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1. Introduction

The development and application of non-perturbative metheds in quantum field
theory continues to be an important area of research, as indicated by its appearance among
the subjects of this School. In this contribution, 1 want to review some recent work in this
area, in which a derivative expansion technique is used to calculate terms in an “effective”
Lagrangian, starting from some “more nearly fundamental” Lagrangian. The effective
Lagrangian, it is hoped, shculd be relevant to non-perturbative aspects of the original
field theory, in some low-energy regime. :

The basic ideas and techniques are quite general, but for definiteness I shall mainly
discuss the situation in which the “fundamental” Lagrangian is, ultimately, QCD. As we
all know, QCD — though a theory of the strong interactions — is asymptotically free,
which means that it becomes weakly interacting at bigh energies or momentum transfers,
or equivalently at short distances. This allows one to use perturbation theory to calculate
various quantities at high cnergies, with results that continue to be entirely consistent
with experiment. But as the energy scale becomes smaller, the strength of the QCD interac-
tion grows and perturbation thecry becomes inapplicable. Of course, this had better be
so, if QCD is to be a complete theory of the strong interactions: in jet phenomena, for.
example, we can virtually watch the evolution from the perturbative degrees of fieedom
(quarks and gluons), which are the initiators of the events at short distances, to the hadronic
non-perturbative degrees of freedom which are observed at larger distances. The problem
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is: given the validity of QCD in the perturbative regime, how do we deal with it in the non
-perturbative one?

Priorto QCD, some progress was made in describing very low-energy hadronic phenom-
ena by means of “phencmenological” Lagrangians, in which the hadrons were represented
by elementary fields. Initially, these Lagrangians were constiucted by requiring that they
generate the same matrix elements for soft pion processes as those obtained by the methods
of current algebra. Later, it was realized that the forms of such amplitudes, expandcd in
powers of momenta, were determined by the constraints of (spontanecusly broken) chiral
symmetry, independently of current algebra as such [1, 2]. Thus, at O(p?), the only possiole
Lagrangian for (massless) pions is

32 = % 6u¢aa"¢a’ (1)

wherep, = (0, r)and ¢2 = o2+ n* = 2, a constant (f = 93 MeV, the pion decay constant).

Note that (1) is not quite as innocuous as it seems: replacing ¢ by \/ (f?—n?) it can
be written as

Ly =30m Ity (f1-1) (- Om) (n- Om). 2

From (2) it is clear that .#, describes amplitudes for arbitrary numbers of pions, but only
up to O(p?) in the momenta. Thus to this order in p?, &£, need only be used in tree approxi-
mation. The second term in (2) then leads directly to the Weinberg (soft pion) predictions
for the m—m scattering lengths [3]. Equation (1) is the non-linear ¢ model appropriate
to the chiral group SU(2), x SU(2)g, spontaneously broken to SU(2)y.

Only one constant, f, is needed at O(p?). At O(p*), there are three possible terms we
can form consistent with the assumed symmetry:

Ly = a0,0,0,0,0"¢s0" by + b0, $,0" $,0,0,0" by + 1P, &)

Actually, if one terminates the phenomerological Lagrangian at fourth orde: in derivatives,
one can show [4] that in the chiral limit, ((J¢)? can be replaced by f~2(0,¢,0"9,)*, so that
only two terms remaip in (3). O(p*) corrections to the O(p?) results following from (2) can
now be calculated using the vertices of %, in tree approximation, or those of &, in a single
loop. Of course, the latter will contain ultra-violet divergences (and infra-red ones which
are presumably regulated by a pion mass); but these can be absorbed into redefinitions
of the arbitrary constants a and b. In this way one could envisage some sort of parametriza-
tion of low energy pion physics.

Naturally, as this procedure is extended to higher powers of p?> we encounter more
and more arbitrary constants (the number of invariants grows rapidly as the number
of derivatives increases). One would obviously like to be able to calculate these coefficients
from some “more nearly fundamental” theory. Can QCD help? A number of attempts
have been made [5-15] to attack this problem directly, that is to derive a meson Lagrangian,
or at least one suitable for physics below say 1 GeV, directly from & qcp- In my opinion,
we cannot yet say that a rigorous calculation from QCD of the coefficients a, b and ¢ in (3),
for example, has been done. Nevertheles, theses coefficients save been calculated in various
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different ways, all of which give the same result — so w~ s2em to getting close! I shall
describe one such way in the next Section (another possibly related approach is described
in Ref. [16]).

1t is clear that our phenomenological pion Lagrangians (1) and (3) may be viewed
as expansions of some action in powers of derivatives. Such an expansion is expected to be
useful if the order of magnitude of the derivatives (or momenta) involved is significantly
less than some mass scale. Now the pions we nave been discussing are of course the lightest
hadronic states, being the massless Goldstone modes of the spontaneously broken chiral
symmetry, in the chiral limit. All other degrees of freedom are massive — even the quarks,
which acquire constituent masses in the breaking of chiral symmetry. Thus we can regard
derivative expansions of this type as arising via a process of “decoupling”, whereby all
massive degrees of freedom are eliminated leaving only the massless pions: the expansion
parameter will be ~ { pion momenta/mass of decoupled state). This kind of separation between
“heavy” or “short range” degrees of freedom, and “light” or “long range” degrees
of freedom is reminiscent of similar situations in many body physics. I shall now describe
one approach to such derivative expansions, in which the decoupled degrees of freedom
are constituent quarks.

2. Pion Lagrangian from decoupling quarks

Ideally, we should like to begin with the generating functional
Zocp = | @(quarks, gluons) [exp i | qepd®x], 4)

and by various manipulations of the functional integrals transform it intp something
involving hadronic degrees of freedom. 1 shall be much less ambitious. 1 shall ignore
confinement, and assume chiral symmetry breaking. The simplest model with these ingre-
dients, with the correct symmetries, and retaining the quark degrees of freedom, is one
in which the quarks interact with the Goldstone modes of the broken chiral symmetry:

Z = [2¢2vTplexp i | L(¢, p)d*x], Q)
where

L(d, ) = L(P)+P[i8 —glo+it - mys)]y. (6

We shall not, at this stage, be concerned with the precise form of the pure ¢ Lagrangian
Z($) —except that it must contain a potential which gives a tree-level minimum at
¢? = f2. Our interest is in the effect of decoupling the quarks. The expansion parameter
will be (p/M,), where M, is the dynamically generated quark mass g{o) = gf.

The integral over the quarks can be done formally, leading to

Z = [ 2¢{exp i[ | L($)d*x+T ()]}, Q)

where the effective action I'(¢) is

I(¢) = —iN trIn[i§ —ga(x)—igr - n(x)ys]. (8)
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N, arises from summing over the colour index of the y’s. Dyakonov and Eides [5] appear
to have becn the first to consider (8) as an effective chiral action. Although (8) is a very
compact expression, it is purely formal, since it involves the non-commuting quantities
i0* and functions of x, so that the functional operations indicated in (8) can be done feither
in x-space nor in p-space. However, we are interested in a low-energy theory, for which
a derivative expansion should be appropriate:

I@) = [d*x[-V($)+5 T($) (3¢)"+ ....]. ®
((9) is somewhat symbolic, since we have temporarily ignored the internal index on ¢).
We therefore want to evaluate the coefficient functions ¥, T, ... in the derivative expansion

of the effective action (fermion determinant) (8).

When my colleague Caroline Fraser and 1 became interested in this problem nearly
three years ago, we could not find anywhere in the literature a convenient ready-made
technique for calculating these coefficients. Fraser succeeded in inventing one [17] which
is quite easy to explain (see also Ref. [18]). One sets ¢(x) = ¢, + $(x), where ¢, is a constant
field, and expands (8) and (9) in powers of ¢. By comparing the coefficients in these two
expansions, the functions V, T, ..., will be determined [17, 19, 20].

The expansion of (9) is of course straightforward. Consider that of (8). Thus far we
have, by implication, been working in the co-ordinate representation, but in evaluating
the traces which arise in the expansion of (8) it will be convenisnt to consider the mo-
mentum representation also. We introduce operators x* and p* such that [p*, x*] = ig"",
with matrix elements (x}x*|x’> = x*3*(x—x') and {x|p*|x'> = i0%6*(x—x') in the coordi-
pate representation, and {p|x*|p’> = —i050*(x—x') and QIPip’> = pPo*p—p’) in the
momentum representation. Expression (8) is now expanded as:

—iN trIn [ f—M(@(®)] = —iN, trIn {(#—M,) [1-(F~Mo)™'MT}
= —iN trln(F—Mg)+iN, tr [(J—My) 'M]
iN

+
2

St [(F—Mo) 'M(F—-Mo) *M]+ ..., (10)
where
M@$(X) = glo(x)+it - n(X)ys), Mo = M(¢y), and M = M($)—M(¢o).

Since ¢, is a constant, M|, is independent of x and the first term —iN, tr In (7 — M) can
therefore easily be evaluated in momentum space; it may be identified with — V(¢,),
the ¢-independent term in the expansion of (9). The next term in (10) is evaluated as follows:

iN, tr [(F —Mo)"'M] = iN, [ d*p<{p| (F—My) ' M(x) Ip>
= iN, [ d*p<pl (F~M) 7 |p'> (p'Ix"> {x'IM(x) [x) <{x|pdd*xd*x'd*p’
= iN, | d*p(# — Mo)~ " {plxpM(x) {x|pdd*x

a* -
= iNcJ(—z—n%(,p—JWO)"’ -Jd“xM(x). (11)
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This corresponds to the term of order ¢ which is obtained when F(¢) in (9) is expanded
about ¢ = ¢,. We note the separation of (11) into two factors, one an integral over p and
the other an integral over x. 1f all terms in (10} had this product form, comparison with
the ¢ expansion of (9) would be very simple, since the coefficients in the latter would be
essentially just the p-integrals in such products. But it is clear that the product form of the
last step in (11) originates in the fact that the operator whose trace is being evaluated is itself
a product of one p-dependent operator and one x-dependent one. The operator in the third
term in (10) is not of this form, and so its trace cannot be immediately written in the factor-
ized form (11). However, this difficulty can be overcome by repeated use of the identity

X (P2 =M = (PP =M+ (P2~ M TP, 1+ (p - M [P, [p2 $11+ ..
(12)

(which can be employed after “rationalizing” the fermion propagator) together with

0 2 <5 13
pfb(x)Jr Py =x 3. (x), (13)

[, $(0)] = i ¢(X) [0°, $(x)] = =
and similar expressions for higher commutators. In this way each operator being “traced”
in (10) can be written as a sum of products of p’s on the left, and functions of ¢(x) and
(8/0%")¢(x) on the right. The traces can then be evaluated as in (11), the result being a p-inte-
gral times an x-integral involving @(x) and 2¢/0x™'s. In ‘this way the coefficient functions
in {9) are found.

It is clear that this method is perfectly general, and can be applied to boson determi-
nants, for example (see Fraser [17] and Aitchison and Fraser [21]). We have also shown
[20] that it provides a very cfficient way of calculating anomaly-induced vertices, and
Goldstone-Wilczek currents. A number of other methods for doing derivative expansions
have also been proposed [22-26], notably in a series of papers by Zuk [27-29], and by Ball
and Osborn [30, 31] and Ball [32, 33], using the powerful proper time or heat kernel tech-
nique [34, 35].

Returning to the problem at hand, one finds that the coefficient T is divergent; the
cut off is adjusted to yield the properly normalized &, of (1). At fourth order in
derivatives, we obtained [19, 20] for the coefficients in (3)

a = NJESTFY, b= —NJG322FY; ¢ = Njaszf*).  (14)

The same result was derived using a graphical technique by Mackenzie, Wilczek and Zee
[22a], and has also been found by many other authors using a-variety of different initial
Lagrangians, and methods [6-9, 16, 28, 30, 31, 36-39]. This is a sound reason for belicving
it to be more general than any of the individual models or derivations.

Perbaps the most interesting qualitative point to notice about the result (14) is that
it 18 independent of the quark mass — though the expansion is in powers of p/M,, where
M, = gf. The coupling strength g has disappeared from (14), and only the symmetry-
-breaking parameter f sets the scale of this term, Higher order terms do involve powers
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of g in the denominator; for example, the sixth-order ones go like (3¢)%/(f®g?). We shall
return to this point in Sectiop 5.

How does the prediction (14) compare with the experimeuntal values of the n—x
amplitudes at O(p*)? To pursue the comparison we must first include an explicit pion
mass term [1]

—(mz[8f%) (n*)?, (15)

since it is a poor approximation to set m, = 0 near threshold. We must next face the old
problem [30] that, away from threshold, the n—n amplitude is of course complex, due
to unitarity, whereas the terms in %, and %, are purely real. One simple “unitarization”
scheme is to interpr:t the matrix elements generated by %, and Z, as “K-matrix” elements,
and to construet the phase shifts J; via

(k)™! = g cot &, (16)

where g, is the two-body phase space factor in the I'® partial wave, and 7 is the isospin
channel index. The n—n phase shifts calcuiated this way [41] are shown in Table 1 and
Fig. 1.
The most significant O(s?) corrections are in the I = I = 0 and I = 2, ] = 0 channels.

In the former, the correction contributes some 10° at 700 MeV, in the direction of increas-
ing the soft pion phase shift, and thus tending to improve agreement with experiment
[40, 42]. This is equivalent to the effect of a finite mass m_ in this channel (our non-linear
model corresponding originally to the limit m_  — c0); we interpret this as having been
generated by the quairk dynamics. In the I = 2 I = 0 channel, the O(s?) term contributes
12° at 700 MeV, usefully correcting the tendency of the soft pion term to become too large
in magnitude, relative to the admittedly poorly determined data.

~ The p-wave phase shift is small, but rising. Of course, we see no p resonance ampli-
tude explicitly in the coefficients (14), but tais phase shift can certainly represent the tail
of the p. We also note that the d-wave scattering lengths — not predicted by the soft pion
theory — are given (in units of m, 4) by

a3 = (1607°) " Y(my/f)* ~99x10™* a2 =0, an
TABLE I
w- phase shifts calculated using Eq. (16)
E(= +/5) & 8 8t
(MeV)
360 11° —3.6° 1°
440 21° -7° 2.7°
520 31° -10° 5°
600 41* -12° 8.7°
680 50° —-12° 13°
760 i 58° —11° 18.6°
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Fig. 1. 68 and 43 from Eq. (i6) vs 4/5

which are to be compared with the quoted experimental values [42]

a) = (17+3)x

10°*

a? = (1.3+3)x 1074,

(18)

In summary, integration over fermion degrees of freedom seems to provide, at O(p*),
qualitatively useful corrections to the O(p?) results in the n—n sector.

Although the above calculation of phase shifts and low-energy parameters is one way
of comparing (14) with data, there is another, perhaps more physically instructive way.
The largest phase shifts are those in the p (I = [ = 1) and “c” (I = [ = 0) channels:
it would be interesting if we could relate the p and “c” parameters (masses and couplings)
directly to (14). We can do this with the help of the 1/N, expansion of QCD.

3. OCD and the 1[/N_ expansion: pion Lagrangian from decoupling heavy mesons

Assuming confinement, the asymptotic states of QCD are not the coloured quarks
and gluons, but rather the obsetved colour singlet hadrons. In view of this, one might
wonder whether in some way QCD itself could not be equivalently formulated in terms
of these observed asymptotic degrees of freedom. Quite remarkably, the work of 't Hooft
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[43] and Witten [44] shows that QCD is indeed equivalent — in the full field theory sense —
to a theory of mesons and glueballs, It is unfortunate — though hardly surprising — that
the arguments for this proposition do not enable us to construct the actual equivalent
meson theory. We can certainly write down phenomenological meson Lagrangians, incor-
porating the known meson states, and their properties and symmetries, up to say about
1 GeV. But at first sight, this is not very predictive (though see Section 4!)

With one more ingredient, however, it becomes so. This is the notion that I/N, can
be treated as an expansion parameter {43, 44]. ’t Hooft and Witten showed that trilinear
meson-meson coupling constants are of order 1/\/N., so that if this is treated as “small”,
we have a novel kind of perturbation theory. In fact, the phenomenological meson Lagran-
gian just mentioned can — to the extent .hat 1/,/N_ is small —be treated semi-clasically:
that is, we neglect all loops and use it in tree approximation only. We can now easily imagine
writing down the resultant coupled field equation for 7, 6, p, @, A, etc. and solving them in
powers of (derivatives/masses), thereby expressing all fields except the pion in terms of the
pion fields and their derivatives. Thus wée are here “decoupling” the heavy mesons, but at
tree-level only.

Fraser, Miron and I carried out this procedure [41] up to O(dn)* for a number of
possible meson Lagrangians incorporating the =, o, p and A, fields (the @ contributes
first at O(0n)°). By comparing the result with the “quark loop” terms of (14), we will be
able to predict the values of certain meson parameters in terms of f alone. The comparison
is simpler if we first make use of the replacement (¢)? -» f~2(0,0,0"p,)?, valid up to 0(2*)
(cf. remarks following (3)). Then the quark decoupling result was

Li= f4 {([0,0.0,0.)" —(0,8.0"0)*] +5 (8,0.0".)*} (19)
(the reason for writing it this way will become clear immediately). To O(z*) we may replace

g, by @, m) in (19).
The result of the O(dn)* meson decoupling calculation is

“ = s L@ 0 —(0m- ")), (20)
1
i 27 (6, - 0"m)?, €3y

where, in arriving at (20), we imposed in all our meson Lagrangians the KSRF relation [45]
Z = 212G omn (22)

between the p mass, the prn coupling constant, and f. Equation (20) held in all threz meson
Lagrangians we considered [41]; the numerical factor in (21) differed somewhat among
the models. The conclusion is very stsiking, and had in fact been established earlier by Pham
and Truong [46]: namely, the p meson induces a term of the form (20) which involves
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the difference of the two possible invariants, while the ¢ meson induces a purely “symmetric”
term.. Comparing (19) with (20) we deduce

m? = 24n*f%|N, 23)
or, using (22),
8w = 127°|N.. (24

For N, = 3, (23) gives m, = 826 MeV, while (24) gives g, = 2n. These values are en-
couragingly realistic. Similarly, from (19) and (21) we obtain

m? ~ 487°f%|N, ~ 2m}, (25)

which gives m, =~ 1200 MeV.

There are certainly a number of queries one might raise at this point. For example,
is 1/3 really so small that meson loop contributions at O(p*) can be neglected (supposing
they could be calculated)? How de we know, on the other hand, that the O(dz)* terms
are reliably given by (19)? Could there not be additional quark interactions beyond those
in (6), involving the heavier mesons for example, which might induce corrections to (19)?
Perhaps somehow (19), (20), (21) are consistently relatable to one another, to the same order
in 1/N,. At all events, (23), (24) and (25) seem to imply that the simple Lagrangian ©6)
already has quite a lot of p and o physics in it.

4. The soliton sector

It will not have escaped the reader’s attention that there seems to be one very large
gap in the equivalence

confined QCD = theory of mesons and glueballs;

namely, where are the baryons? It is here that the real interest, for me at any rate, of the
1/N, idea lies. Witten showed [44] that for large N, baryon masses scale like N,. This is remi-
niscent of the behaviour of selitons in a theory in which the coupling constant is g: the soliton
mass ~ 1/g%, so that putting g ~ 1/\/N,, we find mass ~N,. The idea that baryons are
solitons in a meson theory was put forward in remarkable papers by Skyrme [47] more
than 25 years ago. After an interval of 20 years, two equally remarkable papers by Witten
[48, 49] served to provoke renewed and active interest in this suggestion.

Skyrme’s solitons are, in fact, precisely certain static field configurations of the non-
-linear o-model we have been considering. These configurations have the form

o = fcos 8(r), (26)
m = rfsin 0(r), 27

where 6(0) = nn and 6(c0) = 0. We note that (26) and (27) automatically satisfy
62 +n* = f2. Such a field configuration acts as a mapping between real three-dimensional
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space and the isospin space of SU(2) — as is most immediately seen from (27), in which
the isospin vector z “points along” the real vector r. This mapping is characterized by
a winding number N, which counts the number of times (compactified) real space is mapped
into internal isospin space:

N = - 2ﬂ2f 4')~ Isijkgabcd ! ¢,0 i¢b6j¢cak¢dd ’r. (28)

Argaments can be given [49, 50, 48, 20] for identifying N with baryon number B. When
6(0) = = (i.e., n = 1), one finds N = 1.

What Lagrangian produces these soliton configurations? We would clearly start
by considering the simplest possibility, which is just &, of (1). Certainly, this must be
included, since it has the right symmetries and is a standard “kinetic energy” piece. But it
cannot be the whole story. It is easy to see that static energy arising from %, alone
cannot correspond to a soliton extended in space. Consider

2
Eslatie ~ j(V¢)2d3r ~ J\<£€> rzdr. (29)
dr

Suppose 8 has a spatial extension of order R, e.g., § ~ e~"/%. Now set #/R = t. We find
EQR) = RE(t=1)—>0 as R— 0. So the minimum energy configuration of %, alone
will be point-like, and have zero energy — and this does not look very like a nucleon.
Accordingly, Skyrme [47a] — not wishing to enlarge the number of basic fields in his
model — introduced a term of fourth order in derivatives, namely

1
L = e [(0,0.0,9.)> —(0,9.0"0.)*], (30)

where e (not the electronic charge) is a new parameter. Repeating the reasoning following
(29), we can easily see that the static energy from (30) will scale as 1/R. Hence a stable
configuration with R = 0 can exist, by a balance between the R and R-! contributions.
This constitutes the dynamics of the Skyrme model.

It seemed natural to ask [19, 22a] whether the Skyrme parameter ¢? could be predicted
from some underlying theory — interpretine (&, + %) as a particular low-energy approxi-
mation to the meson Lagrangian which is equivalent to QCD. The result of the O(d¢)*
calculations have of course alrecady been given in Sections 2 and 3, especially Eq. (19).
From the latter we find at once

e =21 = gy cf. Eq. (24)], 3

for N, = 3. Equation (31) is, in fact, not far from the value of e required in phenomeno-
logical applications of the model consisting of (%, + %) to the nucleon’s static properties
[51-53]. However, there is a serious problem with (19), which is that the second term
contributes negatively in the static energy, and can even be larger in magnitude than the
first. Thus (19) — or more generally(14) — does not produce a dynamically stable soliton.
(This was not clear to us in Ref. [19], but was to Mackenzie et al. [22a]).
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Where can stability come from? The terms £ have been calculated by expanding
the non-local determinant (8) in powers of 6¢. We might wonder whether some higher order
terms — e.g., (0¢)® — in this expansion could do the trick. Unfortunately, as we shall
see, this turns out not to be the case. Ripka and Kahana [39] have actually calculated the
full contribution E? of the (renormalized) determinant to the static energy, for the ansatz
6(r) = m exp (—r/R). The divergent O(d%) piece has been subtracted from the determinant,
so that e = E_/fgN, represents the full effect of all terms of O(6*) and higher. & is positive —
and hence stabilizing — for all soilton sizes R. It is quite remarkable that we apparently
do have here a fully three-dimensional and realistic example of a soliton stabilized by
quantum loop corrections. Indeed, Ripka and Kahana find [39] that the contribution of
&%, together with that from %,, gives a satisfactory nucleon mass/size, for reasonable
‘values of g.

But these calculations are very lengthy, and one would like to be able to deal with
a Jocal effective Lagrangian rather than the non-local detcrminant. Consequently, the
0(0¢)® terms in the expansion of (8) were calculated [33, 54, 55] to see if they would provide
a fair approximation to the full E9, at least for some realistic R’s. The contribution &2 of
these sixth order terms was calculated in [55] for the same ansatz 0(r) = n exp (—r/R).
However, €2 does not provide a useful approximation to €* in the region of interest, which
is X ~ 1 to 2. Though stabilizing, 3 is not large enough in magnitude to prevent the soliton
collapsing to too small a size. Indeed, ¢ does not appear to scale as any simple power of R:
all derivatives are contributing. Thus the derivative expansion of (8) fails for the purpose
of predicting the terms in the meson Lagrangian which are responsible for realistic nucleon
stability.

The same conclusion can also be drawn {41] as regards the attempt to obtain an effective
pion Lagrangian — for use in the soliton sector — by decoupling the heavy mesons
(Section 3). One is therefore left with the alternatives (a) numerical evaluations of (8),
and other approaches to the n-quark model of (6) (see also [56]); (b) solution of the meson
field equation without decoupling the heavy mesons. Of these, the latter is certainly directly
in line with the 1/N, ideas, and is likely to be easier numerically. The most recent work in
this direction, by Lacombe, Loiseau, Vinh Mau and Cottingham [57] is encouraging:
solving the classical theory of =, p, €, ® and A; mesons in the soliton sector, they obtain
significantly better agreement with experimental datd than in the original one-parameter
Skyrme model. 1t should be noted that the meson Lagrangian used here is highly constrained
both by symmetry requirements and by the need to fit the observed meson parameters

(e'g’3 mg’ m(l)’ ggﬂﬂ’ gll)! "')'

5. Decoupling, and the possibility of quantizing anomalous gauge theories

We end by mentioning briefly some speculations [33] oa an apparently ratner different
matter, having to do with the problem of quantizing gauge theories that have anomalies
in gauged currents. The conventional view has, for a long time, been that such anomalies
cannot be tolerated because they spoil renormalizability and unitarity -— hence one requires
typically an anomaly-cancellation mechanism. For example, the lepton and quark anomalies
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in the standard SU(2) x U(1) model do cancel. Note that the anomalies are independent
of the fermion masses, and so such a cancellation between different fermion doublets is pos-
sible. These anomaly matching conditions aie important constraints on possible models.

Recently, however, it has been suggested that it may after all be possible to quantize
gauge theories consistently, even in the presence of an anomaly which is not cancelled
by the conventional mechanism. Examples in 1+ 1 dimension bave been discussed by Jackiw
and Rajaraman [58] and Faddeev and co-workers have considered the 3+ 1 problem. In
particular, Faddeev and Shatashvili [59, 60] propose that by adding a (gauged) Wess-
-Zumino term to the aciion for a Weyl fermion interacting with Yang-Mills fields (which,
by itself, would be anomalous), a consistent quantum theory is obtained. They interpret
the inclusion of such a term somewhat along the lines of the usual “ghost” terms, in that the
scalar field in their W —Z action is only present in closed loops (and indeed they introduce
no kinetic piece for it). The coefficient of the W —Z term is fixed by topological considera-
tions [48], and one may therefore hope that renormalizability is not lost.

The 141 dimensional theories considered by Jackiw and Rajaraman seem to provide
explicit illustrations of quantizable, though anomalous models. For example, the (exactly
soluble) chiral Schwinger model, in which a U(1) gauge field interacts with a Weyl fermion
in 1+1, can apparently yicld a consistent, unitary and Lorentz-invariant theory with
a spectrum which includes a single massive vector meson [58]. Rajaraman interprets this
phenomenon as ‘“‘mass generation by anomaly, as distinct from the Higgs mechanism”
[61]. If this interpretation could be generally true in 3+ 1 dimensions, clearly our expecta-
tions about the Higgs sector (such as they are) in the standard model would be drastically
altered. The non-Abelian 1+ 1 case was also studied by Rajaraman [62] and by him and
Lott [63]. In this case it also seems that consistent quantization may be possible — but
one must note that these claims are not uncontrovcrsial, even in the Abelian case [64].

We could, however, take a somewhat different point of view [33] — namely, that
perhaps the scalar field in the W—Z term introduced “by hand” by Faddeev is actually
that of a (very strongly interacting) Higgs field. Suppose we start from a theory with one
fermion multip:et of given chirality and mass m, and a second fermion multiplet of opposite
chirality and different mass M, and we arrange for the chiral gauge anomalies to cancel.
The fermion masses are generated via the Higgs field vacuum expectation value, as in (6)
for the ungauged chiral flavour symmetry casc. Consider what happens as we send M — o
{which means the corresponding coupling g — o0, for fixcd vacuum expectation value).
This is precisely a decoupling problem, as in the carlier sections, but now we are interested
only in the terms which survive as g, — oo. The work of d’Hoker and Farhi |36, 65]
and Ball [33] shows that in this limit the heavy fermion leaves 2 rcsidue behind, which
consists of two parts: (a) a W — Z term in the Higgs fields, (b) terms of the form (3), of order
(0¢)* (recall that higher order derivatives go down like inverse powers of g,,). In addition,
since we are by implication considering the “non-linear” limit 6>+ n2 = F? for the Higgs
fields, we need to examine possiblc terms remaining in the Higgs sector, in this limit
(my — o). We must also remember to include gauge fields.

The suggestion here is, therefore, that the extra W—Z term introduced by Faddeev
and Shatashvili arises precisely from such a decoupling mechanism, while the vector
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meson mass daiscovered by Jackiw and Rajaraman is a manifestation of a Higgs mechanism
after all, but with my — oo. In this case, the unconventional procedure of Faddeev and
Shatashvili may be equivalent to the conventional procedure (i.e., of anomaly cancella-
tion + Higgs mechanism), in a certain limit. Certainly, this would seem to indicate that
it would not be possible to quantize an anomalous gauge theory and come out with
a massless vector meson, The Higgs sector has to be there in order to give the “heavy”
fermion a mass, and it then generites a vector meson mass as usual.

As yet, this is only a suggestion. One difficulty is that although the W-Z (Higgs)
term, being of topological origin, may not affect renormalizability, the O(0¢)* teims of
(3) certainly seem to. However, Braatzn has recently claimed [66] that a “‘generalized
Skyrme” model, with all three invariants (3) present, is both renormalizable ana asymptoti-
cally free! His Lagrangian has tne form

2

)
:f 32 + - 4 Ny I_(au(ﬁaa ¢a) (0u¢ aud)“) ] de 2 2 (0u¢a —~u¢ ) - _‘"2‘ (D¢)2 (32)

where €2, 52 and M? are all positive. Referring to (3) and (14), we sec that our (3¢)* terms
arising from heavy fermion decoupling give

= Fyr I 1(abidb) —0uba )]
4877:2172 u } a

Nrc N
96 2F2 (auqsaﬂu(ba) + dé‘ME—P‘Z( I(tb) (33)

F and Npc could presumably now have the significance of “technicolour” parameters.
Thus the coefficients of the first two O(0¢)* terms are the same sign as in Braaten’s model,
but that of the last term has the opposite sign. For Braaten, this last term is interpreted
as a Pauli-Villars cut-off, since it modifies the pion piopagator from the (p?)-! arising
from &, to (p*—p*M?)! = (p*)1—(p*~M?)-1.

Indeed, it is responsible — via the increased powers of p? in the propagator — for
rendering the theory renotmalizable (see also Slavnov [67]). The prlce to be paid, of course,
is that the theory is not unitary it energics above M(= nF v 24/Nrc) On the other hand,
the sign of the ([J¢)* term predicted by (33) corresponds to a tachyonic pole in the pion
propagator. We also recall that the solitonic sector was unstable, if that sign is as in (33) —
modulo the effect of the gauge fields. This may be a signal that the true ground state is not
to pe found by minimizing the & of (33), but that further quantum effects — such as the
infra-red summations required in some similar solid state systems — must be taken into
account [68]. Perhaps when the true ground state is found, the theory will remain renormal-
izable and asymptotically free, and will also be unitary due to the disappearance (somehow!)
of the M? pole.

Another open question at this stage is the nature of the terms left in the Higgs sector
as my — co. Fraser and I did a conventional one-loop calculation of the effective action
in the linzar SU(2) x SU(2) o-model, and investigated the limit my — oo [21]. We found,
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as expected [69], terms of the form a and b in (3), which were proportional io Ip m (as
well as other finite terms of this form;, and other “non-invariant” terms (69a)). The presence
of thege terms would of course substantially modify (33). On the other hand, Chan has
claimed [70] that a different approach to the limit my — oo of the one-loop action yields
only a finite term of the form b in (3), a single renormalization sufficing for this and for
Z,. If true, this would significantly affect the decoupling idea, suggested above.

I am very grateful to Caroline Fraser for much helpful correspondence.
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