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STABILITY PROBLEM IN GRAVITY AND MAGNETIC
MONOPOLES IN KALUZA-KLEIN THEORY*
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The stability of the Schwarzschild instanton in a Euclidean background metric is
discussed as an introduction. The method is applied to the magnetic monopole solution
in 5 dimensions and it is indicated that the classical solution is unstable against small perturba-
tions of the metric.

PACS numbers: 11.10. Kk

1. Introduction
Schwarzschild found the solution to Einstein’s equation
R,, =0, )
for a metric around a fixed spherically symmetrical center of mass

ds* = —V7'df? + Vdr* +r*(d6* +sin® 0d¢?) = g,.dx"dx’, 7))

Withx® = £, x! = r,x = 6, x> = ¢, V! = 1—(2M]r), M(cm) = 1.3x 10-52 G—cz,M(GeV).

Is the solution stable with respect to small first order departures from the Schwarzschild
metric? To examine this question, the background metric is indicated by &, and the small
perturbation to it by h,,. The contracted Ricci tensor is called R,, if calculated from g,,, and

R,,+0R,, if calculated from g,,+hA,,, where 6R,,

SR, = -5r§wﬁ+5r,‘j,,w, 3
or “'y = % g” v(hpiv;y+ hvv;ﬂ_hﬁwv)a
Fga = ggura:vcr = gea_;_ (gav,a+gw,v_gv¢,a)' (4)

* Presented at the XXVI Cracow School of Theoretical Physics, Zakopane, Poland, June 1-13, 1986,
(289)



290

In order to check the stability of the solution, the metric tensor 4,, is separated into
four factors each a function of a single variable or coordinate. The separation is obtained
by Regge and Wheeler [1] by generalizing the spherical harmonics (known for vectors,
scalars, and spinors) to tensors. The stability of the Schwarzschild solution can be studied
by taking [1-4] 6R,, = 0 and looking for diverging solution with a factor of the form
Fo(t) = e™™. They found for various angular momentum states that Im k = 0 and con-
cluded that the solutions are stable.

2. Schwarzschild instanton

Perry studied the stability of the Schwarzschild instanton in a Euclidean background
metric [5]

ds® = gndxtdx’, x*=(t,r0,¢), 5)
where
¥yt o 0 0
_ 10 vV 0 0o
gpv 0 0 7'2 0 ’
.\O 0 0 r%?

s =sinf, V-! = 1—(2M/r), and found a negative mode with / =0, k = 0.

The equations can be separated in (¢, , 0, ¢) coordinates. We follow Ref. [1] and take
m = 0 in which case ¢ will disappear from the equations. The even parity metric tensor
is written as [1]

V™'Hy, H, Ky, O

VH, K0, O o .
ha = ! r21K0 0 e *Y10(6), ©)
r’s’K

hab = hba'
For the case I = 0, the 0 also disappears and'this mode is described by the following
simple form- :
V''H, 0 0 0

VH, 0 0
hay = PK? 0
r’s’K

The 4, is chosen to satisfy the transversality and tracelessness conditions,
MPy=0, g*%h,p=0, A,B=0,1,23. @)

The relations h'®,; = 0 and g*%h,; = 0 lead to

2M\ dH 2 IM M 1
(1— -——)——1 + (— - —2->H1— — Hy+ ~—2(r—2M)(H0+H1) =0
r dar r r r r
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or
—r(r—2M) dH, (3r—5M)
= e e - ——— O H
Ho r—3M dr  r-3M ! 4
and
—z (Ho+Hy). oy
Equation (3) can be written as an eigenvalue equation [6]

—20R,p = — [1 hap—2R 4caph® = Ahyp, 10y

where

O s = 8k apcp-

Positive (negative) values of A will correspond to stable (unstable) fluctuations about the
monopole solution.
For the component 4,,, we obtain

O hyy +2Ryciph = —Ahyy,

where
d*H 2M  2\dH, 2m?V? 4 4
O hyy = g%sp0 = drzl V('rT “") _d;'l' + —5— (Ho—Hy)— ;§H1+ ;}Kr
2MV MV K MV 4MV
2R101Dh ¢D = 2[ VHO_' ——— _‘2“ haas __3" K] K]
r r r r
so the sum after dividing by V is
d*H 2M  27dH 2M2V
y1! - |2+ Hyo—H
4
- —Z;(I'h K)+ Py (Ho K) = —AH,. (11

We use Eqs (8) and (9) to eliminate X and H, from (11) and obtain

1 & 43 —20Mr+24M* d 8M

=2 L Hy~ o H, = —iH,. 12).
vkt T Ay ar T Pe—am ! (12

The eigenvalue A = —0.19 M-2 was found numerically [5] for this / = 0 case.

For the / = 1 case, we notice from Eq. (6) that the components of A,, are multiplied
by cos 8 or sin 8. The equations corresponding to (8) and (11) for the / = 1 caseand w = @&
are obtained from (6), (7), (9) and (10);

1 dH, H, (2 " 3M

+ M Hot — (H,+Hy)— 2= =0
vV odar  r\r ) 2 Tyt oy

1 dK 2 2M
— —— +K{— - —‘”) 3 (Hi+Hop) = 13y
V dr r r
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1 d*H, 2(0r—M) dH, ( 6 26M 30M2)
+H1 -

Vv: gr? Vr? dr 2 P
2 14M  18M? 2H, 8M H,
+Ho| - = — - = —A=. 14
0( 2t s r* ) vt 14 (14

The solution of Eqs (13) and (14) for the zero mode 4 = 0 is given by [5, 6] A = @,
M
where ¢ = (r—M)cos 0, or H, = H, = — » K= —. The solution represents one com-
r r

ponent of the translations in the x, y, z directions of the origin of the Schwarzschild instan-
‘ton. On the basis of this zero mode for / = 1, the existence of the negative mode for / = 0
‘was aptly explained by Witten [7]. His argument follows.

The most general traceless metric perturbation that preserves the rotational and
time symmetry of Eq. (5) for the I = 0 case is

h,dx"dx® = BV " 'dt* + AVdr* -1 (A +B)r*(d6* + s*d¢?),

‘where 4 and B are two arbitrary functions of r. The transversality condition relates B to
4 as in Eq. (8). The resulting eigenvalue equation for 4 is a second order differential
-equation similar to Eq. (12). In order to look for metric perturbations for the I = 1 case
the appropriate substitution is

A—> Acos8 B - Bcos?.

‘The eigenvalue equation for / = 1 differs from that of / = 0 case by the presence of the
' positive angular momentum contribution corresponding to /(/+1)/r2. The existence of
:a zero eigenvalue for / = 1 discussed above implies that there is a negative eigenvalue
for ! = 0 as shown by Perry [5].

3. Magnetic monopole in five dimensions

We extend the analysis of the stability problem given in the previous Sections to the
magnetic monopole solution.

The magnetic monopole solution {8, 9] is a generahzatlon of the Euclidean Taub-NUT
-solution described by the metric g,z in 5 dimensions 4, B=0, 1, 2, 3, 5

ds® = dt? +V(dx® + Adp)* + V" Y(dr* + r2d0? +r? sin® 0d¢?) = gzdx*dx®,  (15)

Where xA = (t, r, 99 ¢) x5)3

10 0 0 0 g t+AAV AV
0 v'to 0 0 )

g =10 0 vt oo 0 | = (16)
00 0 (PP +A2VHIV AV
00 0 AV 14 AV 14
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Here V-t = 14+(4Mjr), s = sin 0, and 4, = 4M(1 —cos 0) in the northern hemisphere
and A, = —4M(1+ cos 6) in the southern hemisphere. When dt = 0, the resulting subspace
is the Taub-NUT instanton.

We first discuss the general angular dependence of the perturbative metric 4 ,,. Take
the monopole harmonic [10] in R, (northern hemisphere) and operate with the parity
operator P which has the effect of taking 0 —» n—0, ¢ - n+¢:

Fpma = Ogm(¥)e™ 9%, x = cos 0, an
and
PO (X)) = O (—x) = (= 1) "0 _y(%). 18)
Now note that
P(Y ymda = (= 12" Y _ i)y (19)

and also similarly P(Y_ g = (—1)'**"" %Y )., Where subscript b indicates southern
hemisphere. Hence we can form states of definite parity Y3 and Y$) which have parities
(~1)'*m*a apd (1)t respectively:

Yq(iit) = \% [( qum)a + ( Y—- q{m)b] = (qum(e) + 2] - q!m(g))ei(q * m)¢’ (20)
1
Y2 = = [(Yumda=(Y-gims] = (O gm(0) = O _ 4n(0)e 4" ™. (1)

gim — \/i

Thus here we have two scalar monopole harmonics of parity (—1)'*?"*? and
(=1)'*2m*a¥1 ] respectively, each of which can be used to generate vector and tensor
monopole harmonics. For example, for parity (—1)'**"*? we have with Y{) = YV,

2 2
)

Scalar: YV

) F
Vector: — Y™, ¢, — Y2
o o o ox

covariant

T : = Y, = Hy®
ensor: Yy = Y (derivative) > Tw¥ (®w/r)Y

X

3 YD) +ea v (22)

nv

where e2 = ¢ = 0, &3 = sinf, &) = —

——, x* =40, and x® ='¢. Any of the terms
sin 0

in (22) can be multiplied by an arbitrary function of r and ¢, without changing its transfor-
mation property under a rotation.

We now obtain an extension of Regge-Wheeler [1] 4, to five dimensions. Factoring
out the time dependence and Kaluza-Klein coordinate dependence: Fy(x°)F,(x®), with
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Fi(x°) = ™™, Fy(x%) = ¢™® we have for the case g = / = —m = 1 and even parity,
Y{}) _, = const. (independent of 0 and ¢). (23)
With the aid of (23), we obtain for hup, (hap = hsa)
r 3
Hy, H, 0 —H,s* H,,
A 0 —H,s* Hy,
has = [ 4 . (24
r’Ky,, 0 0
rzK'Y33 ""Hspsz .
L "szp)’ssd
The tracelessness condition becomes
vi4? 2VH
Ho+Hy+2K+Hapt+ —5 (K+Hop) + r,“"’A = 0. (25)

"
For terms independent of A we project out the P, part by 2n j sin 6d#, whereas for terms
4]

F(A) that depend on A, we use

n/2 L3
(F(4))o = 2n [ F(A,)sin 0d0+2n [ F(A,)sin 6d6. (26)
0 /2

We then note that,

1
1
Z‘(VzAz/rzsz)o =2a J dx

0

(1-x)*
(1—-x7%)

= 2a(2In2-1),

where a = 4M2V?[r? = (1~ V)2,

To solve for the ten amplitudes in (24), we use Eq. (25), and equations from 10 non-
-diagonal —26R,; = Ak, and 5 diagonal —26R,, = Ah,, terms given in Eq. (10).
The A dependent terms of all the equations above are projected as in (26).

Of the ten amplitudes, Hy, H,, H,; H,,, K, H,,, H,,, H3, H3,, H,, the amplitudes H,,
H,, H,, H, satisfy equations which are decoupled from the other amplitudes (Ref. [11]). It
can be shown that one can consistently set the amplitudes H,,, Hs, and H, equal to zero.
Finally, we displayed in Ref. [11] above, the tracelessness condition, the transversality
condition, and the coupled equations satisfied by the amplitudes H,, K and H,,. These
coupled equations are eigenvalue equations involving the eigenvalue A. If the equations
possess solutions which go to zero at infinity (or bounded at o), for only positive values
of A, then the classical solution will be stable, while if it possesses acceptable solutions
at r — oo for negative values of A also, then the classical monopole solution would be

unstable. Thus one is led to examine the asymptotic solutions of these equations in the
region of large r.
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For convenience, we reproduce here the equations of Ref. [11] with which we will
be concerned in a form suitable for further work. They are with the notations
n=aRIn2-1), a=(1-V)? V-' = 1+(4M]r), the tracelessness condition [12].

Q+mnK+(Q+n)H,,+H,+H, =0, N

the transversality condition,
dH,
A+ QR+mK+{1+n—V(1—n)}H,,—~(3+V)H,—2r = = 0, (28)

and the differential equations which can be written as

FHy 2 dH, _ k. 29
dr? rar v ° %
d*H, 2 dH, A
—Ti—r—z—- + ;-' W —ale—azK—-a:,Hzp = - 7 HZ! (30)
K 2 dK A
-—d—;-z— +77_d_r-’b1H2_b2K-b3H2p= —VK, (31)
d*H,, 2 dH,, A
drz 3+ —;— ar '—'CIHZ—CzK"‘C3H2p = - 7H2p- (32)

The coefficients a;, b; and ¢; in Eqs (30)-(32) are:

3 3
a, = (4V+ '~2g>/r2, a, = {2—6V—3a+ (1—-3V— _22) n}/rz,

3 3
ay ={—2+2V+ § +n<1—3V—— {-’)}/ﬂ; 33)

b, = (1—3V— -é->/r2, b, = {—2+4V +2a+n(B3a+4V)[2}/r,

3a 3a 2.
1-V— > ——n(l—ZV—— 7)}/r ; (34)

N =<—-2—2V+ iﬁ)/rz’ c; ={2——2V—3a+n(1-—i/-,— :_;_‘f)}./rz,
2 ‘ 2
=i L inf1-v=22\/ 35
3 =3 "i‘ +n -y - —5- ro. ( )

and
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Let us consider the dimensionless variables x = r/4M, 1, = (4M)?4, then Eq. (29) with
the substitution H, = hy/x is

d*hg L
de +2,1 1+ ; ho = 0. (36)

For A, > 0, the general solution of (36) is given by [13]

ho = A JZ; xe™5*M <1+ %\//1_1, 2,2i J7; x). 37N

For 4, <0, A; = —{2 say, the equations are satisfied formally but the boundary
condition at x — oo is not, therefore there is no-solution of 4, for 1, < 0.

To solve Eqs (30)(32), we substitute H, = h,/x, K = k/x and H,, = h,,{x and expand
hy, k, and A, in terms of the complete set of eigenfunctions provided by (36). The problem
of finding the eigenvalues and eigenfunctions of the coupled differential equations (30)—(32)
is reduced to finding the eigenvalues and eigenvectors of the expansion coefficients. The
coefficients are obtained with a computer. We found negative eigenvalues. Thus, even
though the uncoupled Eq. (36) has only positive eigenvalues, the coupling between the
different equations leads to negative eigenvalues. We have shown that bounded normali-
zable continuous solutions exist at » = 0 and r = oo for both signs of the eigenvalue,
thus indicating instability of the classical solution for the mode g =l = —m = 1.

This work was supported in part by the U.S. Department of Energy under Contract
Number EY-76-C-02-1415*00. Part of this work was done in collaboration with M. K. Sun-
daresan. The author thanks him for many valuable discussions. The author also thanks
A. Bialas and W. Slominski for their hospitality at the Cracow School.
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