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Conformal gravity in d = 2 is constructed and discussed with a view to its application
in string theory.
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1. Introduction

An important aspect of string theory is local conformal invariance on the 2-dimensional
world sheet [1]. This local symmetry plays an important role in the quantization of string
models, as has become especially clear from the work on the BRST formulation of string
dynamics by Siegel [2]. It was shown by Brink, Di Vecchia and Howe [3] that a first order
formulation of string theory, which includes the constraints among its field equations,
can be obtained by coupling the string co-ordinates to 2-dimensional gravitational fields
defined on the woild sheet. Therefore it seems desirable to have a formulation of d = 2
gravity which possesses manifest local conformal invariance.

Conformally invariant theories in 2 dimensions are also of interest in a wider context,
for example in the theory of critical phencmena, as was ‘emphasized in [4]. The approach
adopted there, which makes use throughovut of operator product expansion (OPE) tech-
niques, was elaborated for the case of string theory in [5, 6]. In this lecture I will describe
a formalism for d = 2 conformal gravity that is closely related to this approach and allows
easy translation into the language of [4-6). Still, the structure of the formalism is very
close to that of conformal gravity and supergravity in dimensions ¢ > 2. In fact almost all
results we are going to obtain have a generalization (or in some instances: particularization)
to higher dimensions, but lacking the time to digress on this interesting topic, I must refer
those wishing to pursue it further to the existing literature, for example the reviews in [7, 8].

2. Conformal transformations and space-time geometry

When a string propagates in time, it sweeps out a 2-dimensional suiface called the
world sheet of the string. Obviously, this world sheet has one space-like and one time-
-like direction and may be covered by local co-ordinate systems (x' = ¢, x* = i1). In
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fact, we can think of the world sheet as a 2-dimensional space-time, and its geometry
is governed accordingly by a 2-dimensional version of general relativity. We describe the
local geometry of the world sheet in terms of the line element ds in the surface at a certain
point (x*) by giving its length

ds* = g,(x)dx*dx’, (2.1

where g,4(x) is the metric of the surface. The length defined by ds? is a co-ordinate-invariant
notion (it is independent of any reparametrizations of the surface). Then it follows that
under an infinitesimal general co-ordinate transformation (GCT), 6x" = £%(x), the metric
must change according to

38us(X) = — 810,805 —0,878,9— 0pC'8s, = —(Duly+Dyl,). (2.2)
In the last expression we have used the notation
Daéﬂ = aa&ﬂ-—lﬂaﬂvéy’ éa = gaﬁ£ﬁ9
Faﬂa = é_ gya(aug7ﬂ+aﬂgay_aygaﬁ)' (2.3)

I"g,," is the affine (or Riemann-Christoffel) connection.

In order to discuss possible symmetries of a geometrical space, we must introduce
the notion of a Killing vector. A Killing vector is a linear differential operator R(&) = &0,
the coefficients of which satisfy the Killing equation

D,Zy+Dyé, = 0. (2.4)

Therefore, from Eq. (2.2), 6x* = R(&)x* = £%x) defines a GCT which leaves the metric
invariant: g, = 0. :

As a simple example, it is instructive to consider the case of Minkowski space-time.
Then g,p = 7,5, and I'yy’ = 0. The Killing equation now becomes

0.Lp+ 048, = 0, 2.5
whbich has the gzperal solwion
& =a*+w0?x, of = - (2.6)

Thus the Killing vectors I%(é) of flat (Minkowski-) space-time generate infinitesimal transla-
tions with parameter ¢”, and Lorentz transformations with parameter ™. 1t is easy to
show, (I leave this as an exercise to you), that the commutator of two Killing vectors is
again a Killing vector. In our example this can be summarized as follows:

let R(&) = a®P,+% oM, with P, =10, My =X0—%40,. (2.7
Then the commutator algebra of the generators (P, M,z) closes on itself:
(Mg, Mys] = 1, M s +10sM gy —NgsM oy — ey M g5,

[Matﬂ’ Py} = rlﬂ-yPrz_r’ayPﬁ, [Pa, Pﬂ] = 0 (28)
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This Lie algebra of space-time transformations leaving Minkowski space invariant is often
called the Poincaré algebra.

Next we introduce a generalization of the concept of Killing vector which is of great
importance in the following. This is the notion of a conformal Killing vector, defined
as a linear differential operator C(&), with C(£) = &9, and

2
— gD - & 2.9

Daﬁﬂ"l‘Dﬁéa == d

Conformal Killing vectors generate transformations which do not leave the metric invariant.
but rescale it by a (generally space-time dependent) factor:

. 2
5gaﬂ = /"(x)gaﬂs A(X) = - ;‘ D : 5 (210)

Therefore conformal Killing vectors generate a symmetry of the line element (2.1) only
if ds? = 0, i.e. they generate invariance transformations of the light cone.

As an example, take again Minkowski space-time. The conformal Killing equation
becomes

2
Oyt Opla— — Muy0 £ = 0. (2.11)

For its solution we must distinguish between d = 2 and d > 2. In dimension d > 2 the
general solution of (2.11) is given by

& = a*+¥xz+ix* + [ 2x°xF —n*x*]b, (2.12)

Then tne conformal Killing vector becomes

C(¢) = &P, +% M+ D+ 1K, (2.13)
where
P, =g, generates translations,
M, = x,05— x40, generates Lorentz transformations,
D =x-¢0 generates dilatations,
K, = 2x,x'0—x2%, generates special conformal transformations.  (2.14)

The commutator algebra of these transformations is
[(Mag, Mys] = 15, Mos+1,5M g, — NgsMoyy — 1, M5,
[(Mep, P,] = 05, Pa—10,Pp, [Myp, K,] = 1, Ky —1,,Kp,
[D,P,] = —-P,, [D,K]=K,
[P, K] = 2(n,3D — M ,p). (2.15)

This is the conformal Lie algebra in 4 > 2.
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The solution (2.12)-(2.15) exists also for d = 2. However, in this case there are infi-
nitely many other solutions and as a consequence the conformal group in d = 2 is ‘an
infinite-parameter Lie group. To see this it is convenient to introduce a set of coordinates
in d = 2 space-time called light-cone co-ordinates:

z=—}:(x1+ix2), Z=—1:(x‘—lx2,
Ny \/2
with
o . 1 ”
8, = \7‘5(01—'102), u; = \/—’5’(61"'162). (216)

Note, that after a Wick rotation 7 — it the variabics (z, Z) become complex conjugates
in a 2-dimensional Euclidean manifold. I will regularly make use of the Euclidean formula-
tion without explicitly stating this every time, bccause it allows us to use all the tricks of
complex analysis, such as contour integrations. However, all these manipulations bave
their counterparts in d = 2 Minkowski space-time. In light-cone co-ordinates the invariant

tensors 1,, and &# become:
M2z Moz _ (0 1
Tep = (11;z ’1;;) B (1 0)’ @17

N g7 g 0 —i
ot (8;2 822) - <i 0), (2.18)

Hence for two vectors (a,, a;) and (b,, b;) we have an inner product a - b and an exterior
product @ A b given by:

and

a-b=ab,+ab; and a A b =i(a;b,—a,b;). (2.19)

In these co-ordinates the conformal Killing equation (2.11) reduces to a set of 2 independent
equations:

8,6, =0, & =0 (2.20)
Therefore the general solution is
&= =fz), & =nw =2, (2.21)

with f{z) (f(Z)) arbitrary (anti-)analytic functions of z (Z).
Any solution regular at the origin can be expanded in a Taylor series

f(z) = ap+ayz+az?+ ...
-and depends indeed on infinitely many parametess (do, 4y, ...). The d = 2 conformal

Killing vectors corresponding to these regular solution then are

+1

C&) = Y (eL,+&Ly), (2.22)

n=—w
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where

g, =0ay_, &, =0

L,=z'""9,, L,=2'"""%;, (n=10,-1,..). (2.23)
The operators L,, L, satisfy the commutator algebra
(L, L,]=®-mL,,,, (L), @®<K)), 2.249)

the Virasoro algebra. The somewhat strange numbering of the L, and ¢, in (2.23) is for
purely historical reasons, the form (2.24) of the Virasoro algebra being standard in the
literature.

Two remarks concerning these results are in order.
— As noted before, the Virasoro algebra contains the finite conformal algebra (2.15)
as a closed subaigebra. The precise correspondence is:

Py = i(Ll_I—‘l)s K, = —i(L—l_E—l)3 M = LO—EO
Pz = Ll +E1, K2 - L_1+E_1, D = L0+L_40. (2.25)

— The Virasoro algebra can be extended to include the conformal Killing vectors which
are singular at the origin: L, = z' ~"3,, with n > 1. The form of the algebra then remains
the same. However, the singularities lead to anomalies when we try to impiement the
symmetry algebra in the Hilbert space of a conformal quantum theory. This requites the
quantum algebra to be extended with a central charge c:

(L, L,] = (n—m)L,, + -152- (13 —n)(m+n). (2.26)

Note, that owing to the form of the {ast term on the r.h.s. it does not appear if we restrict
ourselves to tae regular Killing vectors with —c0 < n < 1; in other words, the algebra
(2.24) is a closed subalgebra of (2.26). In the following this restriction is made, unless it is
explicitly stated otheiwise.

3. A continuous basis for the Virasoro algebra

The conventional form of the Virasoro algebra is the one given in (2.24), (2.26).
However we find it convenient to change to a different oasis, which is countinuous rather
than discrete: L, —» T.({), whete { is a continuous parameter labeling the generators.
The transition is made by defining

T = Y {’L,. (3.1)

n= -0

In principle { is 1eal, but analytic continuation to complex values of { is useful and is tacitly
assumed in the following. Using the representation (2.23) of the generators L,, we can
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easily prove that

T.(0) = C—L ¢, in the domain |z]| < {{]. (3.2)
~z

We note in passing, that in the domain |z} > [{|, the same operator has the expansion

oC

41 8, = —T.() = — Z "L, (3.3)

n=2

in terms of the singular conformal Killing vectors L,, n > 1. On the boundary, with the
exception of the point { = z, T_({) and —T.({) are identical. Hence they are analytic
continuations of each other, together covering the whole complex plane excluding the
pole at { = z. Thus we may actually drop the label < and work with the operator

1
T(z,{) = (=2 0, = 6(ILi=1zDT<(D)—0(|z| = 1EDT>(D), (3.4)

defined everywhere except at { = z.
Similarly we have

— 1
(25 C) = ——_65’ (35)

—2Z

[

where { is a second independent parameter labeling the T(Z, {).
For |Z| < |{| this has again an expansion in terms of regular conformal Killing vectors
L, n<1:
+1
TE) =T = Y "L, (3.6)

whilst for |Z| > |{| there is an expansion in terms of the L, (n > 1) which are singular at
the origin:

TG0 = -T()=~- 3 "L, (3.7
n=2 :
The equivalence of the discrete and continuous basis follows from the inversion of (3.4):

L, = § i? L1 (z, 0), (3.8)
27i
Iz .

where the contour passes around the point {, = z (for n < 1 in the usual counterclockwise
fashion, but for n > 1 in the clockwise direction). A similar inversion formula holds for
the L,, T(z, D).
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From the Virasoro algebra (2.24) we can derive the commutation relation for the

T(z, ):

1 1
[T(z,0), T(z,{")] = T(z, O+ —— =2 T'(z, {). (3.9
Under integration over {’ with an arbitrary (regular) function of {’, and with [z] < |{’| < [{]
this is equivalent to
, T() TuL)
T.(), T« = =2 —5 - —

1 =g (3.9

Now consider an arbitrary element of the (restricted) Virasoro algebra: X = Y X,L,. In
n<1
the new basis it can be written:

d{
X = §2— X(OT(D, (3.10)
i
Iz

where

X0=Y x0™ (3.11)
n<l
The contour is to be taken around {, = z, as before. Thus, the restriction to the regular
part of the Virasoro algebra makes X({) regular around { = 0 4s well. The commutation
telations (2.24) and (3.9) then give the commutator of two arbitrary elements X, Y of the
algebra:

+1 +1
[X,Y]= Y (Y @2m-nX,Y,_.)L,
n=—ow m=n—1
d , } ( _
= ng—% XQY'QO-X'Or)T0. (3.12)

Iz

The last form is the basis for the formulation of the conformal gauge theory to be developed
in the following sections.

4. Conformal gauge theory

The conformal transformations discussed above are rigid co-ordinate transformations
in the 2-dimensional manifold which we take to be the world sheet of the string. With
rigid I mean, that the parameters ¢, in (2.22) are co-ordinate independent. In the introduc-
tion I have argued, that it is desirable to have a theory in which these transformations
are realized locally in the two-dimensional manifold. The first step in this program is to
construct a gauge theory of the Virasoro algebra along the lines of standard Yang-Mills
theory. Thus the Virasoro algebra is treated initially as an ordinary internal symmetry
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algebra. After this is accomplished it will become clear, that these “internal” conformal
transformations can oe re-interpreted as general co-ordinate transformations by imposing
a suitable constraint on the theory. The resulting theory is d = 2 conformal gauge theory,
which reduces by a suitable gauge fixing procedure to conformal gravity. .

The Yang-Mills theory of the Virasoro algebra is constructed in terms of a set of
gauge fields (h,, k;) for the generators T(z, {) and (&, h;) for the generators T(Z, {). Since
the algebra is a direct sum of the two isomorphic algebra’s of Tz, {) and T(Z, {), we can
phrase the discussion in terms of one of them only, for example 4, ; and T(z, {). The gauge
fields are taken to be Lie-algebra valued and can therefore be expanded as in (3.10), (3.11).
The gauge fields transform under infinitesimal local Virasoro transformations with param-
eter &(z,z) as

8h, = D,g = 0,e—[h,, &], 6h; = D;e = d;¢—[h;, €], 4.1
with
da¢ a¢ .
hz,; = . hz,;(C)T<(O: &= PO 8(C)T<(Q) (42)
2ni 2ni
r. ra

Using (3.12) the components hz(z,'f; 0), hAz,z; ) transform as
Oh(z,2;{) = D.&(z,2;,{) = 0,e—h,0e+0he, (z-3Z). (4.3)

From the gauge fields we can construct a covariant tensor, the field strength or curvature:

dg
R; = fﬁ— R:(OTAQ) = Op.hzy—[h,, k] (4.4)
2
r:
with
R:0) = a[zh;](C)_h[zaChz_]‘ (4.5)

Note, that because of the antisymmetry in the indices the curvature tensor has only one
independent component. Under the Virasore transformations (4.1) R,; transforms in the
adjoint representation:

O0R; = [& R3] (4.6)
Egs. (4.1)-(4.6) follow the usual formalism of Yang-Mills theory with the Virasoro algebra
being tieated as an ordinary internal-symmetry algebra. In order to make contact with
conformsal space-time symmetries, we now consider the behaviour of d = 2 space-time

vectors and tensors like (h,, #;) and R_; under geperal co-ordinate transformations (GCT),
as in (2.2). In light-cone co-ordinates the infinitesimel GCTs are given by

5(é)hz = - (ézaz + ézag)hz - az‘szhz - azgy;hgi

R = —(£0,+E0)R;— 0,8 R — 8;ER ;. 4.7
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These can be rewritten in a covariant way as follows:
S(OR.; = —D(&"R;)~ DGR —[Eh.+ ks, Riz) (4.8)

i

Thus we see, that a GCT can be decomposed into a covariant GCT with parameters
(£2R,;, ER,;) and a field dependent (local) Virasoro gauge transformation with parameter
e(hy = —¢ - h. 1t is now obvious how the Virasoro-Yang-Mills theory can be converted
into conformal gauge theory: one imposes the constraint R;; = 0. In components:

duehzy— hedchz = 0, Gy — Rpg0ghzy = 0. (4.9)

Then the parameter of the covariant GCT vanisnes, and an ordinary GCT is simply a local
gauge transformation with parameter &(#). For complete equivalence the converse should
be true as well, that is any gauge transformation must be interprctable as a (possibly field-
-depend=nt) GCT. Consider the complete set of gauge transformations with parameters
(e, &), and the GCT with parameters (&%, £7). With the constraint (4.9) they are transformed

into each other by
e\ _  (h: B &
g h, hJ\&

The inverse exists if the matrix h is non-singular, implying

-E, (4.10)

4

]

h= —deth = (Fh;—h.hz) + 0. (4.11)

Then ¢ = —h~! &, with

= h—lz E-—lz 1 _ﬁ_ h=

Bl = _ I z 2y 4.12

' (h’“ E'“) h < 3 —hz> (412)
From (4.11) we find that A, and A; cannot vanish simultaneously, and similarly for
k, and h;.

We conclude, that the conformal gauge theory is obtained from the Virasoro-Yang-
-Mills theory by imposing the constraints R; = 0 and / # 0.

5. Some properties of h

The gauge fields (4, k) contain infinitely many components 4,, h, which are obtained
from their Taylor expansion in ¢ and { respectively. The first components (z = 1) cor-
respond to the zweibein ¢, the gauge ficld of local translations (the exact correspondence
follows from (2.25)); similarly the n = 0 components correspond to the dilatation gauge
field b, and the d = 2 spin connection w,; the n = —1 components to the*gauge fields
of special conformal transformations f, etc. [9, 10]. Therefore # = det (~H) is a direct

generalization of e = det ¢, which is in fact its lowest component, obtained by taking
{=0.



172

Under the local conformal transformations (4.3) / transforms as

6h = (De+D&)h  or dSlogh = Dg+Dg, (&R))
where
-~ 1 -~
De = 0e— 0+ n hy,0.hz e,
o o1 R
Dé = 0~ 08— " hy,0zhs & 5.2
and
6 =h"'0,+h Yo, 8 =Hh‘o,+h o (5.3)

Because of its transformation law-(5.1) we call & a conformal density with weights (—1, —1).
We return to the subject of conformal densities after we have discussed representations of
the local algebra, since they are important for the construction of invariant actions.

Another somewhat technical point is the possibility of using the conformal gauge
fields (4, h) to convert world vectors (¥, V3) (or any tensor for that matter) to world scalars
(¥, V) by contraction with (!, h-1). This is similar to the construction of a Lorentz vector
out of a world vector and vice-versa. The precise relations are:

v -lz; -1z V.

(V) = (Z'"“I—;‘i% (Vi) (5.4)
'V, 14 ‘
() - %)) =

These relations also hold for the derivatives (8,, &;) and (6, 9), as in (5.3).

and

6. A special gauge

The gravitational field in 2 dimensions has no physical degrees of freedom, because
there are no transverse directions. As a result all the components of the gravitational fields
are gauge degrees of freedom. We can expect the same to be true for the conformal gauge
theory, which includes the gravitational field. This result will now be established. A prelimi-
nary remark about the choice of gauge is however in order. We have already found at the
end of Section 4, that the two components (/,, 4;) cannot vanish simultaneously. Actually,
we know that a 2-dimensional manifold can always be parametrized locally in such a way
that it is manifestly conformally flat [1]. Since we have local Weyl invariance as well, we
can choose the conformal factor to be unity: e} = ;. Eor the conformal gauge fields this
corresponds to the gauge h, = 0, h; = i,/ 2 (this is a consequence of the relation (2.25)).
Therefore I want to demonstrate that this gauge can be obtained in our theory.
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First the fact that e(z, Z; {) is an aibitrary function of its arguments (although non-
-singular at { = 0) allows us to take /s, = 0. Now the constraint (4.9) implies immediately,
that

hi(z, z; {) = (0, Z; {). (6.1)

Furthermore, this choice of gauge still allows residual gauge transform ations with the
parameter ¢ (z, Z; ) satisfying:

d,e=0-¢8z12;0) =¢0,2%;0. (6.2)
Since the dependence of the residual gauge parameter on (Z, ) is still arbitrary, we can now
choose a gauge for /; as well. The only restriction is, that we have to respect the condi-
tion A # 0.
Thus we may indeed choose the gauge

h,=0, h;=iy2 (6.3)
and similarly

h,=—i2, h;=0. (6.9)
Clearly this gauge choice satisfies 2 = 2 # 0 as well as the constraint R,; = 0.

It may come as a surprise, that (6.3-4) does not yet fix all the residual gauge freedom.
By requiring any residual gauge transformations to satisfy

D = 0,6 =0,
Die = 0;6—i./2 0, =0, (6.5)
we find that we are still free to make transformations with parameter
&(0,0; {+i /2 2) = &(0, 2—i({/\/2); 0) = e* (0, Z—i({//2)). (6.6)

These can either be interpreted as rigid conformal transformations or as “semi-local”
translations, i.e. a translation depending on only one of the light-cone co-ordinates (in
both cases we have to shift variables). In the gauge (6.3-4) we thus obtain theories with
rigid conformal invariance in (locally) flat 2-dimensional space-time.

We close this section by noting, that in the special gauge the world-scalar derivatives
become:

.. (6.7)

This is a useful result for calculations in the special gauge.

7. Representations: conformal fields

Representations of the conformal algebra in d = 2 have been constructed and analysed
in detail in [4]. Here I present a generalization of the concept of primary field for the case
of local conformal transformations. From (3.12), or alternatively the transformation law
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of thé gauge fields, we know that the commutator of two local conformal transformations
with parameters &, €, is a conformal transformation with parameter &3 = &,0,¢,. This
algebra can be realized on fields A(z, Z; {, {) by defining

5A = eDA+EDA+(40,+A08)A. (1.1)

Here 4, 4 are two real parameters labeling the representation and called the conformal
weights. The (world scalar) covariant derivatives DA and DA are defined by:

Y a_ .

DA = CA— _h_ E[z‘/gh:?}A‘ 7 [7_05;;;]14,

4 i ,
DA = (/A+ ; h[,_,G;hE]A"*‘ 7 II[ZGZH;]A. (72)

Checking the closure of the algebra is somewhat tedious but straightforward, using the
transformation rule of (/,, A7) and 4 as given in (4.3) and (5.1). In the course of the computa-
tion, one also needs the transformation rule of DA4:

0DA = eDDA+EDDA+[(4+1)0e+ 40;£]DA+ 45} eA. (7.3)

Here the second derivatives are

4+1 a A4
DDA = 6DA~- (*”]A} E[z(?;h;]DA—— ‘h— H[ZazE;]DA'_ 7 E[zazzh;]A,
A 4
- = A+1 a
1 (]
4 2
+ N h.0;hnA. (7.4)

A direct computation shows that [D, D]4 = 0, as expected from the Ricci identity and the
constraint (4.9).

We note, that the ({, {) dependence of A implies, that the representation actually has
infinitely many components 4, ,, obtained by a power series expansion of 4 in ({, ).
However, it is possible to reduce this to a finite dimensional (actually: one-component)
representation by imposing a constraint on the (¢, {)-dependence:

¢, A = DA, &A= DA (7.5)

Then in the special gauge (6.3-4) and using (6.7), the transformation law of the
field A reduces to that of a primary field of Ref. [4]. Thus all results of Ref. [4] apply here
in the special gauge upon imposing the 1educibility constraint (7.5). For this reason we call
A(z,%; ¢, ) a primary field of the local conformal gauge theory.
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8. Invariant actions

The last topic I would like to discuss here is the construction of invariant actions
for the conformal fields 4 introduced above. 1 begin by observing, that-if F is a conformal
field with conformal weights (1, 1), then % = AF transforms into a total derivative:

0¥ = —0O(eh;F). & is now a conformal density of weigbt (0, 0), which is what we require
for the construction of an invariant action: by construction
S =[d*2% = [d*zhF 8.1

is invariant (modulo surface terms) under local conformal gauge transformations. Note,
that the densities are still allowed to have arbitrary ({, {) dependence. This means, that by
expanding in these parameters we obtain an infinite set of actions for all the components
of the conformal field F(z, Z; {, {). However, by imposing the constraint (7.5) on F, we get
an ordinary space-time action eF(z, z).

1f we now want to write down an action for fields A° which is quadratic in derivatives,
we should clearly start with 4, = 4, = O for all A" Then

F =127, [A]odd4’ (8.2)
J

is a conformal field of weight (1, 1) and AF is an invariant (modulo total derivatives). For
real fields 4" hermiticity requires Z;;(4) to have the form

Zij(A) = gij(A)+itij(A) (8.3

where g;(A) is symmetric and #;;(4) anti-symmetric. If we impose the reducibility condi-
tion (7.5) on the fields 4°, we obtain the standard d = 2 g-model with Wess-Zumino term.
In the special gauge thus action reduces to the standard form

L = Z,,0A04° = g;1"6,4'0,4° +1,£°0,4'0,4°. (8.4)

The actions presented here form the starting point for string theory. In the form (8.4)
we have fixed a gauge, and the theory actually requires extra ghost contributions to restore
the local symmetry in the form of BRST-invariance [2]. These stiil have to be added to (8.4).

It is an interesting problem, what kind of theories we obtain if we do not impose the
reducibility condition (7.5). In fact, the dependence of (¢, {) is reminiscent of a dimensionally
reduced 4-dimensional theory. Fixing the dependence on ({, {) would then correspond to
choosing a particular compactification. However, it may be that other choices are possible.

The treatment of conformal invariance and the construction of a conformal gauge
theory presented here can be generalized to the case of the superconformal algebra. It is
obviously important in tne context of the spinning string. Fuil results have been obtained
in collaboration with R. Gastmans, A. Sevrin, W. Troost and-A. Van Proeyen, and will
appear in a joint publication [11].

It is a pleasure to thank my collaborators at the K. U. Leuven for many stimulating
discussions and the contribution of several important ideas. I have benefitted also from
a discussion with K. J. Schouten on the gauging of infinite algebra’s.
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