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In the paper, a relation between the Hill-Wheeler integral and the angular momentum
lowering operator is derived and used to construct the orthonormal physical basis for the
Bohr-type and IBM collective Hamiltonians.
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1. Introduction

The Hill-Wheeler projection technique has been exploited in nuclear physics since
1953 [1] The method permlts us to obtain all the states required for a physical system by
proper choice of a small set of states called ““intrinsic states”. The projection method is
especially useful for the construction of the physical representation bases of a Hamiltonian
symmetry group. In this way Elliot has constructed the basis for the symmetry SU(3)
{2]. Following these works, in two successive papers by Kemmer, Pursey and Williams
the non-orthogonal basis, in the form of the Hill-Wheeler integral, for the symmetric
“non-physical” representations of SO(5) group, has been constructed [3]. As is known,
over twenty years ago Bohr and Mottelson [4, 5] discussed the quadrupole vibrations of
the liquid drop in the quantum-mechanical picture. This problem provided the basis for the
introduction of the collective degrees of freedom in the description of nuclear dynamics.
But, the explicit form of all eigenstates of the Bohr collective Hammiltonian, i.e. the basis
for the symmetric physical representation of SO(5) group, has not been recognized until
1976 when four rather extensive papers on this problem were published [6-9]. One of them,
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written by Corrigan, Margetan and Williams [6] gives an exact solution of the Bohr Ha-
miltonian using the Hill-Wheeler integral. This solution is strictly related to the construc-
tion of the basis for SO(5) symmetry described in the present paper.

Another method has been applied in the later papers [10, 11]. L-diminishing angular
momentum operator has been defined and used to obtain an orthonormal basis for the
five dimensional harmonic oscillator in both, boson and Bohr collective variable pictures.
In the present paper a connection between the Hill-Wheeler projection operator and the
angular momentum lowering operator is studied and applied to construct another, simplified
version of the basis. The basis vectors, it is worthwhile to note, are the eigenvectors for
the ““vibrational limit” of the Interacting Boson Model Hamiltonian [13] and small “anhar-
monicities” due to breaking of SU(5) dynamical symmetry can be easily treated by means
of the perturbation theory. On the other hand the basis can be directly applied to diagona-
lize the Bohr collective Hamiltonian with deformation dependent mass parameters and
potential energy. calculated either from the cranking approach [14] or the generator co-
ordinate method [15].

In general, the derived relation between the L-lowering operator method and the Hill-
Wheeler integral (the projector) can be used to obtain all states required (with definite
angular momentum quantum numbers) for a large class of physical systems.

2. Equivalence of L-lowering operator and the Hill-Wheeler integral

The angular momentum lowering operator O(L’ILM ) has been introduced in Appendix
A of [10]. The operator is defined by the equation

OLILM) |[LM’ = L) = [LM), (L > L), (1)

here L, L’ and M, M’ are the total angular momentum and its third component quantum
numbers, respectively; / is a nonnegative arbitrary integer. It has been proved [10] that
the operator

1 .
OLILM) = ¥ B (LIL) (LY ML, )"*'TY, )
.

m=L-

where TW is an irreducible tensor operator of the rank / under rotational transformations
and B,(L'IL) are given by

(-n"

AL = A T D m A L+ L4 D)1

3

is of that property. L_, L, with the additional operator L,, stand for gererators of the
angular momentum group SO(3). The generators satisfy the known commutation rela-
tions

[LO) L+] =Ly, [LO’ L—] =-L_, [L+’ L—] = 2L,. )]
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Equation (1) with the operator O given by (2) can be written in the form
LM = mi_y Bn(LIL) (L Y™ =ML "' TYILL)
= I AulLIL) U= ILLIL E=) (L™ L™ (T @ D) - (5)

where (/;m,l,m,|lm) denotes the Clebsch-Gordan coefficients for the group SO(3). After
straightforward calculations, by making use of the following expressions:

(+m+p)l(I—m)N'7? 7O
(l~m,—p)!(l+m)!} T 510, (6a)

(L )TYi0) = {

(I=-m+p+mN'?
M0\ — ; )
and
(LIL U+L+m)! =9 (;I)L_LI 6¢c)
: :ﬂ"'( )(1-]_,'——m)! RS T (

where the last equation is a direct consequence of the construction of L-diminishing operator
O(L’ILM ) [10]}, we get

—DE Y (L—L+DYL-MN?
LM =( ‘ ) ( ' ?( )}
2L+1 {(L+L-DYL+M)!
x Y (I-ILL|L, L—1)(IM\LM,ILM)TQIL'M,). Q)
MiM->

Using standard properties of the Wigner functions Dif’, (), product of two Clebsch-
-Gordan coefficients can be replaced by the integral [12]

(LM L,M,|LQ)(L,N,L,N,|LP)

=QL+1) | DFR(QDDE2 (DG (), g
$0(3) ®

2n n 2n
1
J = Py Jdafdﬁ sin f jdﬂ;.
o o 0

SO(3)

where

Then, the combination of equations (7) and (8) yields

(L-L+DNL—- M)!}”i
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where R(Q) is the rotation operator by the Euler angles («,f, y) [12]. The last formula
is of the Hill-Wheeler type integral. Comparison of equations (1) and (9) proves that,
in this case, the Hill-Wheeler projected technique is equivalent to L-diminishing operator
method. The vectors TUIL'L’> play a role of the “intrinsic states” for a physical system
to be considered.

3. The orthonormal physical basis for the five-dimensional harmonic oscillator

In the papers [10, 11] an orthonormal basis for the five-dimensional harmonic oscillator
has been constructed in a boson picture by means of group theory methods. The basis
of the form

vxLM)y = Y {n_pn_ynghynyluxLM yeln_; ... 1y, (10)
n-2,.,M2
where v is the boson seniority number and x is the additional quantum number interpreted
as a maximal number of boson triplets coupled to L = 0 contained in the state. For v, x
and L the following conditions must be fulfilled:

0<x<tr, v=-3x<L<K2v—3x), L#2v=-3x)-1
The *‘ket”

(M3 m )TV dE )2 " LAY

denotes the decoupled harmonic oscillator basis and d is the quadrupole boson creation
operator. C-number coefficients (n—, ....n,[vxLM ), are given by the recurrence formulae
[10]” Following this work, we shall propose another version of the orthonormalized basis
constructed by the Gramm orthonormalizing process. First, making use of the method
described in [10] we get the nonorthogonal basis

i

ln_yn_ynohiny)

ioxLM) = Z <n 5 ooy oXLM ) n_y .. 0y, (11)

.....

where the transformation coefficients are simple extensions. of those obtained in [10] on
arbitrary M, and are given by the equation

Moy o Myl oXLM) = QL+1)(n_,! ... nz!)“2(\:/6)"0[(1,—¢+3x)!(L+v—3x)!

_ 1/2 N X
e $ 5 ()

,,,,

( 1)k+P1+P3+ps+p7+qz+q4

k'(L—v+3x RY(L—M—k){(M+v— 3x+k)'

+2p3+2petpstazt
x 2P1T2p3 2petpstaztqq

(k+p,+P3+2ps+2ps+2p;+3ps)! (LM —k+p,+pe+ps+d,+293+39ga+4gs)!
(L+2v—py—ps+1)!

(12)
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The following restrictions are imposed on the summations in (11) and (12):

z ng=10, pi+q, =n_3 Ppgtqs = n,

i=-2
2
Z ing=M, p3+pst+q, = n_y,
i=—2
8
Y pi=v=X, py+p;+q; = ng,
i=1

5
Z qgi =X, DPs+petqs =0y,
i=1

We are now in a position to find an equivalent form of the basis (11) by making use
of equation (9). From straightforward but tedious calculations we get

2v -
L BulL) (L" ML @ ] 10

(=) v! (L=M)! (L+v-3x)N'"?
T O2L+1 29792x1 (L+M)! (L—v+3x)!

X Y Ln_y..ompoxLM) In_, ..oy, (13)

R=2,..012

where

(_l)m -
(m—L)! (m+L+1)!

Bn(L) =
Then, taking equation (9) for L' = 2v and T9;3*7*" = [(d* ® d)*3]""* we have

2v
gL Bu(L) (LY" ML) 73 [(d* ® d)2,]°7"(d3)" 0y

B e DT N
- (L—v+3x)! (L+M)! R TENY

x [ D, (@R®) (dT )’ 7X(d5 )" 0. (14)
SO(3)

Comparison of equations (13) and (14) permits us to express the states (11) by the Hill-
-Wheeler type integral

P

=(2L+1) SOI( . Dif5.- LDR(Q) (d* 1)~ (d3)* 0. 15)
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Now, we shall proceed to obtain the overlap coefficients needed for orthonormalization
of the basis (11) by means of the Gramm determinants. The overlaps are defined as the
scalar product

%, = {vx'LMvxLM>. (16)

The coefficients c.5, can be effectively calculated by application of equation (15) to the
scalar product (16)

= @L+D T Difls-i(2) (ox'LM|R(Q) vx)
=QL+DY I Diflis- QDK (ox' LK |vx)

= (vxL, 3x—vjvx), an
where
lvx) = (dX,)°(d3)" 10).

Insertion of the complete basis |n_, ... ny) between “bra” (vx'L, 3x—2| and “ket” [vx)
gives the simple result

¢l = (v=x)!x! <0, v—x, 0, 0, xlvx'L, 3x— . (18)

The last coefficient is a special type of analytical formula (12). In Appendix A we find
another expression for the coefficient .

0,v—x",0,0, x'{oxL, 3x"—v> = 2L+1) [(L—vﬁ-3x)! (L+v—-3x)!

x (L—v+3x")! (L+v—3x)1]"* - \,r/(;-—x')!x"!

Z( l)x -x+52x -x+2s (x —\+S) (X)

(= D*@s+ k) 0+ L+x"—2s~k)!
X
kI (L+v—3x—k) (L—v+3x' —k)! Bx—3x"+ k) (0 + L+x +s+1)!

X JF (X" —v+s,3s+k+1; v+ L+x"+5+2;4). 19

This equation is useful for the small quantum number x or x’ (the following symmetry
relation holds c2 = c%). In practice, for the seniority number v < 50 the additional
quantum number x < 16. An orthonormalizing process must be carried out only for the
states with the same quantum numbers v, L, M but different x and x’. For the seniority
number ¢ < 50 maximal number of states with the same v, L and M is less than 9 i.e. the
Gramm determinants are rather small and can be calculated effectively.

To sum up we give the explicit form of the orthonormal basis with arbitrary v, x, L
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and M (in c¢°%, we omit the indices v and L):

o> 191 6>
oxLM>q = (G,_, - G,)~ 1?1600 Co1 e Cos |
Cx~1,0 Cx-1,1 Cocix
where
oo Co1 Cox
G, = €10 €1t o Cix (20)
o ea o
and
¢, = [vx'LM).

In addition, from equation (20) we get the transformation coefficients for the orthonormal
basis written in the form (10)

{nlgoy <nlgp> ... <nlg
(Mog oo mXLMDg = (G,_, G~ 12|00 Cor o Cox ] (1)
where
> = {n_y, ... nylox'LM>.

In the references [10, 11] the orthogonal basis for the five dimensional harmonic oscillator
has been obtained using a time consuming recurrence procedure. The coefficients (21)
allow for more efficient numerical calculations. The new version of the orthogonal basis for
the Bohr collective Hamiltonian can be obtained directly from [11] replacing the coefficient
{n_5, 0, ng, 0, nylvvxLK e, (10), by the corresponding coefficients (21) and can be written as

(pviLM(Qa ﬁ9 )’) = FNv(ﬁ) ; gvxLK(?)DM(II(‘)‘(Q% (22)

where
Fyo(B) = [2G (N=o))]? [TG (N+v+5)]7?

x B'Ln232(8*) exp (=% B2), (23)
Tw+3H7? _ o
Zoxrk(?) = [ F(%)z ] (1+68g0) " 2’2
no
X (n_,ng!n, )" Y2 (n_,0n,0n,loxLK o (sin 7)° ™" (cos p)™ (24)

and D{I}(Q) are the Wigner rotational functions. The summation is taken only with respect
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to n, because
v=mn_,+no+n,, K=2n,—n_,),

no, =LQv—K=-2ng), n,=2%1Qu+K—2n). (25)

I would like to thank Professor S. Szpikowski for many stimulating discussions on the
construction of the physical basis for SO(5) symmetry.

APPENDIX A

In order to derive the transformation coefficients (0,v—x’, 0,0, x’'|vxL, 3x'—0v)
we make use of the formula (B6) [10]

{n_y...ngoxLM)y = L QL+1)(n_,! ... ny))'/? Z ( v—X )
r_2 sae r2

Ti,Si
ritsi=n;

" (s-f.. 52> J af sin BB .. @R

1]
X (d§2,(B)) 2 ... (d5(B)*d53- o m(B) (A1)
Taking explicitly d-functions we get

(n_y ... maloxLM) = 3 2L+1) (n-5! ... ny!)!? z ("-l:_._.).crz> (S—z x?z)

ri,St
ritsp=n;

(__ l)r_2+s_1+s1 +v-3x+M(\/’6)n02r-z+r1+s—1+sl'

x[(L+v—3%)! (L—v+3x)! (L+M)! (L—M)D]'/?

3 (—1)F
% Z UL +0—3%— k) (L+M—K)! 3x—v—M+K)!
k

x [cos L BT*“[sin L B]**(2 cos B—1)""'(cos B)°(2 cos f+1)" (A2)
(The coefficients a and b are defined below). Application of equation:
v=3x+M = —r_,+ro+2r;+3r,—4s_,=35_; 25— 5, (A3)
to equation (A.2) gives
(Mey oo ngloxLM> = QL+1) [(L—v+3x)! (L4+v—3x)! (L+M)! (L—M)']'"?

— : _ _ v—X
X (8)Y(n_s! ... ny )M E (e <n_2—s_2 nz—‘s)

§=2...82
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X X 2n-2+nz~s-z+s-1+sl—sz
S_2...8;

(—DF
% Z KL+ 0—3%— k) (L+ M—k)! 3x—v—M+4)!

k

-1
X [ (1 =11 =41y TS (1= 20y T3 — 4ry Ty, (A4)
PR

where
a=v+L—-x+n,—2s_,—s_+s;+5.—k,

b=mn_,+3s_,+35_,+2s5¢+s;+k

and in the integral the variable is changed to ¢ = sin? 3 8. For the special case of the coeffi-
cients (A4), needed for the overlaps, we can simplify the formula (A4) by recognizing the
hypergeometric function

1
L r'(b+DI(a+1)
BA—1 =4y ¥ 51 dt = - 2~ F (X' —v+5_4, b+1,a+b+2;4).
f( )( ) Fatb+2) 2i(x'—v+s_ a )
0

Then, the resulting expression is the desired relationship (19).
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