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1. Introduction

Canonical quantization in a theory consists of obtaining the Poisson bracket relations
between any two physical variables and carrying them over to the quantum commuta-
tion or anticommutation relation with an ih prescription, namely,

[Aops Bopls = ih{4, B}. (1.1)
This method works quite well in quantum mechanics where for example
[4ops Pop] = ih{q, p} = ih. 1.2)

However, in physical theories of quantum fields, which often contain constraints, this
method leads to inconsistencies. A quick way of seeing this is to suppose that there exists
a constraint in our theory given by

I'g,p) =0. (1.3)

According to our prescription, in passage to the quantum theory, this must map to the
null operator.

F(q’ P) -+ ¢Qp' (1_4)
It follows, therefore, that
[Aop’ Fop]:t' = [Aop, ¢0p]:l: = ih{A, F}. (1'5)
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The left hand side of this expression clearly vanishes as it is the commutator or anti-
commutator of an operator with the null operator. The ciassical Poisson bracket. on the
right hand side, however, is not in general zero. There is an inconsistency.

In the case of constrained systems, therefore, the naive gquantization procedure has
to be modified. Dirac [1) recognized that the consistent way to quantize such a theory is to
modify the naive Poisson brackets such that the new brackets (known as the Dirac brackets)
between a physical variable and 2 constraint vanish. Consequently one can write the
quantum relations as

[Aop’ ‘Bop]:i: = ih{A: B}D (1‘6)

and the inconsistency is overcome.

Dirac has given a detailed and systematic way of handling constrained systems [2]
and we will discuss this in Section 2 where we will also work out the particular cases of
Maxwell’s theory and the ronlinear sigma model. In the next section we will define the
Poisson brackets for systems containing anticommuting coordinates [3]. The natural
geometrical framework for a supersymmetric theory [4] is the superspace where in addition
to the usual bosonic coordinates, there are anticommuting coordinates. Furthermore,
supersymmetric theories inherently contain constraints as we will explain in Section 4.
Canonical quantizatiop in superspace must, therefore, follow Dirac’s procedure. As we
‘will show in Section 4, Dirac’s method carries over to superspace only if it is not extended
blindly [5]. We discuss the results of superspace quantization only for the supersymmetric
quantum mechanics {5] although we have obtained results for the SUSY nonlinear ¢ model
and the chiral superfield [6] as well. Finally in Section 5 we discuss very briefly about the
relation between Dirac’s method and that of action principle quantization [7] with conclud-
ing remarks in Section 6.

2. Dirac quantization
Let us consider a Lagrangian
L=1Lg,q) i=12,..N, 2.1)

where g¢; and g; represent N coordinates and velocities. The canonical momentum
is defined by
oL
p=—. 2
0q;
If we now want to go over to the Hamiltonian formalism we are looking at the transforma-
tion

AR P‘)- 23
The Jacobian of this transformation is d:termined by the matrix

op L .

: 4

0q;  8404;
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If this matrix is nonsingular, then the transformation is unigue and the naive canonical
quantization procedure goes through.

However, in most pbysical cases in quantum field theory, this matrix is singular.
Consequently the transformation and hence the Hamiltonian for the system becomes
nonunique.

If we now analyze Eq. (2.4), then

O*L \
d —}=0 2.5
. (5‘1:‘34;') (2:3)

implies that some of the momenta are not independent variables. Let the rank of the matrix

oL
(W) be R wbere R < N. Then we can solve for R velocities as
q

q° = fq, p",'(}’) a,b=1,..,R; a=R+1,..,N. 2.6)

Reinserting this into the definition of the momenta we obtain

P = -%.-— 4.7°, 4 = g(a, p°, 9.
Of course, fora=1,..., R
P.= 8,
but for « = R+1, ..., N one can show that

Pa= gfa,p) a=1..,R
Thus we define

I, = p,—g.(4, po) oz==R+1,...,N; a=1,..,R 2.7
and the equations
Ir,=0 a=R+1 ..,N

which are called the primary constraints define a 2N—(N—R) = N+ R ‘dimensional
hypersurface I', in the phase space I'. We call two functions 4, B on I' weakly equal, 4 ~ B,
if they are equal on I';, namely,

(A-B)iy_ = 0.
Let us define the canonical Hamiltonian H, as
. R b . N . -
Ha. pd) = X poS @ 20 )+ Y 480 P)—L(a S )

a=1,.,R; a=R+1,.,N (2.8)
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which has the properties
0H,
q*

=0 a=R+1 .., ,N.

That is, H, = H{g, p,) and more importantly

N N

i 9 (us - oL (g, -
q Napi c ’ q alfs aqi ~ aq‘ < q af-
a=R+1

a=R+1

.. 8L
For solutions of the Euler Lagrange equation p' = P therefore, we have (summation
” ‘
convention implied)
¢ ~{d,H+4'T},  pi~ {p Ho+q'T.} (2.9

The g« = R+1, ..., N remain undetermined (since their Heisenberg equations of motions
reduce to identities) and we shall from now on denote them by A, and define the primary
Hamiltonian as H, = H.+4,I, with the undetermined coefficient furictions Z,. Note
that H, contains only the m = N— R primary constraints I',. Because of Eq. (2.9) H, gives
the time evolution for any phase space function A(g, p) not explicitly dependent on time as

A(q, p) ~ {A(q, p), Hy,}. (2.10)

Furthermore, we want the constraints to have no dynamical evolution which requires
Iy~ T Hy} & (T H}+A{0,, Ty} = 0. (2.11)

As is obvious Eq. (2.11) may either determine some of the unknown Lagrange multi-
pliers or may give rise to more functional relations between momenta and coordinates known
as secondary constraints. One continues this process until all the constraints are determined
to be evolution free.

Let us say, at this point, that the total number of constraints in the system isn,n < 2N,
and are given by

r,~0 o=12,..n. (2.12)
As is evident
{r,H,} =~ 0.

Next, let us divide the constraints into two classes.

(i) Those constraints which have weakly vanishing Poisson brackets with every other
constraint are called first class constraints, y,, a = 1, ..., ny.

(i) Those which have at least one nonvanishing P01sson bracket with the other con-
straints are known as second class, ¢,, « = 1, ... n,; such that n,+n, = n.

The first class constraints y, are assoc1ated with local gauge invariances and one
chooses gauge fixing conditions y, as additional constraints such that the first class
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constraints become second class. Therefore, after gauge fixing all constraints become
second class and Dirac has shown that they must be even in number. Let us denote them
now collectively as

r~0 a=1,2..,2p,2p<N. (2.13)

Since these are all second class constraints, one can define the matrix of their Poisson
brackets as

C.p  {Ts Tg). (2.14)

Note that the matrix C,; is antisymmetric and Dirac had shown that it is nopsingular so that
its inverse C;,,l exists. ‘

Next let us define a modified Poisson bracket (Dirac bracket) between two variables
A and B as

{4, B}p = {4, B}~{4, T }C5{I';, B}. 2.15)

Note that the Dirac bracket is defined such that any variable has a weakly vanishing
Dirac bracket with any counstraint, i.c.,

{Aa Fa}D = {4, ra}_{A’ rﬁ}cl;?l{rr’ Fa}
~ {A, T} ~{A, I[,}C;'C,, = {4, T }—{4, T} =0. (2.16)

Although we have chosen not to do so, it can be shown using the method of Lagrange
brackets that the Dirac bracket is indeed the Poisson bracket when evaluated subject to the
constraints in Eq. (2.13).

It is now straightforward to go over to the quantum theory using

[Aops Bopls = ih{4, B}p. 2.17)

op?

A few comments are in order. First of all a very useful property of the Dirac brackets
is the iterative property. That is, if there are a large number of constraints, one does not
have to invert a large matrix but rather one can focus on a subset of all the constraints
and define an intermediate Dirac bracket and so on. Secondly although we have worked
out everything for a finite dimensior, the method extends readily to continuum field theory.
One must, however, recognize that integration over intermediate variables is implied in
relations such as Eq. (2.15) and appropriate boundary conditions might be required (e.g. to
render C-! unique).

Let us now apply the method to two simple theories.

a) Maxwell’s theory:

L= --% FMF‘”,
where
F,, =0,A,—0,4,, nuv=20123. (2.18)

Our metric conventions are those of Bjorken and Drell.
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The canonical momenta are defined as

oL
04, (x)

*(x) ==
from which we obtain
fi(x) = —(4+V4%, I°%) ~o. (2.19)
According to Dirac’s procedure, we now modify the canonical Hamiitopian as
H, = H.+ | d®xA,(x)I1°(x)
= | @®x(% * +1 B + 4,()I1°(x) — A°(x)V - TT(x)). (2.20)
Here we have introduced the magnetic field defined by
B =VxA. (2:21)
With the naive Poisson bracket relations
{40, I,(»)} = 80%(x~y),
{4"(x), 4,0} = 0 = {IF"(x), I,(»)}, (2.22)
we can calculate the time evolution of our primary constraint.
I1°(x) = {I1°(x), H,} = V- II =~ 0. (2.23)

Furthermore, this constraint can be easily seen to have no dynamical evolution. Thus the
constraints of our system are

m°x)~0, V-I(x)~0 (2.24)

and they are first class constraints. This is expected because of the local U(1) invariance
of the Maxwell’s theory. Correspondingly we have to choose a gauge and we choose
the Coulomb gauge

V-A(x) ~ 0. (2.25)
The constraint on the time evolution of this condition leads further to the condition

A%(x) ~ 0. (2.26)
Thus the entire set of constraints in this case can be written as

I =m’(x)~0, I,=V-lI(x)x0, Ij=AX)~0, T,=V-Ax)~0. (2.27)
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These constraints are all second class and consequently one can calculate the matrix of

Poisson bracket of constraints and it turns out to be

Czﬂ(x’ .V) = {Fa(se’ t): rﬂ(j;’ t)}

0 0 -1 0
Jo 0o 0 -,
41 0 o o (PG

0 +V2 0 o0

(2.28)

We would assume the boundary condition that all fields vanish at infinite separations and

this determines the inverse of the matrix to be

0 0 +8%(x—y) O 3
1
0 0 0 a3
-1 _ TTlx—y
Caﬂ (xa y) =9 _53(x__y) 0 0 0 -

1 .

0 + 0 0
_ 4zix— y| 3

With this we can now calculate the fundamenial Dirac brackets to be

{A“, AV}D =0= {H“, Hy}n

{4*, I}y, = (8" — """ (x— y)+ 840 yz—ﬁ
b) Nonlinear sigma model:
The model is defined in 141 dimensions as

L=108,4'0"¢ i=12,..n
with the constraint
¢'¢’ = 1.

We can incorporate the constraint into the Lagrangian and write
=30,0'0¢'+ - (¢'¢’ D).
Here A is a Lagrange multiplier field. The canonical momenta are given by

oL oL
I'=_—=¢, II,=—~0.
o ¢ Y]

Thus we see that the primary constraint of the theory is

H1~z 0:

(2.29)

(2.30y

(2.31)

(2.32)

(2.33)

(2.34)
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Consequently according to Dirac’s procedure, we define the primary Hamiltonian
to be

H, = H +] dxull,

= _[ dx (% ' +1 Vo' - Vo'~ %(¢‘¢"—-1)+um). (2.35)
Note that
IT, = {1, H,} = 5 (@'¢'~D ~ 0. (2.36)
Requiring this constraint to be invariant in time leads to
{¢'¢'~1,H,} =2¢'II' = 0. .37
Furthermore, the time evolution equation of this constraint implies
{$'I', H} ~ A+IT'TI' + ¢V ~ 0. (2.38)

It is easy to check that the invariance of this constraint in time does not lead to any
mnew constraints. Thus we can write all of our constraints as

Iy =¢'¢'-1=0, I,=¢'M~0, Iy=1I,=0,
Iy = A+ +¢'V¢' ~ 0. (2.39)

These constraints are all second class and the matrix of the Poisson bracket of the
constraints is obtained to be

0 2
Cao ) % (T 0. T, 0} =470 0
0 —(A() +3()IT(x)— ' ()P’ (VV?F)
0 0 ]
i ir N 4 i N2
3 A(x)+3I(x)IT _(»;) HIFOVE 5. 2.40)
1 0
The inverse is then determined to be
0 -1
C—-l( — 1 1 0
w0 (2 ) = 23 1600+ 3ITWIT(x) — F 0 GITE 0
0 0
— (AX)+ 3T ()IT'(x) — ¢'(x)P'(W)V7) 01
0 0

0 N 8(x—y). (2.41)
-2 0
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We can now calculate the fundamental Dirac brackets as
{6/, #'W}p = 0,
{¢'(x), W()}p = (67— ¢'¢No(x—y),
{I'(x), IP(M)}p = —(¢'IF — ¢'IT)5(x~ y). (242

This completes our discussion of Dirac quantization method when applied to regular
field theories.

3. Poisson brackets for a system containing anticommuting variables

Let us consider a classical Lagrangian L{x, %, 0, §) which depends not only on the
bosonic coordinates x; and velocities %; but also on the fermionic coordinates 6, and veloc-
ities §,. Because of the anticommuting natare of the fermionic quantities, there exists
an arbitrariness in the definition of derivatives with respect to these coordinates and we
choose to use a left derivative so that in

9$(6)
00,

the 0 derivative acts from the left and

o 0g(0)
36(8) = 36, 0 3.1

We can now define the canonical momenta as

(9oL . oL 12
P=%% " " T, @2)

so that the Euler-Lagrange equations can be written as

dp* oL dll’* oL

==, —= . 3.3
dt  0x; dt a0, G-3)
The Hamiltonian for the system is simply given by
H = p'%,+0,T"—L, 3.4
so that

JL. oL

SH = 8p'%;+0,0I1° — 6x; — — 60, —

pxi+ a Xq 6x,- ou 60,

= 8p'x;+0,611°—6x,p' — 60, II° (3.5)
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Hamilton’s equations are now obtained as

oH _ ., oH_ ..

o

oH oH

_ = '., — —-0 . .
=t = b &)

1t is worth noting here the signs of the fermionic equations compared to those of the bosonic
equations and we would like to emphasize that it is due to our particular choice of con-
vention for the fermiopnic derivatives.

1t is now clear that given any physical quantity A(x, p, 8, IT) which is bosonic in nature
and depends on the bosonic as well as the fermiomic vanables, its change with time can
be written as

dA 04 N 0A - 04 ol 04
dr ox, i op; Div U, 26, “ oI,
0A 0H 0A 0H 0A 0H 0A oH
= - —+t_— ——+_— — ={4,H] (3.7
ox, op* op' ox; 06, oH®  OI" 0H,

This, therefore, defines for us the fundamental Poisson bracket between two bosonic
quantities as

7} pi Ox ]

0B, 0B,
a6, oIl

oB, 0B,
ol* 98,

(3.8)

The Poisson bracket relations betweern- a bosonic and a fermionic quantity as well
as between two fermionic quantitites is now simply obtained from Eq. (3.8) as

0B, oF 0B, oF 0B, OF B, OF .
{BxaF1}="‘i"—:‘—"—:‘——l+ ! i :, L, 3.9)
Ox; dp ap* ox, a0, oIl ot a4,
. OF, 0F, &F, oF oF, oOF oF, &oF
(FoFy=-222_21°72_ 51 %2 =122 (3.10)
ox; Op ap’ Ox; a6, oII oI* a6,

Note that all these relations are true if a left derivative is used for the fermions. In
particular, in our convention, the canonical Poisson bracket relations become

{xi’ xj} =0= {Pi, Pj}, (x;, Pj} = 5ij,

{0,, eﬁ} =0= {Has Hp},

{9,, Hﬂ} = _5¢ﬂ'

(3.11)

The continuation to a classical field theory where the fields depend continuously on the
coordinates x and 0 is straightforward. In particular if we have a field theory described
by L(¢, derivatives of $), where ¢(x, 6) is a bosonic field, then one can define the canonical
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momentum as
0L
od(x, 0)”

The canonical Poisson bracket relations would then be given by
{8(x, 8), $(x's 0)}rpmror= 0,
{I(x, 0), I(x', 0)}1gmnyr = O,
{$(x, 0), II(X', 0')}ymxr = S(x—x")5(0—86)). (3.13)

In the quantum theory, therefore, the quantization condition would correspond to the
fundamental commutation relations

[¢(x9 0)9 d’(x’! 6’)]xo=xo’ =0= [H(x’ 0),,H(x" 01)]x0=qu
[¢(x, 0), I(x", 0)]sy=xy = iNB(x—x")5(6—0'). (3.14)

II(x, 0) = (3.12)

4. Supersymmetric quantum mechanics

Let us consider the superfield $'(¢, 6, 8) which not only depends on time but also on
the anticommuting coordinates 0 and @ [8). Here i is an internal symmetry index. Further,
let us define the derivatives

0 0 - 0 0
D=——i—, D=-— —i0—.
@ Va o a @.n
These are called the covariant derivatives in the extended space spanned by ¢, 6. § also
known as the superspace.
A general action in superspace has the form

S = [ dtd6ddL(¢', D¢', D) 4.2)
and is invariant under the supersymmetry transformations
. i)
0¢'(t,0,0) = & (69 +i6 >¢‘(t, 0,0 4.3)
and
. a
3¢'(t, 0,0) = E(ag +if )¢(t 0, 6), 4.4

¢ and € here are constant anticommuting parameters.
From various considerations one can choose the general form of the Lagrangian to be [8]

L(¢', D¢, D§') = —3 D§'D¢’ — v (4), 4.5)
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where V(¢') is a polynomial i ¢' satisfying the internal symmetry invariance. If we Taylor
expand the superfield ¢'(¢, 8, 8) in the anticommuting parameters 6 and 8, it takes the form

(1, 0, 8) = ¢'(1)+0¢'(0) + P ()0 + 06d'(2). : 4.6)

Using the Berezin integration rules [9] for integration of the anticommuting variables,
we can write the action in component form as

o ; i .
S = fdt (% ¢"+3d"+ 5 @' -3y

1 du(g) o g O0(g)
-d o "%('Piw"'wj'l’j)w)- 4.7y

The supersymmetry transformations under which this action is invariant are given by
8¢’ = —¢{', 84 = +&y),
Sy = —&(d'+ig), By’ =0,
69’ =0, 57 = &-d'+ig),
od' = iy, 3d' = ily'. (4.8)
Let us, however, continue working in superspace. From the Lagrangian in Eq. (3.5)

we see-that the canonical momenta are given by

aL _- i i i
e (0D¢' + D¢'9). 4.9)

It is clear from the discussions of Sec. 3 that the canonical Poisson bracket relations
in this case can be written as

{¢'(t, 0, 0), (1,0, 8)} = 0 = {II'1, 0, B), II(1, 6, &)},
{¢'t, 6, 8), (1, 0, 0)} = 676(B—8)5(0—0") = 65%(0—0"). (4.10)

i, 6,8) =

However, in quantizing such a theory we must be careful because there are constraints
inherent in such theories and hence we should use Dirac brackets rather than the Poisson
brackets. To see the constraints, let us look at the canonical momentum in Eq. (4.9).
From the form of the canonital momentum and the anticommuting nature of 6 and §, it
follows that

¢ = 5%O)I(t, 0, 0) ~ 0,

. d i
ny = 8°(6) T (Hi+:2— ¢') ~ 0,

i _ s2 E(_ i __l:- i)‘~
My = 8O | -+ 5 ¢' )~ 0. (4.11)
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Here we have used 6%(6) = 80 and these are our primary constraints. Note that the first

equation in component language expresses the fact that the auxiliary field has no canonical

momentum associated witb it. The last two constraints in' Eq. (4.11) simply express the

relation between the canonical momentum and field variables in the case of fermions.
The primary Hamiltonian in this case is given by

oI o o¢' o¢' . ‘
H, = fdze (%i—a—g- =5 -—%% 5‘% +V(¢‘)+A§n§+a‘2n;+zgc‘). 4.12)

It can be now simply checked that the requirement that the constraints do not evolve in time

leads to one more constraint
o’ ov
62 9 —_—— 0
©) [6069 a¢‘] (4.13)

which in the component language corresponds to the equation for the auxiliary fields.
Let us now write the constraints as

*¢ oV

0600 o

&= 52(0)[ ] ~0, =380 ~o0,

2 i of i
i 52 —_ i — & ~ '= 2 |- — ¢ ~ U =)
,,1-5(0)66(114- 2¢) 0, 1 5(0)56( '+ 2¢) 0. (414

One can now check that the constraints do not evolve in time. Consequently these
are all the constraints in the theory and they are all second class.

We would now calculate the Dirac brackets iteratively. First note that the Poisson
bracket involving the upper constraints is given by

{{i(t, 8’ 9)’ C{(t’ 0’, 9')} =0= {C;(t’ 8’ G)’ Cé(ts 8': 6,)}’
{011, 0, B), 131, 6, 8)} = 6Y6%(0)5°(®"). (4.15)

Thus the matrix representing the Poisson brackets of these two constraints has the form
O 1 ijs2 2,01
1 0 875%(6)6%(0"). 4.16)

This matrix is antisymmetric. However, the more interesting thing to note is the fact
that it is singular. This simply reflects the fact that only certain components of the con-
straint superfield have nonvanishing Poisson bracket. This feature is different from the
conventional treatment of the constrained systems where the matrix of Poisson brackets
of the second class constraints is nonsipgular as has been shown by Dirac.

Following Dirac one realizes that the presence of second class constraints simply
implies that there are nondynamical degrees of freedom present in the theory. Thus the
naive Poisson brackets must be modified so that only the dynamical degrees are involved
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and, therefore, passage to a quantum theory becomes straightforward. Furthermore, the
Poisson brackets must be defined in such a way that a second class constraint gives vanishing
Poisson bracket with any dynamical variable whén evaluated with this new definition.
“This is essential so that we can set the constraint equations to zero strongly as operator
relations without restricting the Hilbert space any further. In other words, we need a matrix
«C-* such that

{4(0), L(00)* = {40), 16"}
- jdzondzaul{A(e)’ C;c(en)}c—;l;l(au’ 9“’) {C;(eln)’ c:(or)} =0 ) (4.17)

for any dynamical variable 4(6). 1t follows from this requirement that the matrix C-! is
aniquely given by

. (0 —1
-1ij __ gij
C V=35 (1 o)’ (4.18)

“We would like to emphasize here that Eq. (4.17) determines C-! uniquely up to addition
-of any function of the 6’s. However, the additional terms always give vanishing contribu-
‘tion since in a modified Poisson bracket they come multiplied with the constraints which
involve delta functions in 6 and 8. Thus although the matrix of Poisson brackets is singular,
we have determined uniquely the matrix C-!, needed to define the modified brackets.
We will show later this leads to the same quantizdtion rules as the component calculation
‘would give. The modified Poisson brackets between any two variables is now given by

{4, B}* = {4, B} —{4, (;}C™ " }{t}, B}. (4.19)

Here integration over intermediate variabies is understood. With this definition, then,
we can evaluate the modified canonical brackets to be

{¢i(t, 93 0): ¢j(ts 0I9 9')}* = 0:
{I'(t, 6, 0), (¢, 0, ')}* = 0,
v

{¢(1,6,0), IT'(1,8', B)}* = 6(6°(6—0")—5°(0)) +6°(6)5°(6") PYoyvR

(4.20)
The modified brackets for the other two constraints in Eq. (4.14) are obtained as
{'il(t’ 6, 6)’ ”jl( .0, 91)}* =0= \”i(ta 0, 9), ’7%09 o, 9’)}*’
{3(2,9,8), ni(¢, 0", B')}* = i876%(0)5°(8"). 4.21)

“Thus the matrix of the modified Poisson brackets of these constraints has the form

i (‘1) (1)) 5Y5%(0)6%(6"). (4.22)
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Following the method outlined above, we see again that the matrix C-! needed to
define the Dirac brackets is obtained to be

= {0 1
C = —1(1 0) oY, 4.23)
The Dirac bracket between two variables 4 and B is now defined as
{4, B}p = {4, BY*—{4, i.}*C "' ;}{n}, B}*, 4.249)

where we again assume integration over intermediate variables. Thus we can calculate
the fundamental canonical Dirac brackets and they have the form

{6',6,0), (¢, 0", 0)}p = —i6"(B0'-'6),

(1T, 0, 8), I, 6/, 8} = — zia‘f(ae'_a'e),

2
(616,00, 176,0.09), = ~3 5100 +80-200)+505'@) ;0
1 st ’ ’ 1 1] 2, 2/n¢ aZV
- 8O- DO + VOO EOFO) 3. 629

We can now carry these relations over to the quantum commutation relations. One
can ask at this point how these quantization relations compare with the component field
calculations. Using the expansion of Eg. (4.6) for the superfield $'(1, 0, 8) and the fact
that (see Eq. (4.9))

11, 6, 5) = 804'— -i'-eyf- % 7y (4.26)

One can show that the quantization conditions in Eq. (4.25) imply
@b =0% W= -0 @ih=cpg. @)

All other Dirac brackets vanish. This is, of course, what would have been expected if we
had carried out the calculation in component fields in ordinary space {8]. The superspace
quantization, therefore, leads to consistent resuits. We would like to point out here that
the negative sign in the Dirac bracket involving the fermions is a consequence of our choice
of a left derivative for the fermionic coordinates.

5. Equivalence of Dirac quantization and action principle

An alternate method of quantizing a theory is due to Schwinger and goes by the name
of action principle quantization. Without going into details, the idea behind this method
is to construct a unitary operator which gives rise to canonical transformations in the
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Hilbert space of states. The generator of such transformations is constructed to be
G =p'sq'—ép'q’ .1
so that the unitary operator has the form

i
U=e ¥
=e . (5.2

Tae change in any operator 4 under the canonical transformations is now given by
i
04 = — - [4, G]. (5.3)

In particular if we choose 4 = ¢, then we have
. 1 . .
8¢’ = — —[d’ plog’-or'e’] -
which leads to the relations
[, p] =ik, [d,d]1=0. (5.4)
Similarly, choosing 4 = p', we obtain

[r\pr'1=0o. (5.5)

These are, of course, the familiar quantization rules of quantum mechanics.
‘This method works well in the absence of any constraint. When there are con.traints
present, namely,

r,=0 (5.6)

then the change in an operator 4 under a canonical transformation, consistent with the
constraints, is defined to be

5.4 = — ';? [4,G]. = — % [A, G]— 2, 0T, = 64— 2,0, 6.7

Let us make a few remarks here. I', represents all the constraints in the theory and
A4, are Lagrange multipliers to be determined from consistency conditions. Intuitively,
Eq. (5.7) is clear. The first term on the right hand side of the equation gives the change
in the entire phase space whereas the second term subtracts out the normal component
and hence forces the variations to lie on the hypersurface defined by the constraints.

As examples of the action prirciple, let us again calculate the familiar cases of
Maxwell’s theory and the nonlinear sigma model.

a) Maxwell’s theory:
We have seen that in the Coulomb gauge, we can write all the constraints as

r=mI°~0, I,=Vel~0, T,=A4°~0 TI,=V+Ax0. (5.8)
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We can write the generators in this case to be
G = [ d®x(IT*(t, X)5A,(t, X) - SII*(t, X)A,(t, %))
= [ d®x(IT'6 4, 3IT'4,). 5.9

It follows, therefore, that

6cAi(x) == '}ll‘ [Ai(x)’ G]c = 6Ai(x)— J‘d3y)':(x’ .V)ara(J’),
o1
- + | erae. wopam -

= 8A4'(x)— [ dy(i(x, y) I°(y)+A5(x, )3V, * I1(3))
+A5(x, )A° () + Xi(x, Y6V, * A))). (5.10)
Ccemparison of the left hand side and the right hand side implies
A(x, y) = 0 = 2i(x, ),
[4'(x), ()], = —ihdldi(x, y),
[4'e), ()], = ih(nV8*(x— y) +8l3i(x, y)). (5.11)

Note here that all commutators are equal time commutators. Furthermore, consistency
with the constraints for the last two relations leads to

[4i(x), 0,;4%(»)]. = 0 = +ihV2Ay(x,y) or Ay(x,y) =0

and
[4'(x), 8,,IF(»)]. = 0 = ih(3}6°(x—y)—VZHi(x, y))
which gives
) 1
A s == 6; _I s . .
Aa(%, ¥) PRI (5.12)

Putting this back into Eq. (5.11) we obtain
. - . 1
‘(x), I = ih [ n76%(x—y)+ 0] —=— ). .
[4C), F()]. = i (n =N +88 = (5.13)
This can be compared with Eq. (2.30). Note further, that we can write

[4'(x), G]. = [4(x), G]—ih | d>yAi(x, )6T 4(y)
with

. 1
A(x, y) = 0F ———=. )
a(x, ) R (5.14)
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b) Nonlinear sigma modet:
We have seen before (Eq. (2.39)) that in this case there are four constraints.

I, =¢¢'—1~0, I,=¢II=~0,
[, =I,~0, TI,=A+IIII'+¢$'V?¢' ~0. (5.15)

The generator of canonical transformations can be written in this case as

G = | dx(IT'(x)0¢'(x) — SIT'(x)¢'(x) — SIT ,(x)A(x))- (5.16)
Thus
8.4'(x) = — % [#'(x), G, = 6¢'(x)~ J dy(Riy(%, y) T1(9)+2620T2(y)
+3-fps§r 3() + A48T, (v),
or

- + [ w1, g - - smoon.

= 5¢'(n)— [ Ay ¢ ()6 (D) + L (P (IT (1) + 8¢ (NIT())
AL (0)+ Kou(B10) + 2SI + 5 OITH )+ F OV, (517)
Comparing the left hand side and the right hand side we obtain
Koa,y) = 0,
[6'G), AT = ihZga(x, 7,
(60, IP()]. = ih(898(x~ )= 2441(%, Y)/(7) = Agalx, DIF()).
[0, #'W)]e = —ihdga(x, NE'0)- (5.18)
From consistency conditions we obtain
[¢x), $DP )] = 0= 24, y) = 0,

and
[660, PTG = 0= Ai(x, y) = & $(x)5(x—). (5.19)

Putting these back into Eq. (5.18) we obtain
[¢'x), '] = 0,
[6'(x), IP(»)]. = ih(8” ~ ¢’ (x)p(x))o(x— y). (5-20)
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Consistency requirements on the other relation in Eq. (5.18) leads to
[6(0, A0) + PTG+ V()]s = 0
= Jg3(x, ) = —2IT(x)6(x—y),

so that
[0, A)]. = —2iRIT(x)5(x~ ). (s.21)
Similarly examining the relation for 8 I1'(x), we would further obtain
[T (x), IP(y)]. = — k(¢ ()T (x)— ¢ ()T (x))5(x — y). (5.22)

Relations (5.20) and (5.22) should be compared with Eq. (2.42).
Note here that the relations in Eqgs (5.20) and (5.21) could have been equally well
written as N
[4'(x), G1. = [¢'(x), G]—ih | dy(4y; 0Ty + X367 '3)
with
o1 = 3 9()0(x—y), Ays = —2IT(x)5(x~y). (5.23)
We are now ready to make contact between the action principle quantization and
Dirac quantization. Note that by construction, Dirac brackets give rise to consistent Poisson

bracket relations. Furthermore, the consistent quantum relations must be related to a con-
sistent Poisson bracket relation. Thus

LA(x), G]. = ik{4(x), G}.

and that
{A(x), G}: = {A(x), G}p = {A(x), G}~ | dzdy{A(x), T 4(2)}C; (2, ») {T(»), G}
= {A(x), G} — [ dzdy{A(x), T4(2)}Cp.' (2, Y)OT (). (5.24)
On the other hand from Eq. (5.7) we know
{AR), G} = {A(x), G}~ § dydu(x, y)OT()- (5:25)
Comparing the two relations we obtain
hal%, ¥) = [ dz{A(%), T(2)}C3.A (2, ). (5.26)

Let us now check this relation both for Maxwell’s theory as well as nonlinear sigma model.
First, from the form of the constraints in Eq. (2.27) and .the form of C,',l'in Eq. (2.29)
we see that

Aix, ) = § dx{A'x), [(2)}C. (2, ¥)
= — [ dz8*(x~2)8.C3,(z, )

, ; 1
= —8.C3, (%, ) = 8pas (5:27)

4n|x—y|
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This is precisely our result for the Maxwell theory as given in Eq. (5.14).
For the nonlinear sigma model again we can write using the constraints in Eq. (2.39)
and the matrix C;,l in Eq. (2.41)

Mgal%, y) = § d2{$'(x), Ty(2)} ' (2, ¥)
= [ dz({¢'(), ['2(2)}C3.! (2, ) +{$'(%), Tu(D}CT (2, ¥))
= [ dz(8(x— 2)$'(2)C3, (2, ) +28(x — DIT(2)C3 (2, ))
= ¢'(X)C2.(x, y)+2UT(X)CL (%, y)
= 83y 3 ' (0)0(x— ) — 8,320 (x)8(x — y). (5.28)

Tuis again confirms our earlier result (Eq. 5.23) for the nonlinear sigma model.

This shows that the Dirac quantization and the action principle quantization are
equivalent. One can think of Dirac quantization as providing the Lagrange multipliers
of the action principle in a well defined way. On the whole, however, Dirac’s method
handles the problem of quantization of constrained systems in a systematic and global way.

6. Conclusion

We have discussed the canonical quantization of constrained theories in ordinary
space-time. We have also shown that the method extends to superspace as well although
the extension has to be done carefully. And finally we have shown how Dirac quantization
and the action principle quantization are equivalent.

One of us (A.D.) is grateful to the organizers of the Cracow School for thzir hospitality.
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