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HOMOGENEOUS AND ISOTROPIC COSMOLOGY IN GAUGE
GRAVITATIONAL THEORY WITH GRAVITATIONAL
LAGRANGIAN
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The paper is devoted to the singularity problem in the spatially homogeneous and
isotropic cosmology in the framework of the gauge gravitational theory with quadratic
gravitational Lagrangian
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1. Introduction

The homogeneous and isotropic cosmology in the framework of gravitational theories
with quadratic Lagrangians was recently examined by many authors [I. 2, 3], see also
References given in [6]. In this paper we wish to study this cosmology in the framework
of gauge gravitational theory with the following, quadratic gravitationat Lagrangian

L, = WL AR +O A * O)+ B A * D,
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In the Lagrangian (1) # is the Planck constant, ¢ is the value of the velocity of lignt in
vacuum and G denotes the Newtonian gravitetional constant. Q' is the curvature two-
form, @' is the torsion two-form and 7, means the pseudotensorial two-form introduced
by Trautman [4]; + denotes the Hodge-star-ope1ator.

* This work was carried out as a part.of the Research Project MR.1.7.
** Address: Katedra Fizyki, Uniwersytet Szczecinski, Wielkopolska 15, 70-451 Szczecin, Poland.
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The theory with gravitational Lagrangian (1) was presented in |5] as the most satis-
factory model of a gauge gravitational theory because, among other things, the Lagrangian
(1) has the best physical and geometrical motivation,

In [6] we presented simpie cosmological models with torsion and with the O(3) isotropy
group existing in the framework of the theory.

The present paper is mainly devoted to examination of the existence of geometrical
singularities in the cosmological solutions of the theory having the O(3) isotropy group
and the SO(3) isotropy group.

The notation used in this paper is the same as tnat u<ed in [6].

At the end of the Introduction we give a new form of the Criterion “C” originally
formulated in [6]. The Criterion “C” gives the necessary conditions under which solations
with torsion having a symmetric energy-momentum tensor may eXist in vacuum and inside
of matter. {Inside of matter solutions having asymmetric energy-momentum tensor may
exist only for solutions with torsion.)

The Criterton “C”

Solutions to the field equations having dynamical torsion may exist when:
(i) The torsion constraints (see [5, 6])

VkQ[bp]k + Q[bp]ka =3 VkQIfbp +V[pr]+% 0,9, 2
where
Qn: = ank

are a consequence of the field equations of the theory and of some additional compatibility
conditions having, in general, a form of differential equations simpler than the constraints
and the resulting system of equations consisting of the ficld equations and compatibility
conditions is not overdetermined,
or
(ii) The constraints (2) are identically satisfied (reduce to the form 0 = 0) and the system
of the field equations (with not enticely vanishing torsion) to be solved is not overdeter-
mined,
ot
(iii) The constraints (2) immediately follow from the field equations of the theory (the
trivial consistency of the constraints with the field equations) and the system of the field
equations is not overdetermined.

If the Criterion “C” is not fulfilled, then there exist only torsionless solutions.

2. Spatially homogeneous and isotropic cosmology with the O(3) isotropy group
The field equations in this case have the following form (see [6])

a S12
. . — +ah)]
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.ac ac
L ICIRN DL IR 3)
JES— — a — = N

ac \ ¢ 2B

where k =0, +1.
We denote by dot differentiation with respect to the cosmic time ¢
In each case, k = 0, +1, we have a system of three ordinary, nonlinear differential
equations for three unknown functions: the scale factor a(t), the torsion component A(¢)
and the energy density &(f) or pressure p(¢). The classical spin is completely eliminated from
these equations. The Criterion “C” is satisfied in this case and, therefore, the systems (3)
may have solutions with torsion (and with a symmetric energy-momentum tensor (see [6]).
Discussion of solations of such a kind will be given later. Now we consider the differen-
tial conservation laws having the form

Vlsfij'l'sfile = ti;—1j,
V; {i+t{in = Q{iltfj"l'é— R{-,.Cilsfjk' €]
In the framework of isotropic and homogeneous cosmology with the O(3) (or SO(3))
isotropy group these conservation laws reduce, in the orthonormal tetrad determined
by the Robertson-Walker line element (see [6]), to a single equation
a
43 - (e+p) = (—)6hca’(e+p) %)
or, equivalently

(2a®) = (—)6hca’(e+p)—p(a®). 6

We see from (6) that the mass contained inside of a “‘sphere” of radius a is not conserved
unless 1 = p = 0.
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To solve the system (3) we necd an appropriate Ansatz. A suitable Ansatz is determined
by the form of the system (3) and, first of all, by demanded macroscopic behaviour of the
model.

An Ansatz suitable for equations (3) has the following form

7
— +h =
ac

(M

a calculated from a solution to the macroscopic
cosmological equations (Friedmann equations)

Calculating £ on the right hand side of equation (7) from different solutions to the Fried-
ac

mann equations we gei different cosmological solutions to the equations ¢3) with the a priori
given macroscopic bebaviour.
The procedure of solving the system (3) using the Ansatz of the form (7) is the following:
(@) We substitute the Ansatz into the system (3) and calculate from the last equation of this
system h = h(a, d, d, 'c.z'). »
(b) We substitute & = i(a, 4, d, .c'z.) into the Ansatz (7) and get an ordinary differential
equation for the scale factor a = a(t). Solving this equation we get the.function a = a(t).
(¢) Having a = a(t) we calculate A(#) = hfa(?), a(z), d(z), '('z'(t)}.
(d) Having a() and A(r) we calculate &(1) from the first equation of the system (3) and p(?)
from the second equation of the system. Thus, the whole procedure is practically reduced
to solving of one ordinary, nonlinear differential equation for the scale factor a = a(r).
Interesting, continually expanding solutions to the system (3) obtained with the belp
of the Ansatz

a 1 a
Sin===2Gan=1 (8)
ac a (4

were presented in [6].
These solutions have the following macroscopic behaviour

g
a =ct+const, h=0, p=(-) 3 const =0, 9

and they are without any singularities (in metric and in orsion). At the cost of work per-
formed by negative pressure and torsion during expansion the continual ‘“‘creation” of mass
takes place in these models. However, these models are evolutionary models, not steady-
-state models, because the expansion dominates over *‘creation” [6].

An Ansatz suitable for the Friedmann-like solutions in the macroscopic domain has
the following form

i +h = <_a_> calculated from the Friedmann solutions (10)
ac ac

In the case £k = p = 0 we have the Friedmann solution of the form (see, e.g., [7]

a = Ar*’®,  vanishing torsion, (11)
where 4 = const > 0.
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Therefore
a . . 2
(——) calculated frop the Friedmann solution (11) = o (12)
ac ¢
and the Ansatz (10) takes the following form!
d+h 2_d+h_2a (13)
ac T3 ¢ T T aa
The equations (3) give for this Ansatz
224t _,, 24
S \a 3a 7 3a®
h (14)

Ry I
2 3ac? 3¢?

Substituting (14) into the Ansatz equation (13) we get the following differential equation
for the scale factor

it 22 & 28
i—-34% -3 - —lad+3|{— - —=la*=0. 15
aa=-a 2(w 9:)“ 2(3&1 27:2)a 13
Putting u(t): = hd we transform this nonlinear equation of second order onto the Riccati
a
equation
c’t 22 c? 28
—-2ut -3 - — l— = —]=0. 16
wo 2(241 9:)"“(3,« 27z2> - a9

We cannot solve this equation by direct integration [8] but we can associate with it the
following second order differential equation (see [8])

“ 4 c?t 22\ . c? 28 -0 an
YT\ T )V T g Te2)? T

This equation belongs to the so-called “Fuchs class”. Each non-zero solution y # 0 deter-
mines a solution

u(t) = (—)-2-'”; (18)

ot the Riccati equation (16) (see [8]). We can solve the equation (17) in the form of an infinite
series and get

=3 attt, (19

! The Ansatz (13) leads to a solution to the equations (3) with & = 0 having ¢, p # 0.
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where

2\/31

oal-h

s=(-)

[% (/l-}-s)+1]c2
aj,s
[(A+5+2) Q+s+15)+28]

ap #0, a, =0, A=0,1,23,... (20)

Aj42 =

Thus, solutions to the Riccati equation (16) given by (18) will be quotieats of two suitable
series and a = a(?) will be given by

a(t) = (=) 3 const - Re [y(1)], (a(r) >0), 1)

where Re [¥(¢)] means the real part of the solution (19)-(20) (this real part satisfies also
the equation (17)).
The real part Re [y(#)] has the form

a0

Re [y(0] = Z t“‘”“‘[Re (a,) cos (Z—;E In t) + Im (a,) sin (2—‘3/3 In t)} (22)

and never vanishes.

Summing up we can say that solutions of equation (15) obtained in the above described
manner will be rather complicated in the microscopic domain of a(z) but they are without
any metric singularity.

However, these solutions (and all other solutions) must develop singularities in torsion
when ¢ goes to zero. It is easily seen from the formula (14).

In the macroscopic domain (f = 0, a(t) sufficiently large) the behaviour of the solu-
tions of the equation (15) will be Friedmann-like and given with very good accuracy by (11).

1n the cascs k = +1 we have serious complications caused by the fact that the solu-
tions of the Friedmann equations with p = 0 (or p # 0) are given in parametric form (see,
e.g., |7D.

However, for sufficiently small values of the parameter (this corresponds to suffi-
ciently small values of the scale factor a(t)) we can give the approximate form of the function
a(t) (see, e.g., [7]). It is aiso of the form (1D.

Keeping in mind this fact we can try to solve the system (3) for sufficiently small
values of a(t) using the Ansatz (13). This enables us to investigate the cosmological singular-
ity problem at ¢ = 0 in macroscopically Friedmannian cosmological models with k = +1.

Proceeding in this way we get the following ordinary differential equation on a(¢),
valid for sufficiently small values of the scale factor a:

(:2t 22 2 28
aa—3a2—%< - —> ad +%<3CT¢ B 2‘7?) a* = 2k, (23)

where k = +1.
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The equation (23) differs from the equation (15) only by the constant term 2kc?.
Therefore, it admits only such metric singularities at the point ¢ = 0 as the singularities
admitted by the equation (15).

The solutions to the equation (15) may be without any metiic singuiarities. Thus,
metric singularities in the solutions to the equation (23) are also not necessary, i.c., there
may exist solutions without singularities at the point ¢ = 0.

On thz other hand the solutions to the equations (23) must devzlop singularity in
torsion because we have for them

20 2d%? 2dt? . 24t . 44? L
o 276 3a%c3 3ac® ac®  3a’c
t

h = 5
(t 8Adt 8.51)

, (24)

2 + 3ac? 3c?
where k = +1.
The analysis of the expression (24) shows that in both cases, k = 1, we have
lim i) = oc.

t—0
Apart from the Ansatz method developed up to now and applied to the field equations
(3), we may use from the beginning the spherical symmetry Ansatz {5, 9]

« Q' = (=) ;2" + 2o n"'+ o, Viav? (25)

G )
with # = conhst, € = const, & = —5 - V' denotes the coreper field.
¢

This Ansatz is compatible with the O{3) isotropy and with the third order part of the
field equations (see [5]) if and only if ¥ = 0 and # = 1.
It leads to the following system of equations

24 2hd+2h oh4 3 ( )26
- o J— h oz (=) —
ac®  ac ¢ 4of 3a

24 N 10hd N 6h . 5 2p
ac? ac ¢ 4of o

i ; 2 1 k
—3+‘“2'—2+';‘C“+“+h+“——+‘3:0, (26)

where k =0, +1.

The Criterion “C” is satisfied here. Thercfore, there may exist (and really do exist)
solutions with torsion.

We can solve the system (26) in the foliowing way: we take arbitrarity the function
a = ait) and then find 4 = A(t) from the third equation of the system. Afterwards, having
aft) and A(¢) we calculate ¢ = &(¢) and p = p(¢) and the state equatiop p = p{e) from the
remaining equations of the system.
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Proceeding in this way we have examined the simplest case a = e, H = const > 0
without metric singularity for finite values of the cosmic time ¢. The results are as follows.

1.k=0
The equation for A(z) has the form

c 2H?

h= h*—3Hh— — — —. ;
(-)e = @n
This equation has the solution’
LT Cl H2t const. @ ) 28
= [— = onst—% [— —
2¢N g T 2e (28)
with
. _
(=) = < const—1 S mi< X (29)
2 N o 2"

The solution exists only in the bounded interval of the cosmic time ¢, determined by (29),
and it has singularities at both ends of the interval: # — +oo. The solution (28) does not
correspond to any cosmological solution of the macrossopic gravitational theory (see [6]).

2. k= +1
In this case we have the following Riccati’s equation for A(t)

h = (=)h®*—3Hh— — — — —kce 2™, (30)

where k = * 1.
We can associate with equation (30) the following second order linear differential
equation

2H?
i+ 3Hu +c<kce‘2”'+ —+ ZC;) u=0. (1)

Every nonzero solution u(t) # 0 of the linear equation (31) determines a solution A(f) = —
uc

to the Riccati equation (30).

For our purposes it is sufficient to study the solutions of the asymptotic equation
obtained from (31) for large, positive values of ¢.

The asymptotic equation has the form

2
i+ 3Hu+ <2H2+ 471) u=0 : (32)

c? c? a
2 We have put here - — H? > 0 because -~ 1087 572 and H = —s~! is usually very small.
a



and has the following general solution

2
u = e g sin (\/»j; ~-H? t+y> , (33)

whete # and y are constants.
The solution (33) determines the zero points of solutions 1o the equation (31) for large,

u
positive values of . The function A(f) = — witn u(#) given by (33) has infinitely many
uc
singularities.
The above analysis shows the existence of infinitely many singularities in the solutions
of the equations (30) for large but finite values of the cosmic time f. Thus, the solutions
of the equation (30) must develop singularities for finite values of the cosmic time.

We get analogical results by studying of the approximate solutions to the equation
(31) in a small vicinity of the moment ¢ = 0.

3. Spatially homogeneous and isotropic cosmology with the SO(3) isotropy group

In the case of the SO(3) isotropy group we have the following cosmological equations
in the orthonormal tetrad determined by the Robertson-Walker line element (see [6])

da at

= 4ah
3d¢2 3k 3B <c )
(—).;c——l-zs'hz‘-Tcz—7—3Q2+— Y

2 . 2 ; 2 2
_[(a@] +4Qz<1+h)_[(i+h)+ 2—Q2] — ()2,
ac ac 2
3k 6ha 0 12 2 k a2 2d
L i e e e

S
ac a 2a

. . . 2
iz[(ag)] —20%+ Zﬁc +2< h) @ 19 (i +h)
C a ac ac ac

2h o
+—(@Qr-—0=0,
ac B
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g 3!
2 van
1 (c +a> L[ d 2 (d p :
il AN V) LY (S [y (L ) | gt
[ a ac ac \ac 4
. 3 2h . . 2k .
—2(3 +h> + —(i +ah>— —2<1 +h)+—°°—h =0, (34)
ac ac \ c¢ a” \ac 2B

where kK =0, +1.

In each case, k = 0, +1, we have a system of four ordinary, nonlinear differential
equations for four unknown functions: the scale factor a(z), the torsion components A(t),
Q(¢) and the energy density &(f) or pressure p(t).

As in the case of the O(3) isotropy group, the classical spin is climinated from these
equations.

The Criterion ““C” is satisfied in the case and, therefore, there may exist cosmological
solutions with torsion. We can obtain these solutions using a suitable Ansatz which reduces
the cosmological problem to the problem of solving only one nonlinear, ordinary differen-
tial equation of the third order for the scale factor a(z).

We obtain this equation by combination of the Ansatz equation with the two last
equations of the system (34).

In this paper we consider only expanding cosmoiogical models with d > 0 given
by the simplest Apsatz (8). This Ansatz leads to the macroscopic behaviour of the models
determined by

a=cttconst, h=0Q=0, p= (-)%, const > 0. (35)

The procedure of solving the system (34) using the Ansatz (8) is this:

1. First of all we solve the differential equations of the third order for a(r). These equations
are essentially different for the different cases k = 0, +1 and they are too complicated to
be considered here.

2. Having a = a(t) we can calculate

Q* = Q*a,d) and h = hQ,a).

3. Having a(?), Qu) and A(t) we determine &(r) and p(t) from the first two field
equations (34).

We have worked out the above procedure because the equations for the scalie factor
a(t) are too complicated. However, from the expression on Q2

T B LT Go

and from the fact that the solutions to the equation for a(¢) must be of thz asymptotic
form a = ct + const, we get a very important conclusion: in the cases k = 0, 1 the condi-
tion Q2 > 0 limits the possible values of the scale factor a = a(f) to the bounded interval
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(ay, a;) in which Q% > 0. The extreme points 0 < a, and a, < a; < o of this interval
are determined, for a given function aft), by the solutions to the equation 02 = 0.

For the values of a >> a; the macroscopic solution determined by a = ct + const,
h = Q =0 is valid. _

Summing up, we can say that in the cases &k = 0, 1 the Ansatz (8) leads to cosmological
solutions (with d > 0) without singularity in metric and in torsion. In the case k = —1
the condition Q2 > 0 does not give any lower limit on the scale factor a(¢) as it tends to
zero.

The special case of cosmology with the SO(3) isotropy group: A = 0, Q # 0 is very
interesting. In this case we can determine algebraically Q? = f(a, 4, 4, '[1') from the last

equation of the system (34). Substituting Q2 = f(a, d, d, @) to the third equation of the
system we get an ordinary, nonlinear differential equation of tine fifth order for the scale
factor a(?).

Finding a = a(t) from this equation and, afterwards, Q%(f) = fla(?), d(t), @(t), a(1)],
we can calculate ¢ = &(¢) from the first equation of the system (34) and p = p(z) from the
second equation of this system. Thus, the cosmological problem is reduced in this case to
solving the equation for a(z).

This equation has the following form

1dP+3dP d2P+i5 p? o2
*Na 2a a2 4P

c
P 2Pk
—o T TT s 0, 37
where
.. .2
P=0 gt @
and k =0, +1.

The nonlinear equation (37) is difficult to integrate. Nevertheless, in the case k = 1,
the solutions may be without singularities in metric and in torsion. (The metric singularities
are excluded by the condition Q% > 0.)

The macroscopic limit of the solution to the equation (37) is given (see [6]) by the
condition P = Q% = 0.

In the case k = 0 the equation P = @ has the form

. "
a a a
- — 39

26 2a a? (39)
The equation (39) has an cxact solution without singularity (the de Sitter model)

6ab®
a=¢€" &= OE:Z = const, p=(-)e (40)
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d . . .
where b = — =: H is the Hubble constant and another exact solution given by
a
a=constr?, e= 2 p=t (41)
2¢%42’ 3’

For sufficiently large values of the scale factor a, the equation \39) is satisfied, with very
good accuracy, by the solution to the macroscopic cosmological equation, (Friedmann
" equations) with k = p = 0 given by (11).

The spherical symmetry Ansatz (25) is consistent with the SO(3) isotropy ard with
the third order part of the field cquations (see [S]) in the following two cases:

(i) #=—-1, €¥=0, h=0, Q)#0, (42)

V2

(i) #=0, 4="—, h=(-)J2Q#0 (43)

The Criterion “C” is satisfied in these two cases too. Therefore there may exist the solution
with torsion. However, in tbe case (i) there is no solution with torsion: the equations which
remain to integrate imply vanishing torsion. There may exist only torsionless solutions
satisfying the following system of equations

a'+d2+k 1
ac?  a*ct ' a® 2

’

22

d 1 k. & d 1 p
—_——_—t =, — + — -)—, 44
a’c> 8«4 a* 12u 2t s = )4a 44

where k =0, +1.
The above system of equations leads to the state equation
€ 2

= -, 45
P=3"2 (45)

th: same for all cases k =0, +1.
In the case k = 1 there exists a static solution given by

¥if 9a _ a £
a=\2d, e=—, p=() =)y
We can solve the system (44) in the following way: we find a = a(f) from the first
equation of this system and then calculate &(#) and p(t) from the remaining equations.
The equations for the scale factor a = a(f) are casily transformed into Bernoulli’s
equations and have the following solutions:
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L.Lk=0

=7 2 T '
ic_ln (23‘; + J5 +ga) - 414E, (46)

where # > 0 and E are the integration constants.
2: k=1

2 3 " 2.2
\/‘“’ (\/x\/ Cal B+ e —c ) = tt1+E, (47)

24

where # = oZc? and E are the integration constants.
3.k=(-)1

\/d ( ¢ [c*a* c*a®

NE; ———+ca +@+g+c2>= +t+E, (48)

where # = o/¢? and E are the integration constants.

Eqgs (46)—(48) represent pairs of solutions which are transformed into each other by
time reflection. In tbe cases k = 0, 1 and with the sign (+) bzfore #, the solutions are
continuously expanding from 4 = 0 at the moment ¢ = (—)oc t0 @ = oo at the moment
t = oo and with the sign (—) before tne cosmic time ¢, the solutions are continuously implod-
ing from a = o0 at # = (—)co to @ = 0 at ¢ = o0. These solutions are without any singular-
ity for finite values of the cosmic time ¢

Solution (48) with the sign (+) before ¢ is expanding from a = 0 at the moment

o
t = ~—1In2c¢*—E to a = oo as the cosmic time ¢ goes to infinity and with the sign (—)
¢
\/d
before ¢ ii is continuously imploding froma = v at?z = (—)otoa = 0at t = (—) ~—
In 2c2+E.

Therefore, the solution (48) has a metric singularity for finite time
]
t=+ VI In2¢*FE.
c
The singularity can be removed by a suitable choice of the constant E.
Solutions (46)-(48) do not correspond to any cosmologlcal solution of the macroscopic

graviiational theory.
In the second case (i) we have the following system of equations to integrate

. 2
a

d - da ) k
—+ 55 -3/20— -2 = +Q*+ < =0,
2 3 \/Qac v ¢ Q'*'az

ac?  a’c
V2
4o

Q0

3Q—+—- 220+ Y= =0,
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@ 7y2 a \/2 0 €
55— 0 — +6 2+ — =,
a*c? 2 ¢ ac 9 60
2d a* 112 4 52 Q
—+t 53— uy2 \/ +10Q2
ac a‘c 2 ac
b = () 2 4
8«  a* ' 22 ‘ (49)
where kK = 0, + 1.
In the case k = —1 there exists a static solution characterized by
N e (5) 2% = (-3 50
= = —, & = —— , = —_—)— = —) 5 E.
“ 0 s’ F 2ot 3¢ (%0)

The system (49) can be solved in the following way:

.. d .
a) We determine — from the second equation and get
ac

i 202, ¢ _ 2

ac 3 30 124Q

a . .
b) Substituting — into the first equation we get a second order equation for Q = Q().
ac

c) We find Q = Q(t) and then calculate

2.2 ) 2
a(t)=exp[j< J3 cQ—5%—1\2/&;Q>dtJ. | (51)

d) Having a(t) and Q(¢) we find &(f) and p(¢) from the remaining equations of the system.
The equation for Q(r) is

0 Q'z_(7\/§ _2¢§>g .1 1
C

11 _——
3640* 9 MR 36420 184

3ch 9 Q2C2

2/2¢ 0 J2e -1 _
+k {exp [2](——;— - -B—Q - 12&¢Q> dt]} =0, (52)

where k=0, +1.
In the case k = 0 we get, after som: transformations (see [8]), the following differential
equation for Q(tr)

7\/2 -5/3 3 1 c? -
r_ 2./2 /3 ) ¢ 13/3
zz (—mQ +22¢0'? )z =572 2

2 2
¢ —7/3 11c —1/3
4 = - 53
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where

o3 [Z(Q)— Zégéf 07 -22 CQ“] = Q. (54)

A qualitative analysis shows that if the equation (53) has a real solution Z = Z(Q), then
the solution should develop metric and torsion singularities.

4. Discussion and conclusions

We have investigated the existence of geometric singularities in the cosmological
solutions of the gauge gravitational theory with gravitational Lagrangian (1). The general
conclusions whicn follow from tne paper are the following:

1. Addition of terms quadratic in curvature and torsion to the Einstein Lagrangian does
not remove cosmological singularities at all.

2. Lack of metric singularities does not ensure that che torsion singularities are also absent.
3. The simplest cosmological models with & = 0, 1, and with macroscopic behaviour

&
a=ct+const, h=0=0, p=(-) 3 do not have any cosmological singularity. We

think that the Nature realizes the simplest model of this kind with k = 0. This model
was discussed in details in [6].
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