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An elementary discussion is given of the mechanism whereby the Wess-Zumino term
determines the quantization of the Skyrme soliton. The work of Balachandran et al. is drawn
upon to make explicit the remark of Wu and Zee that the Wess-Zumino term acts like a mono-
pole in the space.of scalar fields of the non-linear o-model. The origin of the monopole
structure, and its influence on quantization, is discussed in terms of the Berry (adiabatic)
phase.

PACS numbers: 11.17.+y

1. Introduction and outline

The thing about Skyrmions [1] that is surely hardest to understand is how a tump-like
solution (soliton) of a classical scalar field theory can, and in some cases even must, be
quantized as a fermion. How can you add integers together and get a half left over? I want
to draw together here some recent work on this subject, which has certainly helped me to
understand how this marvellous trick is pulled.

It has of course been known for quite some time that a classical extended object (for
example, a top [2, 3]) may be quantized as a fermion. A system which provides an explicit
model of how this can come about — and one which is directly relevant to Skyrmions —
is that of a particle of charge e in motion about a fixed magnetic monopole of strength
£. Almost immediately after Dirac’s ‘monopole’ paper (4], Tamm [5] studied the Schrodin-
ger equation for this system, and found that the solutions of the angular equation are the
rotation functions 27%.,.(0, ), with m = eg (in units i = ¢ = 1); when the product
eg has the minimum non-zero value

g =1 (L.1)

allowed by the Dirac quantization argument [4], or more generally the value (n+1/2),
the system has half-odd angular momentum and is a fermion. (Sometimes this circimstance

* This is an expanded version of the second of two lectures given at the XXVI Cracow School of
Theoretical Physics, Zakopane, Poland, 1-13 June, 1986.
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is used to run the argument the other way — i.e. that quantization of angular momentum
yields the Dirac condition — but, in the present context at least, the Dirac condition will
be fundamental.) More recently, field-theory examples of the charge-monopole system
have been studied, with analogous resuits {6, 7].

In the two papers which initiated the recent burst of activity on Skyrmions [1] (and
much else besides), Witten [8, 9] showed that the Wess-Zumino (W —Z) term [8-10] in
the action for the scalar fields ¢, (Whose solitons are Skyrmions) actually defermines how
these solitons are to be quantized. He obtained the remarkable result that the Skyrmion
is a fermion if N, is odd, and a boson if N, is even: furthermore, the W~ Z term also
determines the pattein of spin-SU(3) multiplets ([1/2+, 8], [3/2t,10]...) in the baryon
spectrum [9, 11, 12]. Though obviously correct mathematically, these resvlts were never-
theiess still hard to explain in physical terms, especially to anyone who did not know what
a W—2Z term was — and even to those who did!.

A good deal of light has been shed on this by the work of Balachandran and collabora-
tors [13-17}, Berry [18], Stone [19], and Wu and Zee [20, 21]. 1 shall try to state the major
ideas in single sentences, which we will then examine in greater detail in the following
sections.

(i) The W—Z term is a generalization, to the configuration space of scalar fields
¢,,-of the charge-monopole interaction term in ordinary configuration space for particles.
It acts like a monopole in ¢-space.

(ii) Because Skyrmion field configurations are maps between field space and real space, the
monopole structure of the W—Z term in field space induces, for such configurations,
monopole structure in real space.

(iii) Upon quantization, fermionic behaviour will emerge via the well-known monopole
mechanism referred to above.

These sentences state where we are trying to go, but they do not explain (@) where
the W—Z term itself comes from, or (b) why it is like a monopole in ¢-space. The short
answer to (@) is: from the very fermion determinant which we studied in the previous
lecture, but generalized to SU(3);, i.e. it is a term in the effective action for the ¢ fields which
arises after integrating over tne fermions [22, 23]. This is all very well in its way, but it too
is mysterious: why does such an exotic term get induced in the boson sector when we
integrate out the fermions? The technical answer to #his is that the underlying fermion
theory has anomalies, which can be calculated from single fermion loop diagrams. These
diagrams generate effective vertices in the external fields (¢,, gauge fields, etc.) coupled
to th: fermions. Hence any bosonic action obtained by integrating out the fermions —
which is equivalent to summing all single fermion loop diagrams—must faithfully represent
these anomaly-induced vertices. The W —Z action precisely encodes these anomalous
vertices: if we only consider the ‘ungauged” W — Z action, which is a function of the SU(3);
chiral field ¢ alone, we are representing correctly just the SU(3), flavour anomalies of the
underlying Fermion theory.

1 For those who know that there is no W-Z term if the flavour group is SU(2), and wonder what
happens then, see Section 6.
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But anomalies are pretty mysterious too—are we not getting into an infinite regress
of ‘explanations’? It would be nice to have some kind of quantum mechanical analogue,
at least, for what is going on. We can get a clue what to look for when we remember that
the characteristic thing about anomaly-induced vertices is that they are independent of the
fermion mass M it is precisely this circumstance that allows the anomaly-cancellation
mechanism discussed in the previous lecture, to work. Thus these ‘anomalous’ vertices
will still survive in the fermion determinant with the correct coefficients, even as M becomes
very large. This means that these particular vertices—or, equivalently, these particular
contributions to the induced bosonic action — can be reliably calculatcd by the derivative
expansion technique: 0¢p/M can be made as small as we like. (Some e¢xplicit examples of
this way of calculating anomalous vertices are given in Ref. [22].) Now, a very large fer-
mion mass M implies a large gap between the negative energy (sea) levels and the positive
energy levels. Small values of d¢/M mean that the momenta and energies associated with
shese ‘siow1y’ varying ¢ fields are much less than the mass gap, and will therefore not induce
tignificant fermionic excitations across the gap — indeed, in the limit of M wvery large,
there will be no excitations at all, and we need only deal with the fermion vacuum (ground
state).

This state of affairs is something we can find a quantum mechanical (rather than
quantum field theoretic) analogue for. It arises quite frequently in many-body physics.
Suppose we have a system described in terms of two sets of degrees of freedom: one (which
we call r) is ‘fast moving’ with ‘large’ differences between excitation levels, and the other
(R) is ‘'slow moving’ with ‘small’ associated energy differences. We may think of the electron-
ic (fast) and nuclear (slow) degrees of freedom (d.f.s) in a molecule for instance. It should
make sense, when considering the r coordinates, to regard the R’s as approximately con-
stant; indeed this is called the adiabatic, or Born-Oppenheimer approximation in quantum
mechanics. More precisely, if the R were constant, we would simply solve the stationary
state Schrodinger equation for the r’s, with the R’s appearing parametrically:

H,(Ryy,(r, R) = E(R)y,(r, R). (1.2)
In reality, the R’s are varying slowly with time, but not quickly enough to induce transitions
from one E, level to another. Thus the system, if started in a particular E, level, ‘stays
with it’ as the R’s change. This is essentially the content of the adiabatic theorem: the
‘fast’ coordinates stay in the original eigenstate, which however itself changes slowly in
response to the slow changes in the R coordinates which appear parametrically. This
sounds very much like the situation of our fermion vacuum evolving slowly in response
to the slowly varying ¢’s. But where is the quantum-mechanical analogue of the W—Z
term? It must correspond to some non-trivial structure left behind in the space of the
‘siow’ parameters when we adiabatically decouple the ‘fast’ ones.

Here is where the work of Berry [18], and Kuratsuji and Iida [24] comes in. The adia-
batic assumption tells us that, at any time ¢, the state of the system |y(f))> (adopting now
aslightly more abstract notation) will essentially be the ‘instantaneous’ eigenstate |n(R(1))),
where

H(R(1)) In(R(1))> = E,(R()) [n(R(1))). (1.3)
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if it was prepared to be in one of these states |n(R,)) at ¢t = 0, where R, = R(t = 0).
In fact, |y(t)) will be related to |n(R(¢))> by a phase factor. What phase factor? The naive
answer would surely be

l9()> = [exp —i J E,(R(t')dt'] - |n(R(1))>, (14)

the éxpected integrated ‘quasi-stationary state’ phase. But this in not the whole story.
An additional phase is generated during such an adiabatic change. That this is so in principle
has been known for a long time (see, for example, Ref. [25]), but it had tended to be dismis-
sed as unimportant physically (just a phase’). Berry 18] pointed out a number of cases
where the phase could be of considerable physical interest (see also Ref. [26]). In particular,
a non-trivial phase can result from a closed path in R space, as we move along Ry — R(t)
— R,. Such ‘Berry phases’ depend on the actual path followed in R-space — which may
remind us of something...
The Berty phase is easily calculated [18]. We are looking for a solution of

d
HR®) 1)) =i 7 lp(8), 1.5)
and we try the adiabatically-inspired ansatz

lp(1)> = [exp —i Of E,(R(t'))dt'] - exp iy, (1) - [n(R(£))). (1.6)

Inserting (1.6) directly into (1.5) and using (1.3) yields

t

d
(t) = if(ﬂ(R(t'))l o In(R(t"))>dt"

V]
=i g {n(R)|Vgn(R))> - dR, (1.7

the fundamental formula [18] for the Berry phase y,(¢).

Now — having dealt adiabatically with tne » d.f.’s this way — let us turn our attention
to the slowly varying R’s, and consider them as quantum d.f.’s, not just classical parameters.
In the same adiabatic approximation, we sit in one ‘electronic’ state » and look for solutions
in which the total state function has the product form ¢,(R)|#(R), and ask: what Schrédin-
ger equation does ¢,(R) obey? The answer is very interesting [25]: if V(R) is the potential
energy relevant to the R d.f.’s alone, then ¢,(R) obeys

[‘covariant kinetic energy’ + E,(R)+ V(R)]¢,(R) = idit(/),,(R), (1.8)
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where by ‘covariant kinetic energy’ is meant that the gradient operator Vg in the normal
R-kinetic energy terms is replaced by

Ve = Va+<n(R)|Van(R)> (1.9)
= Vp—id,(R), (1.10)

where (1.10) follows since the matrix element in (1.8) is easily seen to be pure imaginary.
Thus a sort of gauge potential has been induced in R-space!

It is clear that this gauge potential is intimately rclated to the Berry phase; they are
two facets of the same subtlety in the adiabatic approximation. Indeed we can see from
(1.9) and (1.10) exactly what the local pbase invariance corresponding to this ‘gauge’
structure is: an R-dependent phase change on [n(R)) induces a change in 4, of (1.10),
which in turn causes a precisely compensating phase change in ¢,(R), so that the total
state function ¢,(R)|n(R)) is locaily phase invariant, Thus a distinctly non-trivial structure
has appeared in the ‘slow’ d.f.’s after adiabatic decoupling of the ‘fast’ d.f.’s. Note, inciden-
tally, that the Berry ptase is nothing but

exp iny(1) = exp [i | 4,(R) - dR], (.11)
1]

so that we were right to be reminded of the path-dependence of the wave function for a par-
ticle in an electromaguetic potential A.

Thus we are getting nearer to understanding how funny phase factors — which might
influence apparent rotational properties [26] — can arise via adiabatic decoupling. We
can make closer contact with tne field theory if we reformulate the adiabatic approxima-
tion in the path integral formalism. This was done by Kuratsuji and lida [24]. In view
of (1.6) and (1.11) we can almost guess what the result must be. We want the dynamics
in R-space to correspond to a ‘particle’ moving in an (additional) ‘vector potential’ 4,(R).
Thus we expect to find a piece in the effective action S, in R-space which corresponds
to the effective Lagrangian

£ A, (R)- R (1.12
eff.n ™ n (h . . )
Indeed, in that case
T T
dR
Seeen(T) = J‘geff,ndt = fA,,(R) : I dt, (1.13)
0 ) 0
and
eXp iSeir,o(T) = exp in(T). (1.14)

This is just what Kuratsuji and lida obtain. By considering the trace of the evolution opera-
tor trexp (—#HT) in the adiabatic approximation, they show that it is given by

T .
KelT) = 3§ DR exp {iSo—i | E,(R)dt' +iy,(T)}, (1.15)
n o
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where R(T) = R, (since for the trace we want to return to the same state at t = T), and
where y, is now evaluated ovar closed loops Ry — R(¢) —» R(T) = R, in R-space:

1u(T) = i § {n(R)|Ven(R)) - dR = § A,(R) - dR = § L ¢ ,dit. (1.16)

S, is the ordinary action for the R coordinates.

Now, finally, how can we understand the specific ‘monopole-like’ structure which
corresponds (we have asserted) to the W—Z term? The secret, as Stone [19] pointed out,
lies in a beautiful discovery by Berry {18]. We have assumed throughout that the eigen-
values E,(R) were well separated, and certainly not degenerate. But what happens if, for
some particular value of the R d.f.’s, say R*, two of the E,’s coalesce ? We expect some sort
of catastrophe to show up in our adiabatic result. In fact, this point in R-space is very
fikely to be a point at which the vector potential 4,(R) is singular! Such a vector potential
would imply sources (S-function singularities in the associated field strengths)— for
example, magnetic monopoles. This is exactly what Berry found, explicitly, for the case
in which the degeneracy is a spin-type degeneracy, the ‘fast’ coordinates are spin d.f.’s,
and the ‘slow’ ones are angles describing the orientation of the (real!) magnetic field B.
The equation corresponding to (1.5) is then

. d
uBS - Bly(t)) = i 7 fp(D> 1.17)

and
E,(B) = % uBn, (1.18)

where n/2 is the spin eigenvalue, which takes 2s+ 1 values. Clearly these 25+ 1 states are
degenerate when B = 0 (the point R¥). Berry found that the associated A4,(B) was p1ecisely
that of a monopole in B-space located at B = 0, having strength —n/2 (i.e. eg = —n/2).
Thus spin-type degeneracies cause monopoles to lurk in the ‘slow’ space.

We can now see why the integral in (1.16) along a closed loop need not vanish. If we
convert the line integral in (1.16) by a (multi-dimensional) Stokes theorem to a surface
integral over the ‘magnetic field’ B, = V x 4, and thence to a volume integral via Gauss,
we would normally get zero since div B = 0. However, for the singular potential cor-
responding to a monopole div B, # 0 and a closed loop contributes a non-zero result.
Actually we can go even further than this. The line integral over a closed loop C becomes

$A4,(R)-dR = (| B, dS, (1.19)
C s
where S is a surface spanning C. But what surface ? Should we take an S, (see Fig. 1) which
is ‘above’ C, or an S, which is ‘below’? For consistency we must have
{fB,-dS = || B,-dS+2Nn (1.20)
A Y 5,
(remember that these quantities are all phases). Since the normals for S, and for S, are
oppositely oriented, we see that (1.20) is equivalent to

§ B, dS = 2Nm, (1.21)
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Fig. 1. Two surfaces spanning the curve C on §;

where the integral is over a closed surface surrounding R. Thus the total flux out of the
‘monopole’ is quantized — which is just the Dirac [3] condition (eg = N - 1/2, in the real
electromagn:tic (e.m.) case). The above argument was a poor man’s version of a deeper
topological treatment, since we relied heavily on tacitly thinking of R as three-dimensional.
Nevertheless, the result is correct.

But now notice a remarkable thing: the previous paragraph has shown quite generaily
that the monopole strength (total flux through a closed surface, divided by 4n) bas the
quantized value N/2, where N is an integer of topological significance. The paragraph
before that stated the result that monopole-like structure arose from (1.17), in which the
strength of the monopole is —n/f2, where n/2 is the spin eigenvalue. The eigenvalue spectrum
of (1.17) neat B = 0 (the point of degeneracy) seems to know something about topology!

We bave learned that monopole-like stracture can be generated in the ‘slow’ space
R when we adiabatically decouple the ‘fast’ d.f.’s. Furthermore, the strength of the monopole
interaction is an integer (divided by 2), from iopological considerations, and this integer
corresponds to some label of the energy spectrum of the ‘fast’ coordinates. This is as near
as we are likely to get to a2 quantum mecharical analogue of the W —Z mystery. The W~Z

term results [22, 23] from adiabatically decoupling the y’s from the #’s, starting from a Dirac
equation

0
[~ia- V+Buexp (id-mysf ]y = 12, (1.22)
which is the analogue of (1.17); p is a mass parameter, f~ 93 MeV, 1, (a = 1,2. ..., 8)
ar: the Gell-Mann matrices, and the eight 7 fields are the analogues of the angle variables
in B. The W—2Z term (in the fields n) looks like a monopole in n space. lts coefficient
is found to be an integer (which is, of course, N,) by topological considerations [8] exactly
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analogous to those given above for the R-space monopole. There is one gap left to be ciosed:
what is it in the spectrum of the Dirac equation (1.22) that ‘knows’ about topology (and
hence about monopoles)? That is a deep question, the answer to which is provided by the
mathematical subject called index theory. This way of looking at anomalies (remember ?)
is calied the ‘Hamiltonian approach’ {27, 28], ana is precisely the quantum field theoretical
analogue of the quantum mechanical Beiry-phase discussion outlined above.

Let us now see how all the foregoing works out in some simple cases.

2. A simple example

Consider, following Stone [19], a spin-1/2 particle ia a magnetic field B = Bn, where
n? = 1. The sta.e function for tne (‘fast’) spin d.f.’s satisfies

d
ue - n(t)p(t)) = i?i} (1), 2.1)

where tue magnitude B of the magnetic field has been absorbed into u. The ‘slow’ d.f.’s
are n, since we sball only consiaer slow variations of B with fixed B. We consider tne
large p limut (cf. large p in (1.22)), so that the slow changes in # do not cause transitions
between the two spin ecigenstates {Tmit)) and ||n(#)), in the adiabatic approximation.
Suppose at ¢t = 0 we start in the state [Tr(0)), where n(0) = (sin 6, cos ¢, sin 8, sin ¢,
cos 0y). At a general time ¢, n(t) = (sin 0 cos ¢, sin 0 sin ¢, cos f), where the time-
-dependent d.f’s 6 and ¢ will vary over tne svrfase of an S,. The Berry phase y(t) is

ta(t')>dt'. 2.2)

g
n) = 1J<"(l )1 lW
0

We shall calculate this directly using an explicit wave function for |{n); already here
a crucial feature will emerge.
The wave fuunction

(2.3)

Ob[tns> = (cos /2 )

sin 62

is certainly an eigenfunction of

cos 6 sin fe ™™
po ' m = #(sin B’  —cos O ) (24)

with eigenvalue p. Inserting (2.3) into {2.2) we find

t

W = - j%(l—cos 0)%?:#’ (2.5)

0
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for the Betry phase y; (¢), as 6 and ¢ vary slowly over S,. The reason for the + symbols
will become clear in a moment. .

According to what was advertised in Section 1, the integrand in (2.5) shouid be closely
related to the vector potential of a magnetic monopole of strength — 1/2, in 8-¢ space, posi-
tioned at tbe otigin. A standard expression for the vector potential of a Dirac mono-
pole of this stcergth is

-1 1
A+(r) = —5;_ —z‘:}-_rv. (_y> X, 0)9 (2-6)

where x = rsinfcos¢, y = rsinsing, z = rcos 0. Thus with r = (x, y, 2)

2r(z+r)

A (r)- dr(= (xdy — ydx) = —% (1—cos 8)d¢. (V)

Hence indeed (cf. (1.11))

t

d t
W) = f TROBTE f Ledmr, X))
(1]

0

and we see explicitly the ‘monopole’ character of the phase factor associated with adiabatic
motion rounrd the degeneracy point n = 0. (We hope the reader wili noi be confused by the
use of n for the slow d.f.’s in this Section, and of n as a label ot a ‘fast’ eigenstate in the
previous one.)

However, the wave function (2.3) is ill-defined at # = n (what is the value of ¢ when
0 = n?). An alternative choice of 1 wave function which is well defined at 0 = = is

cos 9/2¢" ¢
0g|Tn—> = (Sin 02 ) (2.9)
Repeating the above calculations we find that this leads to a Berry phase
t
d
()= — J%(—l—cos G)Egb,-dt', (2.10)
0
which is equivalent 1o a vector potential
1 1
A_(i‘) = _"_—'—('_ya X, 0) (2‘11)
2r z—r

Though good at 0 = =, (2.9) is ill-defined at § = 0 — and in fact we are hitting bere the
famous problem that, for a monopole field, no single vector potential exists which is singu-
latity-free over the eotire manifold S,. The 4. which followed from the choice (2.3) has
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a singularity along z = —r, i.e. the negative z-axis, or 8§ = n. This line of singularities is
called a ‘Dirac string’ [4]. Likewise, the A_ choice has a string along 8 = 0. But, comparing
(2.5) and (2.10) we see that A;.and A_ differ by a gradient

A, —A_ =V, (2.12)
that is, by a gauge transformation. Correspondingly,
n = = —[6(O-¢0)], (2.13)

so that for a closed path on S, v, is unique.

What we see explicitly here for 4, is generally true. Any particular 4 will have a string
singularity somewhere, and by doing a gauge transformation we merely shift the singularity
somewhere else. The use of rwo A’s (e.g. 4+ and A_) was advocated by Wu and Yang
[29, 30] as a way round the singularity problem, since we can use each in a region (or
‘patch’) where it is singularity-free, and then connect the two, in a convenient overlap
‘region, by a gauge transformation.

The problem of singularities in the vector potential corresponding to a magnetic mono-
pole would seem to be unavoidable since, if B = V x 4-and 4 is singularity-free, divB = 0
and the magnetic charge must be zero. In our ultimate application of the Berry phase
concept, the ‘slow’ d.f.’s will be the meson field variables, which we shall want to quantize.
Thais is analogous to quantizing the n d.f.’s (i.c. 8, ¢) in the present quantum-mechanical
analogue. The presence of the (monopole) singularity at m = 0 makes this quantization
very awkward, and the Wu—Yang procedure is also not well-adapted to our later
purpose. .

Remarkably enough, however, it is possible to find a singularity-free Lagrangian for
the monopole problem. Indeed, it is given to us automatically by the Berry phase formula,
as we shall now describe. We then show how to obtain, fiom the Berry formula,
the elegant Balachandran formalism [13-17], which is ideally suited to the Skyrmion
application.

3. The Hopf fibration of S,, and the Balachandran Lagrangian

2= (Z) 3.1

for the two-component spinor which is the eigenfunction of (2.1) (e.g. z could be (2.3)
or (2.9)). The effective Lagrangian associated with the Berry phase is then
dz

Lo =izt (3.2)

Let us introduce the notation

(cf. (2.8) and (2.10), and check it by trying (2.3) or (2.9) for z). In the two 2’s considered
explicitly so far ((2.3) and (2.9)) only two d.f.’s entered, namely 6 and ¢, the coordinates
of a point on the surface of a wo-dimensional sphere S,. We set Ly = —4 - dnfdt to
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obtain the potentials 4. and 4., also on S,. However, in principle the spinor z has
three d.f.’s, since the normalization condition
2tz =1 = |z,  +]2, (3.3)

is only one constraint on the two complex numbers z,, z,. Indeed, we may in general
consider either (2.3) or (2.9) to be multiplied by an arbitrary phase, for example

cos 8/2 €* _
= (sin 62 ¢*n )" (3.4)
The corresponding ‘4’ must now depend on three d.f.’s, and consequently is not restricted
to the surface of an S,: it turns out, as we shall now see, that it is actually defined on the

surface of an S, and is non-singular!
Suppose we write

21 = x1+ix2 (3 5)
Zy = Xy+ixg| ' ’
Then z*z = 1 becomes
xP4xi4+xi+xi=1, (3.6)

and the x; are the coordinates of a point on an S;. Comparing (3.4) and (3.5) we find

%, = cos 0/2 cos , X, = c0s /2 §in X } 37
x3 = sinB/2cos{@p+y), x,=-sin82sin{dp+3)
The metric is ,
ds? = 1 d6*+dy® +sin® 0/2d¢$* +2 sin? /2d pdy. (3.8)
It is more convenient to use orthogonal coordinates by introducing
v =¢+x (39
in terms of which (3.8) becomes
ds? = % d6*+cos?0/2dy* +sin® 6/2dy”. (3.10)
Thus ‘4 - dn’ now has the form _
Ag+dO+ A, cos 0/2dy+ A, sin 6;2dy. (3.11)
Inserting (3.4) into (3.2) we find easily,
‘A-dn = —izldz = dy+1 (1—cos 0)do (3.12)
= cos? 0/2dy+sin® 0/2dy (3.13)

whence, via (3.11),

Ay =0, A, =cosb2, A,=sinbj2.. (3.14)
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These potentials are manifestly non-singular. By contrast, the ‘S,’ forms (2.7), and the
corresponding A_ - dn from (2.11), are singular. Copsider, for example (2.7). On S, the
metric is ds? = d#?+sin? 0d¢* and so

, (L=cos 6) .
Aig=0,4, 4= —5- prow e tan 0/2, (3.15)

which is singular (as expected) at 0 = n. Likewise A_ ;4 is singular at @ = 0. In terms of
the S; coordinates,

A, dn= —L%(1—cos8)dp = —sin? 8/2dyp+sin* 0/2dy, (3.16)
giving
sin® 6/2

A =0 A=

A, , = —sinf)2 (3.17)

and A, , is singular at 0 = n. The S3 components of 4_. can be found similarly, and this
time A_ , is singular at 8 = 0.

Thus a non-singular potential for the monopole can be found provided we enlarge
the configuration space from S, to S5, and use the full three d.f.’s available in z. Are we
sure that the physics is really the same? The Lagrangian &, corresponding to (3.4) is, of
coutrse,

Lo = g:;f(")")e, (3.18)

which differs from 2 %(n) by a total time derivative, and thereforz leads to the same equati-
ons of motion. From (3.18) we learn tnat y is acting likz a U(l) gauge d.f. Thus the two
d.f.’s of S, have been enlarged to three by the addition of a U(1) gauge d.f., y. This is a well-
-known construction in mathematics, called the Hopf fibration of S,. S, can be regarded
as a principal fibre bundle with base space S, and a U(1) structure group. The (Hopf)
projection map which takes us from S; to S, is giver explicitly by

n = zlez, (3.19)

as can easily bz checkzd (Appendix B). Ryder [31] and Minami [32] were the first to intro-
duce the Hopf map into monopole theory. »

From (3.12) it is clear tnhat the A, potential is obtained (cf. (2.7)) by setting y = 0,
and the A- one by setting y = —¢. Restricting y in this way is called taking a ‘section’
of the fibre bundle. These two choices ate each called ‘local’ sections, because they (and
the potentials) are not smoothly defined globally over the entire S, : A4 is smooth for an
upper patch of S, excluding 0 = n, aid A4- is smooth for a fower patch excluding 6 = 0.
It is, in fact, not possible to find any such section which is smooth globally, in this case:
a minimum of two is required, as in the explicit examples of 4. Mathematically this
corresponds to the fact that our (monopole) bundle is non-trivial, or — equivalently —
to the fact that S, is only locally, but not globally, equivalent to S, x S,. Thus the monopole
Lagrangian can be described in a singularity-free way by using a non-trivial bundle over §,.
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The above formulation is not yet quite suitable for our later application to Skyrmion
physics, In that case, the d.f.’s in which we shall be interested are actually entcies in an SU(3)
matrix, and it is hard to see how to generalize z to such a matrix. On the other hand, S5 is the
group manifold of SU(2), and it is quite simple to reformulate the above results in terms
of a basic dynamical variable (0, ¢, y) € SU(2), rather than z(6, ¢, x). This will lead to
Balachandran’s form for 2, which will be directly analogous to the SU(3) case.

We can associate a general SU(2) matrix s with the components z,, z, of z via

*
s = (zl ~g) (3.20)
22 21

since the condition |z,|>+12,> = | guarantees sts = sst = 1. In terms of s, the L of
(3.2) becomes
o, dz i . _
Lo = izl =7 tr (o357's) (3.21)
as may be verified explicitly. Equation (3.21) provides our desired (Balachandran) monopole
Lagrangian in terms of s e SU(2). 1t is pleasing to see this direct link between the Berry
phase and the Balachandran Lagrapgian.
The Hopf map can equivalently be described in terms.of 5. The counteipart of (3.19) is

6 n = 50,5 " (3.22)

(note that n?2 = 1 follows automatically upon squaring both sides). Under right multiplica-
tion of s by an element of U(1)

§ — 5§ exp ioa, (3.23)
o n — s(exp io1)os(exp—ion)s™ = so3s ' =0 n (3.24)

and n is unchanged. Thus the space SU(2)/U(1) of right cosets (3.23) gets mapped by (3.22)
into S, (see Fig. 2).

Fig. 2. The one-cycle Sy of all points in §5 related to a given point 5, of S5 by s, exp (io3%), as « varies,
is mapped by the Hopf map II into the single point n; of S,
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To gain some confidence with this s-formalism, we can simply insert (2.3) into (3.20),

obtaining
_fcos /2  —sin 0/2¢"'*
s+(m) = (sin 026" cos 0)2 ) (3.25)
whence
i e —(l—cos 8) d¢
Lie(n) = 5 tr(o;5%%s,) = TS (3.26)
in agreement with (2.8). Alternatively, (2.9) gives
_ (cos 8/2¢™*% —sin 6)2
s-(m) = (sin /2 cos /26" (3:27)
so that
s.(n) = s.(n)e“”“b (3.28a)
$,0387 =s_o3sZ'=a-n (3.28b)
_ i PR —(—1—cosf) d
Lalm) = > tr (035215.) = ——5— %’- (3.28¢)
Le(n)— La(m) = —¢. (3.28d)

Equation (3.28a) shows that, for given n, s, and s- are in the same coset, and get mapped

into the same n (3.28b). Equation (3.28d) shows that the corresponding effective Lagran-

gians differ by a total derivative, and hence lead to the same equations of motion for the

n d.f.’s. Indeed, the difference between the choice 5. and s_ corresponds exactly to the gauge

transformation on the associated vector potentials A. and A- considered earlier in (2.12):
In general, we may consider now the SU(2) matrix

5(09 ¢3 X) = S+(0’ ¢)eiﬂ'31

cos 0/2e* —sin 02e” O
- (sin 6/2'@* 0 cos f)2e” % ’ (3.29)
corresponding to (3.4). Then s, is the y = O section of this, while 5-is the y = —¢ section.
The Lagrangian following from (3.29) is, of course,
i e .
£} tr (035515, )— (3.30)

as in (3.18).
In concluding this Section we note (see [31] and [32]) that the foregoing can all be
rephrased using the compact formalism of differential forms, and some elementary ideas
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of homology and cohomology. The potential 1-form is
A = izldz = —xdx,+x,dx, —X3dx,+ X,dx5, (3.31)
and the field 2-form B is
B =dA = idzt A dz = —2(dx, A dx,+dx, A dxy) = —Lsin0d8 A dp,  (3.32)
where (3.7) has been used. B is just proportional to the area 2-form of §,, and

{B=—14n, (3.33)
Sz

showing that these potentials and fields'indeed correspond to a monopole of strength 1/2.
B is certainly closed,

dB=0

but it cannot be exact (B = dA) on S,, since if it were we could use Stokes’ theorem on S, to
_obtain ,
fB=fdAa= [ A=0, (3.34)
S2

Sa oS>

since S, has no boundary; (3.34) would then contradict (3.33). However, if B is regarded
as a 2-form on §j it is exact, since H*(S;) = 0, and consequently an A such that B = d4
does exist on Sj;.

4. Quantization of the n d.f’s: the Dirac condition again

We now want to consider, following Balachandran et al. [13, 17], the-problem of
quantizing the d.f.’s n(0, ) — i.e. we want to promote the ‘slow’ d.f.’s, which hitherto in
Sections 2 and 3 have been parameters, to dynamical variables. In path integral terms, this
means — cf. (1.14) — that we want to consider

f Dnexp {i § [1 n* + L g(n)]dt}. 4.1)

We know that the quantum theory of the charge-monopole system should only be consistent
provided the Dirac condition holds. We are going to see where this arises in the s-formalism.

In the previous Section we have seen that the introduction of the new (SU(2)) d.f.
x allowed us to describe the monopole system by a non-singular Lagrangian — and so in
quantizing this system we do not have the problem of singularities to contend with. On the
other hand, we want the physics to be independent of y. In the classical theory, as we have
seen y acts like a U(l) gauge d.f.,, and changing y is like doing a gauge transformation,
under which the equations of motion are invariant. In the quantum theory, we must ensure
that a corresponding gauge invariance is correctly implemented. This requirement leads to
the Dirac condition.
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It is clear that the first term, 1/2n2, in the Lagrangian of (4.1) is invariant under a U(1)
gauge transformation

5 - 5730 4.2)

since n remains invariant under (4.2) (see also Appendix C). Thus non-trivial constraints
on the theory, associated with the implementation of gauge invariance under (4.2), must
arise from the second (‘monopole’) term. Let us consider a general such term

Ler(n) = —gitr (o357 "s), (4.3)
where the monopole strength g is not yet determined. Then, under (4.2),
Legr = geff'f‘ 28&' 4.4)

In the quantum theory, s will be promoted to a quantum variable s, and wave functions
will be written as ¥(s). Consider the infinitesimal (quantum) version of (4.2):

5 o S+iso408, 4.5)
and let G be the generator of this transformation so that
[G, 5] = Sos. (4.6)
Then, from Noether’s theorem and (4.4), we deduce
GY =2g¥ (4.7)

as a consistency condition on the state functions (it is a kind of ‘Gauss Law’ associated
with gauge invariance under (4.2); see also Appendix C). For finite transformations we
then have

Pi(s) = (€90 (s) = P(s€'*) = 2P, (4.8)
The last two equalities of (4.8) give
¥(0, §, x+a) = > V(0 b, X). 4.9

which enforces a kind of ‘Bloch’ condition on the y d.f. If we consider the particular case
o = 2r, then since

e¥mios = (4.10)
we deduce
e*™ =1 (4.11)
and hence ‘
g=0,+1, +1,..., (4.12)

which is precisely the Dirac condition. Equation (4.9) is called an ‘equivariance’ condition
on the wave function ¥: in going from the S, of (8, ¢) to the S5 of (0, ¢, x) we have enlarged
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the configuration space over which our wave functions are to be defined, but an arbitrary
‘dependence on the additional variable y is not consistent with the required gauge invariance
(dynamical independence) with respect to x. Only ¥’s satisfying (4.9) are allowed, with
g saiisfying (4.12). And, of course, our basic spinor

cos 0/2 &
<sin 0/2 e“"’“”) (4.13)

does satisfy (4.12) with g = —1/2, the minimum non-tsiviat magnitude.

A general wave function ¥(s) can be expressed as a linear combination of the ‘top’
functions 2,00, ¢, x), which carry irreducible representations of SU(2). It seems obvious
from the fact that 0, ¢, and y are angles that j should indeed be the angular momentum
quantum number; for those who dovbt, some further discussion is given in Appendix D.
Then

T(S) = 2 cl];l’m@;’;n’pn(oa d)’ X) (414)

Jym',m

The constraint (4.9) must now be imposed. If we multiply s from the right by exp (i),
the @’s get changed by

D5 €Xp ia30) = 2™ DI, (5), (4.15)
since m is the eigenvalue of ¢3/2. Thus from (4.15) and (4.9),
m=g=0,+1,+1,... (4.16)

and the possibiiity of 1/2-odd integral spin has emerged (since j is 1/2-odd integral if 2m
is odd and integral if 2m is even). In fact, as stated in Section 1, the system has 1/2-odd
angular momentum if the monopole strength g has the value (n+1/2), for integer n.

5. The Skyrmion case

Our basic analogy is as follows:

fast d.f.’s : fermion Fock states ~ spin states |1), |}) )
fermion vacuum [0) ~ spin state |1)

5.1

slow d.f.’s: Goldstone boson fields ¢, ~ angular variables n

10, o> ~ |1n)

P

Just as a monopole structure appeared in the Berry phase associated with |, n) for
slowly varying n, so the W—Z term in the bosonic action is interpreted as a kind of Berry
phase for [0,¢,>.

We begin by introducing the commonly-used notation for the ¢ fields. la the case of
SU(2), we would have four ¢’s, written as ¢ = (o, 7), where 62+ a2 = f2, quite analo-
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gously to n? = 1. However, this does not generalize to the required SU(3), case. Instead,
we first rewrite ¢ as

¢ =sU, (5.2)
where
U = exp (it  nff) (5.3)

is a unitary 2 x 2 matrix. This amounts to a reparametrization of the original ¢, 7 in the
expression ¢ = (o,2). In SU(3);, (5.3) is generalized to (cf. (1.22))

U = exp (id - n/f), (5.4)

where n is understood now to be an 8-component ‘angle-type’ field. The analogue of (4.1)
is then

§ U exp {i | Lo(U)d1} exp iSy.,(U), (5.5)

where %, is all the rest of the Lagrangian for the U fields, apart from the W-Z term; for
example,

Lo = 2tr (U U+ ..., (5.6)

where the dots repcesent other terms which are necessary to stabilize the soliton, for
instance. Finally, the expression for the W-Z action is [§]

exp iSy.z = exp :'leo% f M tr (Uo,U Uts,U Ute U Ut U Uta,U)d’x.  (5.7)
The integral in (5.7) is over a 5-dimensional ‘disc’ whose boundary is 4-dimensional Min-
kowskian space-time. This disc is the 5-dimensional analogue of the 2-dimensional surfaces
considered in (1.19)~(1.21), and N, is the analogue [8] of the monopole N in (1.21).
Now, we seem a long way from anything like the Balachandran monopole Lagrangian
(3.21). However, we can actually make the connection quite explicit, as follows [16, 17].
Instead of treating the full quantum-mechanical problem (5.5), in which the whole of the
U matrix is treated as a quantum field variable, we perform only a ‘semi-classical’ quantiza-
tion. In such an approach, one starts from a solution U(r) of the static classical field
equations in the SU(2); case, which is of standard Skyrmion type (cf. (5.3) with = = f ro(r)):

U(r) = cos 8(r)+it - ¥ sin 6(r). (5.8)

1t is clear that this solution is not rotationally invariant, nor is it invariant under isospin
rotations. In fact, there are infinitely many such solutions, related to one another by spatial
or isospin rotations, all of which are degenerate in energy since the original Lagrangian
is invariant under space or isospin rotations. Actually these two kinds of rotation are effec-
tively equivalent for (5.8), since

sts~ = ;R(8) (5.9)
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for s € SU(2). The coordinates which distinguish these degenerate classical configurations
are the parameters of the matrix s. The semi-classical quantization procedure consists in
promoting these d.f.’s into quantum variables s(z). Thus we write

U(r, ) = s(HU(Ps™ (). (5.10)

Classical quantities will now have a subscript ¢, and quantum d.f.’s will be distinguished
by having no subscript ¢, instead of by having a ‘~’, The s(¢) will behave just like the s of
Sections 3 and 4.

We must now extend (5.8) and hence (5.10) to the SU(3); case, or else we getno W—Z
term at all [8] (see further Section 6). This means that we have to ‘embed’ (5.8) inside an
SU(3) matrix. The obvious way to do this would seem to be

v <ggs 60)+it - 7 sin (1) ?) = 0.n) (5.11)

(alternative embeddings, which have different physical conseguences, are discussed in
Refs [12], [16] and [17]). So now,

U(r, 1) = s()U(r)s~ (1), s € SUQB),. (5.12)
We observe at once that Ulr, t) is invariant under

s — se'f*®, (5.13)

where

y=1% (5.14)

SO -

0
1
0—

N oo

(the normalization is, of course, chosen for convenience). Thus, the configuration space
for the s d.f.’s is not SU(3) but rather SU(3)/U(1)y; this is exactly analogous to our mono-
pole example, where the required configuration space was SU(2)/U(1). In fact, the analogy
is very close indeed, for when (5.12) is inserted into (5.7) one finds — after some caicula-
tion — that the term involving s (i.c. the piece involving the quantum d.f.’s, in this approxi-
mation) is just [16, 17]

Pz = =1 NBWU) tr (Ys™'s), (5.15)

where B(U,) is the winding number (= baryon number) of the classical configuration U,
Equation (5.15) should be compared with (3.21).

We see, from this comparison, that indeed the W —Z term is acting so as to produce,
in this semi-classical quantization, exactly a ‘monopole in SU(3) space’. The procedure
of Section 4 can be transcribed easily to SU(3). The gauge invariance analogous to (4.2)
is the invariance of (5.13), under which, however, £y, ; changes according to

Pwz~ PLw.gt+it N.Ba. (5.16)
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In the quantized theory, s and ¥ are operators, and from Noether’s theorem (corresponding
to (4.7)) we have

A

Y¥ = L N_BY. (5.17)

What is the analogue of the quantization constraint (4.12)? For this we note [17] that if we
replace s by sh in (5.12), with & € SU(2), this is equivalent to rotating U, by some spatial
rotation parametrized by A (cf. 5.9)). In particular, consider a rotation by 2n about the
3rd axis. This corresponds to

(-1 0

= ( 0 — 1) (5.18)

and thus to the replacement

O = O

1 0
so>s| 0 =1 0] =s™. (5.19)
0 1

According to (5.17), the allowed ¥’s must then pick up a phase factor
e™NE, (5.20)

and hence the allowed states for B = 1 are fermions if N, is odd, and bosons if N is even! [9].
The wave functionals ¥ are the SU(3) generalization of the SU(2) rotation functious
2. [s € SUQ2)] — namely

DL tsyir 1y (s € SU(3)), (5.21)

where p and ¢ label the irreducible rcpresentation of SU(3). In (5.21) the left-hand group
of magnetxc quantum numbers’ refers to transformation properties under left multiplica-
tion of s by a matrix in SU(3), and hence (cf. (5.12)) to a flavour rotation of U; the right-
-hand indices refer to right multiplication. But we have already seen that the SU(2) part —
in the sense of (5.11) — of any ‘right multiplication’ matrix corresponds to a spatial rota-
tion. Hence I’ and I3 are actually the real spin and its third component. Now for B = 1
and N, = 3 we need the eigenvalue ¥’ = 1 from (5.17). The lowest d:mensmnahty SU(3)
representations with ¥’ = 1 are the 8 and 10 (Fig. 3). In the former, the states with ¥’ = 1
have I’ = 1/2, and hence spin 1/2, while in the latter they have spin 3/2. The left-hand indices
give just the flavour quantum numbeis corresponding to these SU(3) representations:
thus we have an 8 of spin 1/2 and a 10 of spin 3/2.

Further details of Skyrmion quantization are given in Guadagnini [11] and Rabino-
vici et al. [12]: our concern here has been to place the ‘monopole’ form (5. 15) of Pz i in
the context of an adiabatic decoupling problem. From this point of view, the pecullar
phase behaviour leading to ‘fermion-ness’ in the ¢ sector has arisen as a result of non-
-trivial structure left behind when the fermion vacuum is decoupled adiabatically from
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%

Fig. 3. The 8 and 10 representations of SU(3), showing the two allowed multiplets with ¥’ = 1

the ¢’s. 1f we use only the ¢ d.f.’s, and integrate the fermions away, we must includea W—Z
term which embodies this structure. The ultimate reason that this structure has a ‘monopole’
form is to be found in the topological approach to anomalies [27, 28].

We may also remark that a similar mechanism holds for Skyrmions in 2+ 1 dimen-
sions [33]. Here the Wess— Zumino term is replaced by the Hopf term [34-37], which
can also be interpreted as arising from integrating out fermions [35]. When the Skyrmion
is quantized semi-classically, the angular momentum has the value (integer + 0/27),
where 0 is the coefficient of the Hopf term [38]. The effective Lagrangian in this approxima-
tion is exactly analogous to that describing a charged particle moving in two dimensions
in the field of a magnetic vortex lying perpendicular to the plane of motion. In that case,
the angular momenium can have a value peither integral nor half-odd integral, with con-
sequential ‘fractional statistics’ [39-41]. Thus just as, in 341, the W—Z term acts as
a monopole in field space, so in 2+ 1 the Hopf term acts as a vortex in field space.
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6. Postscript: the case of only two flavours

The above discussion has been predicated upon the existence of the W-Z term —
whose presence determines the quantization of the Skyrmion (fermion if N, odd, boson
if N, even). But if there are only two flavours, there is no W — Z term : when ( 5.3) is substitut-
ed into (5.7) the SU(2) trace vanishes!. Yet there are topologicai solitons since
75(SU(2)) = Z. What determines their quantization?

The answer is that the B = 1 soliton can be quantized either as a boson or as a fermion :
there is no restriction involving N,, and one has to choose the fermionic option by hand
[42). The way in which fermionic quantization is possible (but not required) was discussed
by Finkelstein [43], Finkelstein and Rubinstein [44], and Williams [45). One way of putting
it is as follows [46]. Since n,(SU(2)) = Z,, time-dependent soliton fields U fall into two
distinct homotopy classes of maps from (compactified) space-time to SU(2). Functional
integrals over the U’s can therefore be separated into two topologically disjoint sectors
(analogous to 6-vacua in QCD), corresponding to those U’s which can be continuously
deformed to the identity, and those which cannot. The contribution from these two sectors
to the functional propagator can have a relative + sign or a relative — sign: in the former
case the propagator contains all integral spins (bosonic), in the latter half-integral ones
(fermionic). _

This situation is mathematically the same as tnat of the spherical top [3], since
7n4{O(3)) = Z, also, and the same boson/fermion option therefore exists. In this case one
can say, alternatively, that since O(3) is doubly-connected, wave functions on O(3) need
not be single-valued. One can define single-valued wave functions by passing to the universal
covering space SU(2), but then one has to project back to O(3) via SU(2) - O(3)
=~ SU(2)/Z,, on which a double-valuedness can appear.

For N; > 2, n,(SU(Np)) = 0 and so this boson/fermion option is removed. But then,
since n5(SU(N;)) = Z we have the W—Z addition to the Lagrangian, and the N,-related
quantization is determined. ‘

I am grateful to Jo Zuk for many very helpful discussions; and to Stephen Wilkinson
for patient instruction in some of the relevant mathematics, and for carefully reading the
manuscript. It is a pleasure to take this opportunity of thanking Drs M. Praszalowicz and
W. Stominski for organising such a stimulating and enjoyable School, and for their warm
hospitality.

APPENDIX A
Monopole strength and (U)1 winding number

We have seen that the monopole strength g in

ZLor(m) = gitr(a3s™'s) (A1)

! Alternatively [8], in SU(2) G-parity invariance forbids amplitudes with an (ﬁid number of pions,
while (5.7) would, if it were non-vanishing, allow them; in SU(3), (5.7) allows KK — 3=, which is not
forbidden by G-parity.
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is restricted to the values g = p/2 where p = 0, £1, 2, ... In this Appendix we will show
how p can be interpreted as a winding number associated with the U(1) gauge transforma-
tion (4.2).
Consider a sequence of gauge transformations
s = s exp iozolt) (A.2)

parametrized by ¢, where
ut=0)=0, oft=T)=2r, (A3)
so that we have a closed loop in s-space,
s(t = 0) = s(t = T). (A9

Then: as we move through this sequence of f-values, the parameter « of the U(1) gauge
group goes once round its circle (Fig. Ala):
Corresponding to the gauge transformation (A.2), we have the transformation

cos 8/2¢* Ny
z= <sin 0/2e"(¢+z)) - "z (A.5)

of the basic 1 spinor (cf. (3.6) and (3.12)). Thus «(¢) is just a variable phase for the associated
spinor, and as we go round the sequence of gauge transformations in Fig. Ala, this phase
swings round precisely once (Fig. Alb). Meanwhile, what is happening to &.g(n)? This
becomes

eff(n) —-> geff(n)—pda (A6)

where p = 2g. The associated effective action therefore changes by

T
exp —i | padt = exp (—2mip), (A7)
o]

(172

«(T/4)

af3T/4)
0 M '

Fig. Al. Sequence of gauge transformations corresponding to a closed loop in s-space, and the associated
variation of the spinor phase
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i.e. its phase swings round p times as we follow the circuit of Fig. Ala. We can therefore
interpret p as a winding number which counts the number of rotations of the action phase
as we circulate once in a-space (i.e. one circuit in U(l) space).

APPENDIX B

More on the Hopf map

In Section 3 we gave two forms of the Hopf map, one in terms of z

n = zloz, (B.1)
and the other in terms of s
o' n = 506551, (B.2)
where
z 1 i
z= (Z’>, iz31* +1z,0% =1 (B.3)
2
and
*
_{Z T2,
s = (22 ZT) . (B.4)

We make the connection between (B.1) and (B.2) as follows. Let us write z, = x,
+ix,, 2; = X3-+ix4. Then from (B.4)

ny = (% —ix, x3—ixy) (? é) (;:igi ) = 2(xXyX3+X5%4) (B.5)
and
Ny = 2(X1X4—X2X3) (B.6)
ny = xi+x3-x3-x3, (B.7)
while
x24xi4xi4xnl =1 (B.8)

On the other harnd, for our s of (3.12), connected to the parameters 8, ¢ of n, we had
z, = cos 0/2e: x, = cos Bj2cosy, x, = cosf/2siny (B.9)
z, = sin 8/2¢'@ 70 x; = sin 02 cos (p+7), x4 =sinf/2sin(p+y), (B.10)
whence from (B.5)-(B.7)
n, = sin 0 cos¢

n, = sin @sing
ny = cos 0 {B.11)

as required.
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The matrix s has a simple geometrical interpretation. Consider first the case of

wap= (ks ) o
Let u be the unit vector
u = (—sin ¢, cos ¢, 0) (B.13)
and copsider
exp (—io - u8/2) = cos 6/2—i sin 8/20 - u (B.14)
= 5.(6, ¢). (B.15)

This is a rotation of  about u, which rotates z into » (Fig. B1). So Eg. (B.2), which is equiv-
alent to

sylens, = o4 (B.16)

in this case, means simply that n has been rotated to be along the 3rd axis. The remaining
factor exp (io3x) in (3.12) is then just a rotation about the 3 axis (the ‘body’ axis).

[ ]

i~

[ 44

Fig. Bl. A rotation of 8 about & rotates Z into 7

 There is yet one more way of writing the connection between z (or s) and n which the
Hopf map enforces. It is
6-n=2zz1-1 (B.17)
This is easy to verify: using (B.1) for the components of n in terms of z,, z,, we find

1z1i2—12212 27‘;21 ) +
‘n = . = 2zz"—1, (B.18
’ (221‘22 (2~ |24 )

with the help of |z,12+|z,}? = 1.
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APPENDIX C
An alternative quantization for monopoles [12]
Let us consider the monopole action in (4.1),
S=[[En’+Liptr (o5 ts)]dt (C.1)
= [ [ n®+ipztz]at, (C.2)

where the second step follows from (3.21), and g has been replaced by p/2 (Appendix A).
We have not so far considered explicitly the first (‘kinetic energy’) term of (C.2) — let
‘us attend to it now,

We have
in? =Lttr(o: n) (C3)
= 2[(#' ) +(z"2)"], (C4
using (B.17). Let us write
a = iztz; (C.5)
then
1n? =2:t2-24% (C.6)
But also
tr (sts) = 221z, (C.7)
by direct verification. Hence finally we can write this part of the action as
{ [tr (sts)—2a%]dt. (C.8)
Consider now the behaviour of (C.8) under the U(1) gauge transformation:
z = 0z (C.9)
which also corresponds to
s — sel*es, (C.10)
Under (C.9),
a-»a—a, (C.11)
so that
—2a* - —2a®+4aa—24". (C.12)
On the other hand, under (C.10) one finds easily
tr (s's) - tr (sts) —4aa+ 24> (C.13)

Thus (C.9) and (C.10) are together an invariance of (C.8), as we stated in Section 4.
- We can bring this invariance out by rewriting (C.8) as

§ tr {[(8,— iac3)s™] [s(, +iac3)]} (C.14)
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as can be simply checked, recalling that @ = 1 tr (g35-1s) also. Expression (C.14) is mani-
festly invariant under the combined transformations (C.9) and (C.10). Thus we are interested
in the generating functionai

Z = [PDsexpi[$(tr {[(B,— iag3)st] [s(8, + iaa3)]} + pa)dt], (C.15)

‘where the action is evaluated over closed loops in s-space. This can be rewritten with the
aid of an auxiliary field A(¢) [12] as
Z ~ [ DADs exp i[§ (tr {[(5,— iAc3)st] [s(5,+i403)]} + pA+% (p/2)P)dt], (C.16)

where a constant

§ 2A exp 2[4+G p- )]’}

has been ignored.

In (C.16) 4 acts as an independent gauge field, which changes by 4 — 4 —a under
the gauge transformation (C.10), so that (C.16) is gauge invariant. We can work in the
specific gauge 4 = 0, and require that the equation of motion obtained from the variation
with respect to A4 (i.e. Gauss’s law for this case) be realized as a constraint on the physical
states. In this gauge the Lagrangian of (C.16) is just

L(4 = 0) = tr (s15)+1 (p/2)* (C.17)

and Gauss’s law is
tr (—ioysts+istso;) = —p. (C.18)
Equation (C.18) is the equivalent of (4.7), since the Lh.s. can be identified with the generator
of right transformations (C.10), as we discuss further in Appendix D. Indeed, as we also
show there, the term tr (s? 5) is precisely L J2, the square of the angular momentum opera-

tor (the motion in r being ignored, only the angles varying). The Hamiltopnian in this
gauge is therefore

H(A=0)=31"-3(p2)" (C.19)

and the eigenfunctions are again @7, (s) with m (which carries the right multiplications)
restricted to the value —p/2, p = 0, +1, +2, ... The eigenvalues are & (G(j+ 1)—(p/2)%),
the allowed j being j = |p/2], ip/2|+1, ....

APPENDIX D
Angular momentum

The connection between the s-formalism and the conventional ‘spherical top’ formalism
can be made explicit by parametrizing s by the Euler angles a, B, y according to

N2 cos B2 €02 sin B2 D.1)
S=\cem0 9 gin g e 2o pi2)” -
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Straightforward calculation then yields
T = tr(5%5) = 1 2 +L (G+acos B> +1 &% sin® B, (D.2)

which may be compared with the expression for the spherical top kinetic energy given
by Edmonds [47], p. 66. The momenta canonically conjugate to «, ff, y are then

p, = — = a+jcos B, etc, (D.3)

Py — —i— etc. (D.4)
We find

T = —1 iz +cotﬁ—6~ +cosec® B o
* o of oy°
I @ 2cosp o _
t oS i E T T3 oA (D:5)

sin” f du sin® i Cady
for the operator representing the (rotational) kinetic energy. This is, in fact, precisely ;he'

angular kinetic energy

T=1%1Jr (D.6)

following Edmonds [47]. The cigenfunctions of T are then DI, B, 7). Alternative para-
metrizations of s, such as (3.29), are, of course, also possible.
Finally, we note that

i tr (stso;—aysts) = 2@+ cos ) = 2p,. (D.7

In the quantum theory, p, is the generator of rotations about the 3-axis, which are
represented in terms of s by right transformations

s(@, B,y) = s(@ = 0, B, e (D.8)

Thus 2p, is the generator associated with tne transformation (C.10), as claimed in Appendix
C, and its eigenvalues should be integral — as indeed is required by the constraint (C.18).
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