < > , corrected by the sum rule. The factor 3 comes from the
D D
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F. Extracting neutron structure

The neutron structure functions can be extracted from the deuteron and the proton
data using Eq. (40). In the Bjorken limit one can use Eq. (57) including 2 Q2-dependence
of the structure functions, and also the extremely simple Eq. (64) for x < 0.6. Considering
that 0.5% accuracy is sufficient and ignoring the dynamical effects, one can write, from
Eq. (65)

Fyy = Fyp—Fyp (70)
10 ¥ T T T 1 4 T T T
N
i
Fap 7
08 -
SLAC [14)
] u=2d ]
06 + A
\R\ u=6g
04 -
I EMC [m/ ]
¢=0
0.2 = =
L i 1 | ] i ] A )

6.2 04 0g 08 X

Fig. 14. The ratio of the neuiron to the proton structure functions extracted from the deuteron and the
proton data from Ref. [14]. The full line is obtained by neglecting the dynamical effects, and the dashed
one by including them
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for x < 0.6. However, the dynamical effects cannot be neglected, as it is shown in Sec. 5.E.
Our model calculation of these effects, assumed to be equal for both nucleons in order to
avoid complicated discussion, results in the modified equation

Fon = Fop(1+0.05(x—0.15)) ™! — Fp, (71)

where we put the smearing ratio R(x) = 1, and used a linear fit to the dashed line from Fig.
13. The influence of the dynamical correction on the extracted racio F,y/F,p is shown in
Fig. 14. For example, the extracted dfu ratio at x ~ 0.6, inciuding the dynamical effects
is 209, smaller than the same ratio extracted without the dynamical corrections.

6. Comparison with other approaches

The first detailed consideration of the deuteron smearing corrections in the electron-
-deuteron scattering was published by West [18] in 1972. Since that time a number of authors
treated this subject [14, 18-22], trying to solve problems of the two nucleon approximation.
All of them, in fact, start from Eq. (1), but none of them specifies the conditions, which
would justify the factorization of WS” represented by the diagram of Fig. 1 into the form
of Eq. (1). How does this factorization emerge in the light front approach is explained in
Sec. 5.A. The problem of the identification of the density ¢(p) in Eq. (1) was not clarified
and once more it was stressed in the last paper of Kusno and Moravesik (1983). Frank-
furt and Strikman [20] identify g(p) with the nonrelativistic wave function via the Weinberg

wave function but inconsistently remove the factor \/ m?+k? from the normalization
condition, forcing its presence in the Weinberg wave function. This was shown in Sec. 3 to
contradict the connection between the Weinberg and the Schrodinger equation. Iv can be
treated only as a phenomenological device dictated by the lack of a complete light front
description of the nucleon-nucleon interaction.

In contrast to other approaches [14, 18-22] starting from Eq. (1), we consider the
Compton scattering amplitude on the active quark in Figs. 8 and 10 as an elementary ampli-
tude, undergoing the smearing in the electron-nucleon, or in the electron-deuteron scatter-
ing. This insight into the quark structure of the nucleons results in the full control of the
off-shell effects, in a simple model calculation, with more general, model-independent
consequences. Namely, we provide the identification of the off-shell nucleon structure
functions with the on-shell ones, preserving the proper threshold behaviour, which solves
the Bodek problem [19] (¢ + 0, when Q2 — 0), without ad hoc artificial corrections.
This is explained in Sec. 2 and 5.B. The origin of this success lies in the proper choice of the
light front direction which gives exactly g+ = 0. None of the methods [14, 18-22] provides
such a universal prescription.

West introduced the so called West-f correction [18], later on argued to be zero by
Frankfurt and Strikman [20], and Landshoff and Polkinghorn [21], and recently discussed
by Kusno and Moravesik [22] in different aspects. The light front approach confirms the
statement that the West-f correction is not present [20, 21, 22}, as it is explained in Sec. 5.D.
The condition g+ = 0 removes the limits, imposed on the phase space of the spectator
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nucleon in the West-Atwood approach [18, 14], leading to the B correction. At the same
time the light front method leads directly to the parton model expectations which were
questioned by Kusno and Moravesik in 1983.

The model calculations of the dynamical effects, and their influence on the extracted
neutron structure function have not been considered yet, in the previous papers.

7. Summary and conclusions

Thus far, the extensive efforts in describing the deep inelastic structure of the deuteron
have been carried out in the two nucleon approximation. Different aspects of the deuteron
binding effects were considered, but inherent problems of the two nucleon approximation,
having influence on data analysis, have not been consistently solved.

As we have described in this paper, the detailed model calculations of the diagram
from Fig. 10 in the light front scheme provide an example of the conventional two nucleon
approximation free from the problems encountered in other approaches. The basic quan-
tity to be considered is the virtual Compton scattering on quarks, belonging to the struck
nucleon. A particular structure of the nucleon-quark vertex in Fig. 10 leads to the smearing
expression (u,v = +, 1)

WE = | d’po(p) (W + WE).

The density ¢(p) is related to the two nucleon Fock wave function on the light front.
To solve the specific problems of the two nucleon approximation one has to choose a special
light front direction. The experimental conditions select the z axis in the laboratory frame,
which deviates from the momentum transfer g, carried by the photon, by an angle «, where

tgoa = —Q— . Just this subtle deviation is the origin of the success of the light front approach.
v

It yields always the condition g+ = 0, and the relevant structure functions can be expressed
by the appropriate Fock components in a simple manner intuitively expected from non-
relativistic quantum mechanics. The two nucleon light front wave function is shown to be
exactly equal to the nonrelativistic deuteron wave function, outside the range of a potential.

However, the relativistic Fock wave function is normalized including a factor \/ m? + k2,
where k is the relative momentum of nucleons in their center of mass frame of reference.
The off-shell continuation of the bound nucleon structure functions according to the
light front rules does not violate the condition o — 0 for Q2 — 0, preserving the proper
threshold behaviour. 7
In the Bjorken limit we reproduce the parton model formulae, with the satisfied sum
rules. The smearing corrections to the additivity relation for the structure functions

Fip = Fap+F)n

are at most equal to 0.5%, up to x  0.6. The additivity is exact at x = 0. The so called
B correction is absent.
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Theé model calculation of the dynamical off-shell effects in the deep inelastic structure
functions of bound nucleons shows that the effects are scveral times larger than tne smearing
corrections. They lower the extracted neutron structure function at large x, and bring it
‘closer to the parton model limit of 0.25. The inclusion of these effects gives the extracted
d/u ratio in proton at x ~ 0.6 diminished by 20%.

The light front methods discussed in this paper and illustrated for the two nucleon
sector are equally applicable to other components of the deuteron.

The author would like to thank Professor J. M. Namystowski for stimulating concern
extended to him at the Warsaw University where this work was done.

APPENDIX
Details of calculating the structure functiorn

From Eq. (27) we get in Eq. (26) the foll'gwing result

+ Zj:'j; = Iy (@)l 4pia+ Te g+ m ) (@ +mpy (@+my(F+m).  (AD)
SpSur
The trace part can be written as
ap*a® Tr (d+m )y (d +m,)y' (A.2)
Now we use a trick
a =a+q+0, 6=%06"n o6 =a -a -q° (A3)
and note, that ¢+ = 0 implies
(g+0) = q% (A4)
The trace in Eq. (A.2) is

“‘—"i’l“f,‘ﬂ'l) +8 (a"— daro) q") (- M) s
p 7 ¢ )

2q2 <guv__

Subtracting a longitudinal part [10], j* — j"— f’_ q, or

W - (W - q*g,W|q") (573" q;(zl ) ’

we “get

q"q" od’a"\ aq , a9
2 2( v .__.__) +8(a“——q">(a -—q). (A.6)
q°| g qz qz qz qz

Then follows Eq. (27) with W, and W, given in Eq. (28). Similar calculation leads from
Eq. (36) to Eq. (40).
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