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Effective action for the A¢* theory and scalar electrodynamics interacting in nonmini-
mal way with the curvature and torsion in the de Sitter space is calculated. It is shown that
torsion which was absent at the classical level is induced as a result of quantum corrections.
The possibility of a first-order phase transition induced by curvature and torsion in scalar
electrodynamics is investigated.

PACS numbers: 04.60.+n

1. Recently attention is directed at the different aspects of gravity with torsion (sce,
e.g. [1-3]). The present paper is devoted 10 some questions of quantum field theory in
curved space-time with torsion. The properties of free quantum fields in curved space-time
with torsion have been investigated in [4-12]. Interacting fields in space-time with torsion
have been investigated in [13-14]. Let us discuss the results of papers [13-14] in details.
It was found there that for myltiplicative renormalizability of theory it is necessary to include
in action the terms corresponding to nonminimal interaction of the matter with curvature
and torsion. Indeed, consider the theory of scalar ¢ and spinor ¥ fields with Yukawa
coupling. (In the present paper we assume for simplicity the torsion tensor T, to be
entirely antisymmetric so that its independent components are determined by the pseudo-
vector S, = £,4,, T*"). Direct calculation of divergence index shows that it is necessary
to introduce additional counterterms R¢?, S,5%¢? and #ysy"S, ¥, where R is the curvature
without torsion. Then, we should introduce in the initial Lagrangian the terms (¢{R
+E98,8M) 9 + i Pysy"S,y with bare dimensionless parameters ¢, &9, £ in order
to provide multiplicative renormalizability. It leads to a theory which contains nonminimal
interaction of matter with curvature and torsion. The most amazing fact is that it is necessary
to introduce nonminimal interaction with torsion for the scalar field which does not interact
minimally with torsion at all.

Consider now asymptotically free theory including scalars, spinors and gauge fields.
The behaviour of such parameters as masses and couplings in strong gravitational fields
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is determined by the renormalization group (RG) equations (see, e.g. [13-16]). We will
limit ourselves to the case of asymptotically free theories where effective charges and effective
masses tend to zero in strong gravitational fields (at high energies). Effective charges cor-
responding to the dimensionless parameters &, &,, £; do not appear in the flat space.
Analysis which was performed in [13-15] shows that as energy grows, effective charges
&5, &3 (and in some theories £,;) do not tend to zero but increase indefinitely. As a con-
sequence, in the early Universe characterized by strong gravitational fields quantum fields
(including scalars) should necessarily contain nonminimal interaction with torsion and
curvature.

In the present paper effective action (EA) is calculated for the Ag* theory and scalar
electrodynamics (SE), which nonminimally interact with curvature and torsion in the de
Sitter space. Effective equations, which lead to dynamical appearance of torsion as a result
of quantum corrections, are constructed. The possibility of a first-order phase transition
induced by curvature and torsion in SE is investigated.

2. Using the {-function regularization in the form proposed in [17] we have obtained
EA of A¢*-theory in the de Sitter space with torsion. Let us choose background geometry
in the following form:

& = —k }(R+hS*-24,), «* = 161G, ¢))
_ 24n% 1
where R = 44, §? = S, 8*, [d*x/g = A: it A= - 2 Lagrangian (1) corresponds

to the Einstein-Cartan theory). Classical equations of motion for action (1) lead to the
following solution: A = A,, $? = 0 which corresponds to Euclidean de Sitter space. As
it will be shown below, after taking into account quantum corrections, solutions for A and
S2 are changed.
Let us write the Lagrangian of A¢* theory:
Ap*

& = KR4S =240)+3 (0up)" + T +EERTHE 65 @

This theory does not interact with torsion in the minimal way (£, = 0). However, it is
interesting to investigate properties of matter interacting with torsion in the frame of such
simple model before going to more complicated theories of matter interacting with torsion
in a minimal way. We assume that the scalar field is the only quantum field. Then for the
de Sitter space and constant scalar background we obtain the following one-loop effective
action;

Iy =jndet4(X), X = ig*[2+4E,4+¢,S 3

(notation as in [17]). Since the answer for I', is written in [17] for arbitrary X we write
the final expression

I' = 1+T; = 247°[ =267 22y + hS?y*[2— Aoy + Ax?[24 + 2¢ X
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i
+&,8%xy[2]+% By In 5y, 0 b3—11p,

bo
-1 j dz(z—PH¥P(1, Si\/g)]+const. 4)
1]
Here

=,y =ATY by =2 —3x/2—12¢, —3E,)S%,

By = 23+1282 — 48, +332x%/16 +(6¢, — 1)Ax[2+2 £25%y?
+3A5,8%xy +E,87p(6E,—1),  p(xEy) = p(x+y)+p(x—y),

(x) is the logarithmic derivative of Euler’s I' function and p? is the normalization point.
Note, that when §2 = 0 expression (4) coincides with the corresponding expression in

) . or or or .
[17]. Effective equations Y3 = — = —— = () enable us to take into account back

reaction of quantized matter on background geometry and to determine A, x2, S2.
Let x = 0. Then, EA (4) leads to the following equations:

or
55 = ~24x " *n?hy+hA = 0

or 2,.-2 2 h 2

= —48m°k ™22+ hS%y —~24,y) — -2;134(x =0)+hS%4 =0 &)

A= 1[3E8%+8,(6¢,~1)]In +&,/4[4 — 128, —38,yS?

I
3u’y
+(128, +3¢,y8° - 2)¥(G £ V/9/4—- 128, -38,y5)].
Excluding 4 from Eq. (5), we get equation for S?, solution for which is:
Stz = (=4, £[4]-3hE3)2(96n y ™ 22— 24,y) + h(Z5 — 4¢,
+1280)1%) (1.5hE3y) ™Y, Ay = 48nPhic™ 2y +hE, p(6¢, - 1). (6)

Therefore, quantum corrections lead to the dynamically induced torsion which did
not exist at the classical level. Substituting (6), for example, into the first equation of (5)
we can find expression for y.

Let Ao = 0, &, = & and suppose that terms ~% in expression (6) could be neglectea.
Then we get

8% ~ —192n%h/3hk*E: (b < 0). Q)
Substituting (7) into the first equation of (5) and assuming that S2y <1, |&,| ~ 1,
1
In —— ~ 1, we obtain
3uty
A~ —144n%hEx? (&, < 0). ®)
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Condition S%y <1 is here equivalent to the condition {4 < £.|. Thus, there appears
a pure quantum solution for A, S2. This quantum solution is determined by parameters
of torsion k, &,. From the viewpoint of RG, parameter &, increases in strong gravitational
fields [13]. The estimations show that this growth within the evolution of the Universe from
Planck’s scales is negligible. That is why, in accordance with (8), cosmological constant
becomes extremely large. In a similar way one can write effective equations for x # 0
and get small A by fine tuning of parameters Ay, &,. A. In this case expression for A is the
same as in the theory without torsion {17].
Note that EA can be found in a similar way for SE with the Lagrangian

- a 2
L= —k ¥ R—hS*=2A0)+ F2/4+(D,¢")[2+ /;(¢4:p,,)

+51R‘Pa%/2+§232¢a%/2a a=1,2
Lg = (2&).. I(VuA" + agaab¢arpb)29 (9)

where o is a gauge parameter, ¢, is the background field and ¢, is the quantum field.

3. Let us investigate now phase transitions induced by curvature and torsion in SE.
We consider the situation when ¢? >R, ¢* > S2, R = 44. In this case, considering only
leading terms in expansion of EA for SE (or getting EA by the direct solution of RG equa-
tions [18]) we obtain approximate expression for EA of SE in the de Sitter space in the
form:

_ A
r- j Ex BV, V=L LRGSO

2 .
+A4;¢* (m %,—-235—> +(B,R +B,S8%)¢*(In ¢*/u*—3) (10)
where

A, = (Té——n)(12g4+1012/9—4a2g2/3), B, = (4n) 2% g® +ag?2 + A(E—1)3),

B, = &(4m)*(ag?[2+4[3)

and normalization of {18] is used. We are only interested in the first-order phase transitions
when the order parameter g2 at some critical R, and S? is quickly changed. Let z = @?/u?,
¥, = R/u?, y, = S?/u?. Critical parameters, corresponding to first-order phase transition
are found from the conditions:

ov oV
Vi y) =0, — =0, 221 so 1
(zc ) ) az ZesYei axz XesYci ( )
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These conditions lcad to the equations
2
2A§ = z Di‘lii[(z (DiDj_4A§BiBj)quj]1/2
i=1 i

D; = A38i[2—-5A4;3B;/6—4B,[24,  q; = y/z
z = exp [(4/24—254,/6+ Z (&i/2—-3B)q,) (Z Bigi—A3) "]

124—8A4,/3+ A3 Inz+ Y Bigy/2 > 0. (12)

The evident conditiens g; > 0 and ¢; < 1 should be added to expressions (12) (otherwise
the obtaincd results would contradict the initial assumptions ¢? > R and ¢? > $2). More-
over, in expressions (12) we must leave only the terms which are not beyond the scope
of the one-loop approximation.

Assume that as in the flat space A/24 = 1144/3 [21] and hence A ~ g% Let |&] 3 > g2

3éi

Then D; ~ and from the first expression (12) we obtain 24, = Y &g;and g; = 24,4/,

In the same approximation z, & e 1'%, y ;& 2e~ 12 4,/¢,. Condition q, < lleads to &) < g4
“The third condition (12) is also fufillad. Since 45 > 0, then for g2 <€ ¢; < g~* the theory
admits first-order phase transition induced by curvature and torsion. It is evident that
when A ~ g%, z,, y.; do not depend on the gauge parameter a. It is easy to see that specula-
tions given above are valid in the case R = 0, too. In this casz phase transition is induced
only by torsion in flat space. Note that without torsion phase transition induced by curva-
ture in SE have been investigated in [19, 20].
Now let us investigate the analogue of dimensional transmutation [21] in the de Sitter
space. Let ¥ have minimum at ¢ = ¢, # 0 and let us chcose u = ¢.. Then, the condition
ov

= 0 results in
an P =@

= Y (&2—2B)Pij(224,/3—4/12), P, =R, P, =5 (13)

The minimum of ¥ is determined easily (if the right-hand part of (13) is negative then
minimum does not exist). The dimensional transmutetion does not take place. Let

oV
4[24 = 114;/3. Then, from the condition — = 0 we obtain Y (£/2—2B)P, =0
‘e ¢=¢c i
and finally &, = 4B;. Thus, when 4/24 = 114,/3, dimensionless parameters &,, &, are
cxpressed through other parameters, and at the same time the independent dimensional
parameter ¢ appears. Dimensional transmutation does take place.
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