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We discuss problems of the lattice regularization of the quantum chromodynamics.
We derive on the two-loop level a finite relation between the coupling constants of two ver-
sions of the lattice action: Wilson and mixed fundamental-adjoint. This relation maps
onto each other the weak coupling predictions of theories built with these actions. We discuss
also finite size effects, and in particular the role played by the zero-momentum sector of the
lattice gauge theory. We derive a form of the leading-order contribution to the averages of
Wilson loops coming from this sector valid for d = 4 and the SU(N) group with N > 3.

PACS numbers: 11.15.Ha

1. Introduction

In the last years Monte Carlo simulations of systems described by the lattice quantum
chromodynamics [1, 2] became one of the important tools in studying the physics of strong
interactions [3, 4]. The lattice was introduced originally to regularize the standard contin-
uum theory [1] and proved very useful in understanding such physical phenomena as
confinement, which escape if one uses only the perturbative tools of the theory.

Lattice gauge theories became a subject in itself and a lot of theoretical effort was
put in studying their properties. A novelty of this approach was existence of a new regime
of the theory: strong coupling regime where physically interesting quantities (Green’s
functions) can be calculated as power series in the inverse of coupling constant using non-
perturbative technique of cluster expansions (cf. e.g. [5-9]). In the strong coupling regime
the phenomenon of confinement is satisfied, in a sense, by definition. Strong-coupling
expansions can easily be generated to very high orders and there was a hope that one can
reach by some extrapolation technique the opposite limit in the coupling constant, namely
that of the weak coupling, which is the one related to the original continuous theory
[10-13].

Unfortunately this turned out to be impossible. Transition between the two regimes
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of the theory, at least for physically interesting gauge groups SU(N) with N > 2, does
not seem to be connected with a phase transition, however one cannot exclude the infinite-
-order phase transition of the surface roughening type. The.weak coupling version of the
theory is again confining, but the nature of confinement changes. The strong coupling series
seem to have a finite radius of convergence, which corresponds to a position of the first
singularity in the applied extrapolated formulas (e.g. Padé approximants). This singularity
marks the place where the transition between the two regimes takes place [14-19].

Monte Carlo simulations proved to be a method to fill the gap between the two regimes.
Physically interesting quantities can be numerically computed in the Euclidean version
of the theory, where the measure of Feynman’s path integral becomes real and positive
and can be interpreted as probability [4). For obvious reasons lattice systems which can
be handled this way have finite sizes, say 16* sites of a hypercubic lattice, but special purpose
computers are being constructed to deal with bigger systems. The size of a system is not
very important if one wants to get information about local quantities, like an average
action. Physically interesting however are phenomena which are related to the large distance
objects and their averages. Such objects are e.g. Wilson loops which can give information
about the lattice string tension, and consequently about the lattice scale A,,,;... Large
distance behaviour of correlations of certain objects can be used to measure the mass
spectrum of the theory. The conflict between the limited possibilities of computer experi-
ments and unlimited demand for hidden information can be resolved only if the theory
is understood sufficiently well to ask the computer questions it can answer.

An example of such understanding is provided by the renormalization group equations
[20-22}, which relate the lattice spacing a between the lattice sites with the value of the bare
coupling constant. The renormalization group tells us that in the weak coupling limit
this spacing goes to zero exponentially with the squared inverse of the bare coupling. This
explains what physically happens when we work with a system which is finite in lattice
units. If in the Monte Carlo experiment we decrease the value of the coupling constant
it means that also the physical size of a system is decreased. At a certain moment our
system inevitably will become too small to see phenomena which have fixed physical scale.
On the other hand when this value is increased we increase at the same time the lattice
spacing a and at certain moment our lattice approximation becomes too crude to describe
the physics of continuum. This apparently happens when the transition between the strong
and weak coupling regime occurs. It is therefore crucial, if the Monte Carlo method is to
be used to find a region in the coupling constant which is at all suitable to measure physics.
The fact that physically interesting results were already obtained in Monte Carlo experi-
ments must be considered to be a lucky coincidence!

An important factor, which can possibly increase the predictive power of lattice gauge
theories is the non-uniqueness of the lattice action used to regularize the continuum theory
[23-28]. There are in fact infinitely many possible choices. All of them should give the
same physics in the continuum, but their behaviour for finite coupling constants is different,
although related [24, 29-31). The first part of this paper is devoted to the study of this
particular problem. In Section 2 we introduce our basic notations recalling the main prop-
erties of the continuous QCD. The lattice version of QCD is discussed in Section 3 on an
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example of the Wilson theory [1]. Another possible choice of the lattice action: the mixed
action is also introduced [24]. In Section 4 we discuss in more detail the concept of univer-
sality and its implications. We shall derive an approximate (in the sense of perturbation
expansion) relation which maps the weak coupling regime of the mixed theory onto that
of Wilson theory. This derivation is based in the big part on our earlier work [32]. These
results were generalized in ‘Ref. [33] to other forms of the lattice action. The method we
shall use is the background field method [30, 34-39], which is introduced in Section 5.
In Section 6 we derive the one-loop form of the relation for the physical coupling constant
(in terms of the bare one) for the Wilson theory [30]. The diagrammatic structure of this
relation will be used in Section 7 to derive the required two-loop formula relating the coupl-
ing constants in the mixed theory to that of the equivalent Wilson theory. In Section 8 we
present a comparison of our prediction with numerical experiments and draw conclusions
concerning their results. A more detailed discussion can be found in Ref. [40]. The main
conclusion is not very optimistic and can be summarized as follows: values of the lattice
scale obtained in numerical experiments have probably systematic errors of the order
of 10%.

The second part of this paper is devoted to study implications of the finiteness of the
lattice system and its periodicity on the perturbative expansion. .The more complete study
of this problem was published as Ref. [41]. The first implication of the finiteness is that
the momentum spectrum of a theory becomes discrete. Modes with non-zero momentum
become Gaussian modes [42, 43], but the zero-momentum modes appear in the action
only in the quartic terms. Our analysis is devoted to study the contribution from these
particular terms to the partition function. Zero-momentum modes have an important
physical meaning describing the possible structure of the finite box vacuum. Similar prob-
lems were discussed in our earlier publication [44], where we introduced the concept of
a toron and of a toron manifold. The present paper and the Ref. [41] can be considered
as a sequel to it. The structure remains important also when the size of the system goes.
to infinity. In Section 9 we discuss in more detail the structure of the standard weak coupling:
expansion on a finite lattice and discuss the possible saddle points of the action. In Section.
10 we discuss the non-zero momentum sector of the theory, gauge fixing in this sector and:
the ghost determinant. In all these calculations we keep the structure of the saddle point.
possibly general. Integrating out the non-constant modes gives us an effective action for
the zero-momentum sector. The one-loop form of this action is discussed in Section 11.
The derivation of the general form of this action is given in Appendix A. Section 12 deals:
with the zero-momentum sector of the theory. We show that the structure of the vacuum
(or the structure of the dominating saddle point) depends on the gauge group and the
dimensionality of the system. We show that for d = 4 and group SU(N) with N > 3 the
structure of the vacuum corresponds to a naive vacuum, with the quartic scaling law for the
zero-momentum fluctuations. This result is based on the inequalities derived in Appendix B.
For this case the leading order behaviour of the partition function is derived in Section 13.
We evaluate also the leading order contribution coming from the zere-momentum sector
for the avarages of Wilson loops and show that for large loops this contribution is non-
-negligible. In Section 14 we present a discussion of this result and its possible implications,.
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2. Continuum gauge theory

In the following we shall always discuss the Euclidean versions of all considered
theories, i.e. we shall assume that the space-time is Euclidean. The analytic continuation
to Minkowski space is a standard problem and will not be treated here.

. We shall start our discussion by recalling the standard, continuous version of the quan-
tum chromodynamics (QCD). The basic physical concept is a vector potential A,(x)
which is a N x N hermitean matrix field which can be decomposed in the colour space as

A (x) = 3 Ay(x),, (2.1)
with 1, — the SU(N) group generators which satisfy the commutation relations

s 4] = i, 2.2)
with SU(N) structure constants f**°, For 1, we assume in the N x N representation

Tr A Ay = 26,3, (2.3)
From A4,(x) we construct the field strength tensor G,,(x):

G, (x) = 8,A,(x)—0,4,(x)+i[4,(x), A(x)], (2.4)

0
where 0, = T In the colour coordinates
Xu

(%) = 0,43(x) — 0, A5(x) —f A (x) AY()- (2:5)

In all these expressions the summation over the repeated indices is understood. The position
of both colour and space-time indices is not important.

The fundamental concept in QCD is that of the gauge transformation. Assume the
existence of the SU(N) field 2(x), under which the vector potentials transform as

A)(x) = Q¥(x)4,(x)Q(x)— i (x)8,2(x). (2.6)

As can easily be checked under transformation (2.6) the field strength tensor G,,(x) trans-
forms locally:

G(¥) = QN(x)G,(x)2Ax), 2.7
ad the so called action density %(A4)
F(4) = 3 Tr G,(x)G,,(x) = %}; Gi(%)G(x) (2.8)
is an invariant. Consequently the global action of the system S(4)

S(4) = [ d’x&(A) (2.9)
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is invariant under local gauge transformations (2.6). The physical properties of the system
are defined by specifying the measure in the Feynman’s path integral. This measureé is taken

to be
du(A) = H dA,(x) exp [— ;13 S(A)] (2.10)

*,1,q

and is again invariant under local gauge transformations (2.6). With the measure defined
by (2.10) the Green’s functions of the system can be computed. The gauge invariance
implies that only the gauge-invariant part of the averaged quantities has a physical sense.
In other words only gauge invariant quantities should be considered. Averages of such
quantities computed with the help of the measure (2.10) are however ill-defined, since they
are always proportional to the (infinite ) volume of the local gauge transformation (SU(N)
group volume at each space-time point x). This means that gauge-fixing is mandatory
if finite results are to be obtained. Problems of this type are typical for field theories with
local gauge symmetry (i.e. quantum electrodynamics) and w1ll be discussed later in the
context of the lattice version of the model.

To give meaning to the product over space-time points, which appears in (2.10),
one usually .is forced to interprete the functional integrals as a limit of the ordinary multi-
-dimensional integrals, in which the space-time is discretized in some sense and the distance
a between the points goes to zero. This approach means that, in general, the expression
for the action S(4) has to be redefined : derivatives appearing there have to be approximated
by differences in such way that in the limit a — O one obtains the standard expression
(so called naive continuum limit). Obviously there are infinitely many possible expressions
which have a common limit when @ — 0. All these will correspond to different, but hope-
fully equivalent ways to regularize the functional integrals.

In order that the regularisations be really equivalent it is necessary however to preserve
certain important symmetries (like the local gauge symmetry) of the system. This particular
one can easily be broken and as one can easily convince oneself is in fact broken in all
naive attempts to discretize the gauge theory. The reason-is the essentially non-local char-
acter of transformation (2.6) (derivative term becomes local only in the a — 0 limit) and
a proper definition of the discrete version of gauge theory has to take it into account [1].

3. Lattice gauge theory

In this chapter we shall discuss the basic concepts connected with the lattice formula-
tion of the gauge theory [1]. The first step will be to discretize the space-time. In ali which
follows we shall take the space-time to be a set of points ona hypercubic lattice in d dimen-
sions, where d is the dimensionality of the space-time. Assuming lattice spacing a in all
directions to be the same the possible positions of the points in the space-time are restricted
to take values

x = a{ny, ny, ... ng}, (3.1)
with integer n,, u =1, ..., d.
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The important geometrical concepts will be that of a link and plaquette. Link is an
oriented line connecting two nearest neighbour points. It is characterized by a set {n, g},
where # is a point from which it emanates and g a unit vector in direction u. Two points
joined by this link are thus » and n+ p. Notice that links are oriented, i.e. every link has
its partner with opposite orientation {n+p, —u}.

Plaguette is a set of four oriented links forming a closed square. Plaquette is character-
ized by two orientations p and v and the vertices of the square are n, n+gu, n+pu+v and
n+v. The same as for links, every plaquette has its partner with the links having opposite
orientations.

The vector potential 4,(x) from the continuous theory will be replaced by the link
variable

Un) = exp [T iadj(n)i,] 3.2)

defined on the link (n, ). As is clear from the definition (3.2) variables U,(n) are SU(N)
matrices. Variable defined on the link with opposite orientation (rf+y, — ) is an inverse:

U_,(n+p) = U; ' (n) = Ul(n). (3.3)
For every plaquette one can define a matrix P,,(n) by
P, (n) = U(m)U(n+wUl(n+v)Ul(n), (34)

which is a product of four link variables along the plaquette. Similarly one can construct
a matrix corresponding to the plaquette with opposite orientation: P, (n) = P}:v(n).
As in the continuous theory we shall consider the local gauge symmetry. In each
point n of the lattice we shall define the SU(N) matrix £(n) — an analog of the gauge
matrix Q(x) from the preceding paragraph. Matrices Q(n) will transform link variables

U,(n) as
Ui(n) = Qi(m)U(n)Q(n+ p). (3.5)

As can be easily checked, the P, (m) matrix transforms locally:

P, (n) = QY(n)P,(n)Q(n). (3.6)

In the analogy with the continuous case we can easily construct gauge-invariant quantities,
i.e. quantities invariant under transformation (3.4). The simplest example is Tr P,(n)
or the character of P, (n) in the fundamental SU(N) representation. More complicated
examples can involve traces of SU(N) matrices obtained as products of link variables
along any closed curve on a lattice, so called~Wilson loops, products of such traces, or
finally more complicated functions of such traces (these last can be understood as e.g.
characters in other than fundamental representations of the SU(N) group).

We are now in a position to define the lattice action of the system. We shall require
that it satisfies two basic requirements: a) local gauge invariance and b) correct naive
continuum limit (when @ — O the lattice action should approach the continuous one). The
first requirement means that we shall have to construct our action from the gauge invariant
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objects as described above. The second gives certain limitations on possible objects we can
use. There are infinitely many possible constructions satisfying both conditions [23-28],
all of which should in principle be equivalent. The exact meaning of this equivalence will
be made clear in the next Section. Here we shall explain only some possible constructions,
adding as a third requirement c) quasi locality. This last requirement means that the action
will be constructed only as a functional of the plaquette variables P, (n).

Making use of the definition (3.2) of the gauge potential 4,(a) in terms of the link
variable U,(n), and assuming regularity of potentials when the limit ¢ — 0 is approached, i.e.

4, - ad,+0(a*) &N

(where 4, is a difference operator), which is supposed to be satisfied wherever differences
of potentials appear, we can easily show that if

P,(n) = exp [iasz(n)} (3.8)
then

Gunn) = = (44— 4,4, +i[4,, 4,]+0(0) (9)

The simplest choice for the lattice action satisfying requirements listed above is

Sw(d) = =1 ¥ [(Tr P,(n)—N)+c.c], (3.10)

Hv
»

so called Wilson action. The sum in (3.10) is over all plaquettes with positive orientation.

Plaquettes with negative orientation are in the complex conjugate part. As can easily be
checked

Sw(4) = a* Y Tr G,(n)G,(n)+ O(a°) - Secom{4): (3.11)

As for the continuous theory we shall define the Feynman’s integral for the Wilson
theory with the help of the measure

du(U) = [ DU,(n) exp [ - BSw(V)]. (3.12)

u,n

DU, is the invariant (Haar) measure on the group SU(N) normalized to
fpUu=1. (3.13)

Parameter § ~ 1/g3 plays the role of the bare coupling constant (cf. (2.10)). The fact that
the field manifold becomes compact is typical for the lattice regularization of the gauge
theory, independent on the particular form of the lattice action. The measure (3.12) shows
the main properties of the lattice regularization of the gauge theory. As in the case of the
continuum the measure (3.12) has a local gauge invariance. This means that physical quanti-
ties should also have this property, otherwise when averaged with (3.12) only their gauge-
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-invariant part will contribute. Unlike in the continuum resulting integrals are not by them-
selves divergent — the volume of the gauge symmetry group is because of (3.13) finite
and, at least in principle, the gauge fixing is not necessary. As will be made clear in the next
Sections, we shall nevertheless need the gauge fixing to be able to study the weak coupling
limit (8 — o0) of the theory, where the measure (3.12) is dominated by field configurations
which are fluctuations around some saddle point(s).

As we have already mentioned the Wilson action [1] is one among infinitely many
actions with the correct naive continuum limit [23-28]. Another simple example is the
action, where the plaquette variable appears in the adjoint representation. The mixed
action S,, which contains both fundamental and adjoint representations [23, 24] has two
coupling constants f and f, and has a form:

Su(d) = =3 3 (Tt Py(m)+Tr PL(m)—Bas 3 ITr Py (m)l?, (3.14)

where we have included the coupling constants into the action (this should not lead to any
complications) and where we have omitted the unimportant constant terms. Using (3.8)
we can find the naive continuum limit of (3.14) which, as expected, is the continuum
theory but with the coupling constant

+NBa. (3.15)

Of course higher order (in a) terms of the pure Wilson (8, = 0) and mixed actions are
different and we may ask the question what is the relation between these two theories.

4. Problem of universality

As was mentioned in the last Section the problem of defining a lattice action with the
proper naive continuum limit has in general infinitely many possible solutions. In this
chapter we shall try to analyze the possible consequences of different choices and try to
describe the relations between them. For the lattice gauge theory we would like physically
interesting quantities to be gauge invariant, i.e! expressible in terms of traces of loops.
A concept of a loop was introduced in the last Section as a product of link variables along
a closed curve on the lattice. Using the transformation properties of link variables (3.5)
and denoting by U(C) the loop variable for the loop C, starting and finishing at point n we
see that under a gauge transformation (3.5) U(C) transforms locaily:

U'(C) = Qi (n)U(C)Q(n). 4.1
Quantity U(C) is called the Wilson loop. Average of its trace, where the average of quantity
X(U) is defined as
§ a()X(V)

U)) = ,
<X(U) [ du(0)

4.2)
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has a very important physical meaning. Consider the loop C to be a rectangle of size Rx T,
T> R. R can be interpretéd as the spacial distance between the external heavy quark and
antiquark sources. T is the Euclidean time during which the pair interacts. For loop C

‘ /1 1
W(C) = <1Tr Tr U(C)> 1Yo 3 &0 [~ (VR)~E)T], (4.3)

where V(R) is the pair energy and E, the ground-state energy. For large loops W(C) can
be parametrized '

W(C) = exp [—e.(B)RT—&(B) R+ T)—¥(h) ...]. 44)

W(C) plays a role of an order parameter of the théory. Phases of the system can be distin-
guished by the value of parameter ¢.(f) (zero or not). This parameter is aun electric
string tension, since from (4.3) and (4.4) we have

0{P)R = E(R)— E,. (4.5)

A lattice theory will be confining if this parameter is non-zero. Notice that in calculating
W(C) the physical length a has disappeared. g, is in this case a function of § or the bare
coupling constant g2 since by comparing (2.10) and (3.13) we have

2
p=a- (4.6)

We should notice that in (4.3) and (4.4) the size of the Wilson loop is measured in the lattice
units (R and T are integers). The real size of the loop is Rax Ta and

e(p) = a(B)@’, 4.7

where o(f) is a physical string tension. In the continuous theory o can be used to determine
the scale (renormalization of the theory can be done in such a way that o(f) or rather
o(g?) is kept fixed). Eq. (4.7) can then be regarded as a relation between the physical scale
a? and the bare coupling constant g? [20]

6oa” = eg”). 4.8)

This relation can be perturbatively calculated in the continuum when a is treated as an
inverse of the cutoff. The clue is to study the renormalization group equation satisfied by
the physical coupling constant g?(a) [20-22]:

d )

e £°(a) = 2Bog*(@)+2B,2%(a) +0(%(@)), 4.9
where coefficients B, and B, are independent on the regularization scheme (it starts with
g% terms [45]) and their values are [46-48]

N N V?
= (11/3) —; , =343 — ) - 4.10
fo= WD sy Bu=( /)((4n)2) (4.10)
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The solution of Eq. (4.9) can be written in the form

oa’ = A* exp [* : 2] (Bog®)~P7o(1+ 0(g%), (4.11)-
Bog

where A?/o is an integration constant, which cannot be computed perturbatively. ca? can
be interpreted as a lattice string tension. Relation (4.11) means that a continuum limit
of the theory (a — 0) corresponds to a transition g — 0, where all physical quantities
should scale according to (4.11). The scale A in general depends on the employed regulariza-
tion scheme [29-31].

The renormalization group relation (4.11) was derived in the continuum theory. The
coupling constant g2, which appears in (4.11) should carry an index r determining which
regularization scheme has been used. Different prescriptions resuit in a finite redefinition
of the coupling constant

gr = g(1+0(g?). (4.12)
In (4.12) g2 and g? are coupling constants corresponding to two different regularization
schemes. The finite coefficients which appear in (4.12) are perturbatively calculable. One
can check that terms of order g* in (4.12) (marked O(g?) there) have no influence on the
form of Eq.(4.11) except on the value of the scale parameter A%, which is changed by a finite
factor. Higher order terms will in general be affected, but these are not specified in (4.11).

At this point we are ready to specify what we shall mean by universality. We shall
call two lattice theories equivalent if in the limit 2 — O they can be mapped one onto another
with the help of a finite relation of the type (4.12) between their bare coupling constants.
This means that both theories will predict the same physics in the continuum limit.

If the Wilson lattice theory in the limit a — 0 is equivalent to a continuum theory
(regularized in some other way) there must exist a finite relation between the bare coupling
constant g, of the continuum theory and that of. the Wilson theory

2 1
gl = 7 <1+o (F)) : (4.13)

This gives a very definite prediction for the large-f# behaviour of the lattice string tension
2.(B), which can be obtained by introducing (4.13) to (4.11). This prediction has been con-
firmed in numerous numerical experiments [4].

The problem of universality will be discussed in the following Sections not as a relation
between the lattice and continuum theory but as a relation between various forms of lattice
theories. We shall concentrate here on one particular relation, namely that between the
Wilson (3.10) and mixed (3.14) theory. These two theories can be considered as two different
regularizations of the same continuum theory. In the weak coupling limit we expect the
existence of a finite relation

Bw = ﬁw(ﬁFa Ba) (4.14)

which can map predictions of the mixed theory onto that of a Wilson theory. We shall
derive the form of this relation perturbatively to the two-loop order.
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5. The background field technique

In this Section we shall discuss the background field method which will be used in
the next Sections to compute the effective coupling constants. This method, originally
proposed for the continuum theory [34-37] was later generalized for lattice gauge theories
{38, 39, 30]. ‘

The background field method introduces the background gauge field B,(n) = } BiA,
(A, are as before the SU(N) generators, a = 1, ..., N>—1, satisfying Tr 1,4, = 26,,) by
splitting each link variable into a product

U,(n) = exp [igod, (m)] exp [iaB (n)] .
= Uim)U,i(n).

The background field B,(n) can be considered as some nontrivial solution of the classical
equation of motion (a saddle point of the integrand in the Feynman’s path integral) and
A,(n) as a quantum fluctuation around such a solution. The background field method
simplifies considerably the computational effort necessary to evaluate perturbatively the
behaviour of the effective coupling constant. The background field in (5.1) sets the physical
scale: we assume that variations of B, (n) become appreciable only over distances L > a.
Using the parametrization (5.1) we shall formally proceed to evaluate the functional

Z(U®
Z(U®) = [[] DUim) exp [ - Siu U, U], (52)

w,n

where S;,, is an invariant action (for example the Wilson’s action). This calculation will
make sense only in the weak coupling limit, where as we have mentioned before we shall
assume that the background field UJ(n) is some nontrivial saddle point of the integrand
in (5.2). Matrices U will.be expanded in terms of vector potentials 4 ,(n) and the integral
(5.2) will be computed with the saddle point method (after introducing the gauge fixing
necessary to make such expansion sensible) to give an effective action of the background
field

Z(U®) = exp [-T'(B)]. (5.3)

The essential feature of the background field method is to perform the computation of
(5.3) in such a way that everywhere the invariance of the action under the gauge transforma-
tions of the background field is preserved. This guarantees that also I'(B) will be a locally
gauge-invariant functional of B,(n). I'(B) is in general a complicated functional of the back-
ground field. Expanding I'(B) in terms of B,(n) we shall concentrate on the lowest nontrivial
second order term (constant terms in I'(B) have no physical meaning and linear terms are
absent if the background field is indeed a saddle point of the integral)

[(B) = T'y(B)+T3(B)+ ... (5.4)

In the limit @ — 0, I',(B) will have an expansion

Ii(B) = 23 S.oulB) +0(@), (5.5)
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where

Scon(B) = % | d'x 3 (Gl(x))* (5.6)

and G},(x) is the field strength tensor of the background field (cf. Eq. (2.5)), or rather its
part linear in B,. G? in (5.5) is the renormalized coupling constant

1 1
@2 (1+0(gd))

with g, — the bare coupling constant of the considered theory. Subsequent terms in the
expansion of 1/G? as a function (in general divergent) of g, can be computed perturbatively.

Before we start computing let us specify how the gauge transformations act on link
variables parametrized by (5.1). Using (3.5) we can write

UimUl(n) = Q(m) U (mQ(m)LT(n) U(m)Q(n+ p). (5.7

Adopting this transformation law we have indeed a parametrisation in which the quantum
fields transform as local matter fields and the background part behaves as a real gauge
field. This symmetry should obviously be present in the I'(B) functional — that is how we
can predict the form of its two-point local part.

We define two lattice covariant derivatives

D, (B)F(n) = U/ m)F,(n+m) Uy (w)~Fy(n), (5.8a)
D (B)F(n) = U (n~pF(n—pm)U(n—p)—F,(n) (5-8b)

by their action on any matter field F,(n). In contrast with the ordinary lattice derivative
A4 ,f F, the left-hand sides of (5.8) transform again as matter fields.-Covariant derivatives will
be used to rewrite the plaquette matrix P, (n) (cf. (3.4)) as

P,(n) = exp [ia’G,(m)] exp [igoF . (m)], (5.9
where using the Baker-Campbell-Hausdorff formula

3

2
exp (84) exp (6B) = exp (s(4+B)+ 5[4, B+ & (4, [4.5]

+[[4, B, BD+ 0(g4)) :

we find
i
G, (n) = 2 (4, B(n)— A, B,(n))+i[B,(n), B,(n)]+O(a), (5.10)

(4; is the lattice derivative D, (B = 0) and
Fon) = FO(n)+ goF D(m) + g2FS(m) + ... (5.11)
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In (5.11)
Fﬁ.)(n) = D;Av(ﬂ)—D:—A“(H),
FP@m) = i([A,, A,]-3[D; A, Dy A1 -5 [D 4, A,1+3 [Dy4,,4,]))  (5.12)

ete.
F$) can be written in terms of double commutators of fields 4, and their covariant deriva-
tives.
Let us now proceed to express the lattice action in terms of quantities introduced
above. Our first example will be the Wilson action (3.10) [30]

BSw = —~ g Z ({Tr P, (n)— N]+c.c). k (5.13)

B<v
n

To terms at most quadratic in both B, and 4, it equals

4
ﬁSw = ﬁ z (aZgO Tr (Guv(n)Fuv(n))+ ‘_12_ Tr Giv

u<v
n

g5 2 a‘g} 2 p2
+ —2—Tr Fi— —4—Tr (GuFu)+ ... ). (5.14)

The first term on the right-hand side of (5.14) contains part linear in the quantum field 4,:
Ba’ge ¥, Tt (G (m)Fy)(n))

n<v
n

= Ba’g, ¥ Tr(G,(n) (D} A4,—D}A,)). (5.15%

n<v
n

This term can be made zero if we use the identity ,
¥ Tr (f(m)D; g(m)) = ¥, Tr [(D,f(m)g(m)] (5.16)

and the classical field equations, which we assume to be satisfied by the background field B,:
D, G,(n) =0. (5.17)

In the following we shall introduce the gauge fixing procedure, which will eliminate the
gauge zero-modes of the 4, field and which will guarantee that A, = 0 is a saddle point
of the action (5.14). Assuming now that this gauge fixing has been performed we get on
the tree level: ‘

BSw = —ga‘% Z (Gr(m))?* (5-18)
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.and we shall relate B/2 of the Wilson action to the bare coupling constant g,, which we used
to scale the quantum fields in (5.1):

B
5 (5.19)

gqnl e

It is important to note here that we could use a different relation between f and g, of
the form

g1
5= ?(1+a1g§+a2g‘é+ s
0

-with arbitrary finite «;. Such redefinition would eventually affect higher order terms in the
perturbative expansion. We can consider (5.19) to be a definition of the bare coupling
constant g, for the Wilson theory. Freedom to redefine g, will be used in Sections 6 and 7.
“The physical coupling constant G2

1 1
o= g(1+0(g3)), (5.20)
‘where O(g2) (in general divergent) corrections will come from the one-loop terms.

We shall proceed now to construct the perturbative expansion based on the expression
«(5.14) for the invariant action. The Gaussian part of (5.14) is

2
BS® = Ezg—" g Tr (D} A,—D} A+ ... (5.21)

n<v
n

In (5.21) the factor fgZ/2 equals unity if we accept the relation (5.19). We shall rewrite
{5.21) as

SP = Z(Tr (DA’ ~Tr (D A,) (DyA)+ ..)

=2 Tr (4, L@y D;)A,)
~ Y Tr (Y. D;4,)*+ ¥ Tr (4,[D,, D;14,)

+ ... (5.22)

“The last sum in (5.22) contains the commutator of covariant derivatives and is therefore
.t least linear in the background field. Form (5.21) is identical to the sum of N?—1 abelian
gauge fields (except that covariant derivatives in general do not commute) and requires
gauge fixing to ‘eliminate the gauge zero-modes

A, - A, +Djo+ ... (5.23)
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We chose the gauge fixing term to be

1
ﬁSW e ﬂ(SW'*' ; Sg.f.)s
where

BSer. = YL Tr (Y, D74’ (3:24)

and the (renormalized) value of a will be taken one. The gauge fixing term generates the
ghost term. Its form to the one-loop level is

Sen = 'Zbﬁ“(n) (%, D, D,))*w’(n). (5.25)

The last information we need to start the perturbative calculation is the expression for an
invariant measure DU, (n) in terms of A,. This expression is

H DU(n) = exp (—Sw) n dA,(n), (5.26)
un e
where
Su = g5 Y. 75 Tr A7+ 0(g5) (5.27)
L

results from the change of variables (5.26) and starts with the terms O(g2). The measure
term (5.27) is a lattice artifact. It contributes in perturbative expansion terms which violate
the standard loop counting. It will eventually contribute only on the two-loop level.

Another aspect of the change of variables (5.26), typical for perturbative expansions,
which is not at first sight apparent is the change in the domain of integration over
the A, fields in the path integral. This will now extend to infinity in contrast with the finite
group integration of the original formulation. We can hope that with the properly chosen
gauge fixing one can neglect contribution to the path integral coming from the region of
very large fields.

6. Computation of the one-loop effective coupling

In this Section we shall outline the structure of diagrams necessary to calculate the
effective coupling constant for the Wilson action on the one-loop level. Without actually
performing this calculation we shall proceed to derive the two-loop formula relating the
bare coupling constants of the Wilson and mixed (fundamental-adjoint) actions.

In the last Section we formulated the perturbative expansion of the Wilson theory.
As we argued in this Section we can assume that the background field B,(n) is a saddle
point of the integrand (after the gauge fixing term has been introduced). Since we are
interested in computing the effective action for the background field only on one-loop level,
we shall need terms at most quadratic in the background field and exactly quadratic in
gluon fields. To the one-loop order the gluon and ghost parts of the action are independent.
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We can also neglect the measure term. For the gluon sector we have
B(Sw+Sgs) = So+S;+S;+8S3, (6.1)

where we have separated the free part of the action
So =2 Tr[4, 34, 40A"] (6.2)
which does not depend on the background field,
= Z,, Tr [4, g(D;D:)Av]——So ' (6.3)

contains terms both linear and quadratic in the backgrbund field.

S, =da* Y TrG,R,, (6.4)
r<v
Here
R, =FD+i[A (n+v), A(n+m)], (6.5)

with the last term coming from the commutator of covariant derivatives in (5.22). Finally

_e Z T @G, ). (6.6)

A similar. decomposition can be made for the ghost part

Sgh = Sgho+Sghl, (6.7)
where '

Seho = 21 [Z 4, 4; jo" (6.8)
is the free ghost part, which does not depend on the background. Sy, contains terms linear
and quadratic in the background field. We can observe that the gluon field couples to the
background field either by the nontrivial dependence in covariant derivatives (term Sy}
or directly to the G,, tensor (S, and Ss). Mixed dependence is also possible (cf. Eq. (5.12)
for F3). We observe also that with our gauge choice the gluon propagator generated by
the term S, is diagonal both in space and colour indices. The ghost propagator, generated
by Sgy, is diagonal in colour indices. In Fig. 1 we list the diagrams which will contribute
to the two-point function I',(B) on. the one-loop level. Gluon propagators are represented
by continuous lines, dashed lines are the ghost propagators. Wiggly lines are the back-
ground field external lines. Vertices are miarked with numbers, corresponding to the
decomposition (6.1) and (6.7). Diagrams with one interaction vertex (and two background
field lines attached to it) are finite. Diagrams with two interaction vertices (one background
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A

Fig. 1

fine at each of them) are in general logarithmically divergent. We shall not perform here the
one-loop calculation. This was presented extensively in the literature (cf. e.g. [30]). For
our later discussion we shall need the form of interaction vertices and diagrams represent-
ing I';(B).

We shall now proceed to discuss similar expansion for the mixed fundamental-adjoint
action. As was mentioned in Section 3 this action has two coupling constants, ¢ and B,

Z [Tt P, (n)+c.c.]—Ba Z (Tt P, (m)f* (69

u<v
n

multiplying respectively characters of the plaquette variable P,(m) in its fundamental
and adjoint representatlons

It is obvious that if Ba = 0 lattice action (6.9) becomes the Wilson action. It is also
known from numerical experiments [23, 24, 49] that (at least for some N) a lattice system
described by the action (6.9) behaves differently than the Wilson’s system, developing
complicated phase structure in the (fg, 5,) plane. This need not contradict the concept
of universality (or equivalence of these two theories) since this applies only to the weak
coupling limit of the theory. We shall in fact show that these two are equivalent at least
up to two-loop level. We shall derive a finite relation, mapping all the diagrams derived
from the action (6.9) onto those of the Wilson’s action. By all diagrams we mean those
necessary to compute the two-point function I';(B). Mapping the two theories on each
other in the weak coupling limit will correspond to finding a suitable expression for g.

For the action (6.9) we shall again use parametrization (5.1) in terms of the quantum
and background fields. Before we start to construct the perturbative expansion let us first
rewrite (6.9) as

Sm = — 5 (fp+2Npsw) Y [l"rPuv(n)+cc]

z<v
n

—Ba Y ITr Py— Noo|* + BN w0”. (6.10)
B<v
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In (6.10) @ = w(Ngd) is chosen to be

o(Ngd) = <Tr; '">w (6.11)

the average action per plaquette computed with the Wilson action with the baré¢ coupling
constant f = 2/gz (cf. Eq. (4.6)). The sense of such reparametrization of (6.9) will be made
clear soon. The last term of the action in (6.10) does not depend on dynamical variables
and can be dropped when averages will be computed. Notice that we still have not specified
the relation between g3 and Sy and f,. We shall now proceed to construct the perturbation
expansion as in the case of the Wilson action. Our starting point will be the form (6.10)
of the mixed action where the second term will be treated as a perturbation over the first
(Wilson) term. If we simply neglect this second term we see that the resulting Wilson’s
action will have the bare coupling constant g, satisfying nonlinear equation

g%z) = Be+2NB w(Ng3) (6.12)
to be compared with (4.6) for the pure Wilson case. Eq. (6.12) can be considered as a general-
ization of the naive relation (3.16). Obviously for 8, = 0 the two coincide. The new interac-
tion vertex resulting from (6.10) can be represented diagrammatically as two semicircles,
each corresponding to one of the factors (Tr P,,— Nw) or its complex conjugate. Each
such vertex carries a factor f,. Using expression (5.9) for P,, we can attach gluon and
background field lines to each of these semicircles. Again we shall be interested in terms
which are at most quadratic in the background field. A new interaction vertex will appear
in the diagrams. We can now easily understand the effect of rewriting our action in the
form (6.10). In order to do so it is important to realize what is the diagrammatic expansion
of the average plaquette action in the weak coupling limit of Wilson theory. Using formal-
ism introduced above we can expand Tr P,, in terms of gluon fields and compute its
average. Obviously no vertices with background field lines attached to them would appear.
Representing diagramatically Tr P, as a semicircle we get for its average a set of connected
diagrams built from the gluon and ghost lines (these would already appear on the two-loop
level) with one semicircle vertex and arbitrary number of interaction vertices resulting
from the Wilson action (cf, Fig. 2). It is now easy to see that the role of the redefinition

e (OO
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(6.10) is to subtract from the perturbative expansion of any average computed with the
mixed action diagrams with at least one 8, vertex where one of the semicircles has the struc-
ture described above. Examples of such diagrams are presented in Fig. 3a. A simple con-
sequence is that now we need only to consider diagrams where to each semicircle appearing
in a diagram at least one, and in practice two lines must be attached (gluon or back-
ground).

We shall use an even stronger rule to reduce the number of diagrams. We shall discard
all the diagrams with an arbitrary number of §, and Wilson vertices which become dis~

S0 -

(6}

Fig. 3

connected when two semicircles forming any of f8, vertices are taken apart and when one
of the resulting subdiagrams has no background field lines (Fig. 3b). Such diagrams wilt
represent one of the terms of the expansion of w(Ngg) with g, satisfying the complete
relation of which (6.12) is only the first approximation. In general we expect

32 = Br+2NB o(Ngo)+N Z (BA)FNg0), (6.13)
8o —
where f(Ng2) are finite functions of the coupling constant. These functions are themselves.
expressible as infinite series of (Ng2) starting with terms proportional to (Ng3)*~' (this
corresponds to the graph with i §, vertices and a minimal number of gluon lines). We shall
compute the form of equation (6.13) in the two-loop approximation, which means that
only a finite number of terms of the infinite sum (two) will be computed. Also functions.
fi» i =1, 2, will be computed only to the two-loop order. The quality of our approxima-
tion will obviously depend on the values of (Ng2) and f,.

With the help of expansion (5.9) we can now evaluate one-loop corrections to the
Wilson I';(B) which result from introducing the perturbation 8, term in (6.10). It is easy
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to realize that only one diagram contributes (Fig. 4) which gives

2
T y(B) = pa* % Z Go(m)Ga(m) CFQHMF (1) >w,s (6.14)
o

where the average is calculated with the Wilson action with the coupling constant g,.
Average appearing in (6.14) can easily be computed. For d = 4 (dimensionality of the
space-time)

5ab
CFmF ) = — (6.15)
Fig. 4

which is independent on . Dimensionality d affects only the coefficient in front of 6°° (2/d),
but not the other properties of (6.15). From (6.15) we can easily compute the one-loop
corrected form of formula (6.12).

2 BerINBrO(NEE) — N 2 (Ng)) (6.16
g0 2N

In (6.16) w(Ng2) should be taken to the one-loop (Ng2) terms only to maintain the one-
-loop character of the formula. We must remember that all the averages computed here
are the averages with the Wilson action and with the gauge fixing term chosen as in (5.24)
with a = 1. The two-loop corrections to formula (6.16) will be discussed in the next Section.

7. Two-loop corrections

We shall now proceed to compute the two-loop corrections to the formula (6.12).
We shall first make a comment about the free part of the action used in our calculations.
Expanding (6.10) in analogy with the Wilson case we see that the part of the action quadratic
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in the quantum field is multiplied by the factor

2
, g
9 = (Br+2NPA(NgS) —-

N 2
=1- 20 Z (BTSN g)), (1.1)

where we made use of (6.13). This factor was equal one if g2 satisfied the zero-loop expres-
sion (6.12). The gauge fixing term used in analogy with the Wilson’s case was

1 1 _ 2
¢—Z- gf. = ; Z Tr (Z Dv Av) s (72)

n v

with @ = 1. As we have shown in the last chapter the one-loop equation satisfied by g2 is
now (6.16). To this order (7.1) equals

Ba
g=1+ 4—1—\1—2-(Ngf,)2 =1+A4. (7.3)
In effect the whole quadratic part of the action (including terms interacting with the back-
ground field) will be increased by the same factor

S 5 S 4 4SP, (7.4)

The gauge fixing part of the action is not affected by this rescaling. To compute the two-
-loop form of the two-point function I';(B) we must take into account corrgctions to the
one-loop diagrams resulting from (7.4). These will exactly cancel the two-loop diagrams
in ' which one of the loops is connected with the §, vertex and is obtained by joining with
the gluon line two semicircles forming this vertex. As a simple example we can consider
a diagram of the form represented in Fig. 5, where the §, vertex appears as an insertion on
the gluon propagator (no background field lines present). This subdiagram has exactly
the same structure as the one-loop correction term discussed in the previous chapter, except

— = (1 - A)
transverse lransyerse

Fig. 5
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that now the quantum lines replace the background field lines. As can be easily checked
the two-loop diagrams containing a subdiagram of this form are exactly canceled by the
corresponding one-loop diagrams, where the gluon propagator is rescaled according to
(7.4). As can be seen from Fig. 5 the subdiagram of this form is equivalent with rescaling
the transverse part of the gluon propagator by a factor 4 in the one-loop diagram. Rescaling
(7.4) will produce a diagram of exactly the same form, but of opposite sign, the longitudinal
part of the propagator being unaffected by this rescaling.

Fig. 6

Similarly we can show that subdiagrams similar to that in Fig. 5, but with one or two
background field lines emanating, each have its partner resulting from the rescaling (7.4)
of the quadratic part of the action. This is represented schematically in Fig. 6. To prove
this relation we made use of the diagonal in colour and space indices form of the gluon
propagator and of the antisymmetry of the SU(N) structure constants f° ¢, In effect diagrams
with one f, vertex, where the two semicircles are connected with the gluon line are exactly
canceled by the one-loop counterterms resulting from (7.4). '

The remaining two-loop diagrams are either pure Wilson diagrams (with no 8, vertices)
or finite two-loop diagrams with f, vertices which do not contain subdiagrams described
above. All these diagrams combine to the two-loop correction to the equation (6.13)
satisfied by the bare coupling constant. As we can see, this way the diagrammatic expansion
of I',(B) remains up to two loops exactly the same for the Wilson and mixed actions.
We have only to compute the two-loop form of (6.13). Diagrams we have to calculate
fall into two classes

(i) diagrams with one B, vertex of the form similar to the one-loop diagram from
Section 6 (Fig. 5), with one background field line G, attached to each semicircle, but with
two-loop structure on the gluon propagator, joining these semicircles (Fig. 7);

(ii) diagrams represented in Fig. 8 with two f, vertices or one B, and one Wilson
vertex. Both vertices are linear in G%, and cubic in FL)"
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We can easily obtain the closed form for all diagrams of the form described in (7).
They have the general structure

1 Baa* Y Ga(m)Ghy(m) (Tr i,P,, Tr 3, P>, (1.5
u<v
ab

where the average is computed with the Wilson action, with the coupling constant g,.
Notice that (7.5) contains also the one-loop result. From the colour symmetry we can
argue that the average in (7.5) is of the form J,,X. With the help of the formula

1
Z ()'a)ij('la)kl =2 (5jk5it" KI 5ij5kt) (7-6)

2N <Tr P, TrPi,
X = 1-—
N?—1 N N

2N 1
= (1 —w?(Ngh— N (Tr P, Tr P,t,)c) , a.n

X can be related to

N2-1
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where w(Ng?) is the average action per plaquette in the Wilson’s theory. The comnected
part in (7.7) is easily calculated on the two-loop level:

1 : + -1 1 2\2
ITJE {Tr P,, Tr P}, >c = ﬁ—l 1— —I\Tz (Ngo)“. (1.8}
/

Function w(Ng2) was computed to two4lbops and equals [50]

2 2_

e -1 N*—1 1 »a
o(Ng2) = 1— (Ngd)— o (00203~ 0 ) (Ngd)* + .. (1.9)

8N?

Diagrams (i) forming the second subset of nonvanishing diagrams can be easily com-
puted when we transform them to the momentum space. They all involve integral of the

type

d* da*
J (27:;1 @ I;z Y12(p1) Y12(p2) Y12(P1 + P2)s (7.10)

where

iZ (p)” +12:(p)*

Yi2(p) = Z |2 (P)|2 ’

(7.11)

with 2,(p) = e'’*—1, and p, the lattice momentum. To evaluate .# we notice that it does
not deend on the pair of directions [1, 2]. We can write

Y12(p) = 1—Y34(p) (7.12)
for p = p, and p = p, in Eq. (7;10) to get an equation

d*p d*p,d*p,
S =1-3 I e Yu(pl)+3j(2 ’;1(2”)4 Ysu(po) Yau(p2) ~ 5. (7.13)

In obtaining (7.13) we changed variables where necessary, making use of the symmetry
of (7.10) with respect to the momenta p,, p, and p; +p,. Obviously from (7.13) and from
the directional independence of integrals we find

d4
| G B =4, (1.19)

and therefore # = 4. Diagrams considered above yield for a > 0

B 3 N2+1
N [431:12 1— 55 | (N8) +35 —— BN D)’ | Seon(B), (1.15)
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where in derivation we made use of Eq. (7.6). Our final two-loop equation for the bare
coupling constant is

g% ~ Be+2NBr@(NEE)+2Nf,y [— (- (Ngd)

2 N*-1

1 3 Nz 1
~ BN (1— P) (Ng%)’] +2Np3 ("{;‘12 N—J: (Ng§)3). (1.16)

Expressions for w(Ng3) and 1—w?(Ng2) should be used in (7.16) to the two-loop order
(Ngd). ’

The method outlined above can in principle be continued to higher loops. The two-
-loop equation (7.16) will again introduce rescaling of the bare coupling constant, necessary
to reduce all divergent three-loop diagrams with f, vertices to one- and two-loop diagrams
of the pure. Wilson’s theory.

The last remark in this Section considers the form. of (7.16) when the N of the gauge
.group N — co. In this limit G2 = (Ng2) remains finite (and also 8., = Bg/N rather than fy)
and we should rewrite (7.16) as equation for this quantity. When N = oo this equation
simplifies considerably:

alz = % + BAo(G2). (7.17)
It is exactly the form predicted on the basis of general considerations making use of the
factorization of the Wilson loops in this limit by Makeenko and Polikarpov [51]. All
higher-loop corrections are suppressed as powers of 1/N2

8. Comparison with experiment

In the last few years the numerical Monte Carlo simulations have given many interest-
ing results concerning lattice gauge theories. Among them probably the most important
was possibility to check experimentally relation (4.11) between the lattice string tension
and the bare coupling constant [4]. In all numerical experiments the lattice was finite with
periodic boundary conditions. Since, as we have shown in Section 4, the physical length
of the lattice bonds is also related by the same relation to the bare coupling constant,
the physical size of the lattice shrinks to zero exponentially when coupling gets smaller.
In effect it is by no means obvious that the scaling regime, when Eq. (4.11) holds, can at all
be reached in computer experiments and the fact that apparently it can, must be considered
as a lucky coincidence. This means that there exists a region in the coupling constant where
the physical size of the lattice is big enough for the Wilson loops which can be built in
such a box to show the area law (4.4). This region in the coupling constant must be finite,
since decreasing the coupling constant we finally reach a limit when the box is too small
to see physically interesting effects. Relation (4.11) is thus tested for values of g5 far from
zero and one may expect that higher order effects may be very important if one wants to
extract from the experiment the value of the lattice scale A,y ce-
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With the help of universality relation derived in the last chapter we can try to check
the importance of higher-order effects in the region of the coupling constant where experi-
ments are performed. We shall do it by comparing results obtained for a Wilson system with
those for the mixed system. Universality relation (7.16) (or in general (6.13)) predicts that
on the {Bg, B4} plane one can draw lines corresponding to the same value of g2, along which
physics is the same. The same physics means in particular the same string tension. By
measuring string tension in various points on the {ff, S} plane the shape of these lines
can be obtained experimentally and compared with theoretical prediction.

The present comparison [40] is based on the numerical data of Bowler et al. [52]
to get an overall view and on the high statistics data of Barkai et al. [53, 54] to settle the
fine points. The numerical data in all these cases are for the SU(3) system with the mixed
[54] and Wilson [53] action.

Qur universality formula can be rewritten as an equation for the constant physics
line

Be = Be(Ba> Bw)» (8.1)

2
where By = —5 is the corresponding value of the pure Wilson theory. Identifying (Ng)
8o

with 2N/B« (N = 3 in this casc) we get

1 1
Be = Bw—6B (w—%(l—af)— 1%) +hR3 g (82)

where w = w(6/By) is the average plaquette given to the two-loop order by formula (7.9).
In Fig. 9 we compare the lines given by (8.2) for various By, with equal-string-tension
curves from the Monte Carlo experiment [52]. The continuous lines are the experimental
curves and the dotted line is the prediction of formula (8.2). The dashed line and the crosses
represent location of the Monte Carlo experiment [54]. In all figures B and B, are scaled
by an extra factor 9 (= N?). This comes from the different definition of coupling constants
used in these papers.. We can see that the agreement is not very good, particularly at low
Bw (larger g2). For larger By, the agreement improves. Experimental lines are practically
straight which can be well understood by the smallness of the leading term proportional
to B2 in (8.2), at least in the range of §, considered in this experiment. The main discrepancy
seems to come from the error in the slope (part proportional to §, in (8.2)). The range
of By considered above is rather limited. Of course if it would be numerically possible to
go beyond this range, agreement would get much better. As we explained before this would
however require using much bigger lattices than those in the experiment. The By value,
where according to the authors the scaling regime sets in is supposed to be 9fy ~ 5.8.

To trace the source of discrepancy it is instructive to compare the experimentally
measured values of the average plaquette action in the considered range of the coupling
constant By with its two-loop form (7.9). Experimental points have negligible errors and
we can expect to compare this way the exact function with its two-loop approximation.
The effect of this exercise is displayed in Fig. 10. The two-loop curve is represented by
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a continuous line. Experimental values (open circles) are taken from Ref. [53] and the
broken line extrapolates between these points. Note that the scale on the w axis is very
large to show better the difference between the two values. We can see that in the measured
region the two-loop approximation becomes steadily worse and probably third- or even
higher-order terms would be necessary to improve the agreement. In Fig. 11 we show the
comparison of the experimental slope of the equal-string tension curves with that predicted
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at f, = 0 by formula (8.2). Again the two-loop prediction is represented by a solid line.
The curve, where experimental values of @ were taken instead of the computed two-loop
values is also displayed (broken line). Agreement of the latter with experimental points
is remarkable, showing that probably the universality relation is dominated by diagrams
discussed as point ({) in Section 7.

In Fig. 12 we show the string tension for the pure Wilson theory (black dots) taken
from Ref. [53] compared with that for the mixed action (Ref. [54]) extrapolated with the
two-loop formula (crosses) and the semi-empirical one (w taken from the experiment —
open circles). Again the consistency of the latter with the Wilson experiment is remarkable.
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Fig. 13

In Fig. 13 we show the string-tension scale paramegter ratio ,/o/4 obtained by using formula
(4.11) for various g3. The two forms of extrapolation are again used for the mixed action
results (crosses and open dots), the points for the Wilson action are also displayed (black
dots). Figure shows that again points for the mixed action give results consistent with
the Wilson theory only if the semiempirical extrapolation formula is used. If we would
like to extract from this figure experimental value for \/a/4 using the two-loop extrapola-
tion formula (8.2) and following the method proposed in Ref. [53] for the Wilson action
we would get for the mixed action

Jold = 94.0

to be compared with /o/4 = 103.8 for the Wilson theory. These two numbers should
be the same if the two-loop extrapolation formula was exact!

It is important to observe at this point that the method employed to determine the
lattice scale uses itself the two-loop formula (4.11). Our exercise shows that the region
of the coupling constant used in this experiment is still too distant from the “two-loop
regime” to have a confidence in the consistency of results. In effect we expect that the
“measured” values of the lattice scale may be subject to a systematic error of 5%-10%.

One way to improve the accuracy is to increase the size of the lattice system used in
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Monte-Carlo simulations and push measurements to smaller values of the coupling constant
8o- This should be possible with the help of the new generation of special-purpose computers
which now are being constructed.

9. Weak coupling expansion on a finite lattice

In the Monte Carlo experiments Wilson loops are measured on lattices which are
:always finite with periodic boundary conditions. In the following we shall discuss properties
-of the weak coupling expansion formulated on such lattices {40]. We shall be interested
in particular in the role played by the zero momentum modes, which escape the standard
perturbative treatment of the theory.

In the following we shall always consider the Wilson action for the lattice system.
Results of this analysis can easily be generalized for other forms of the action. To under-
stand better the structure of the perturbative expansion remember the form of the action
we discussed in Section 5. Let us consider the case B,(n) = 0 when all the covariant deriva-
tives can be replaced by ordinary lattice derivatives. Let us parametrize the link variables

. : 2
U, (n) = exp [id,(m)] (we did not include g, in the exponent) and use f = —;-. For the
) £o
quadratic part of the action we get [42, 43]

Sw+Sgs. = % Z Tr (Av(n) z (A;A;)Av(n)) . .1
0

v,n

Let us assume that our system is a finite periodic box L, xL, x ... L, Introduce Fourier
momentum components of the fields

1 .
Ay(n) = i z (P~ F",

{»}

00 =i ) AT 02)
{n}
where the momentum p, in direction p =1, ..., d takes discrete values
D= %’nu, n,=0,1,... L,—1 9.3)
and where
Q.(—p) = QXp). 94

‘We can rewrite (9.1) as

Sw+Sge. = % 2 Tr (Qv(—p) Z 25— llev(p)> , :3)
0

v,p
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where
PF = eFPn—1. 9.6)

From (9.5) we see that all the momentum-carrying modes are indeed Gaussian modes
and scale for go — 0 as

0.(p) = 200,(P). 9.7

Interactions of these modes will produce a standard perturbative expansion [42].

The zero-momentum field is a zero mode of the quadratic action, but because of the
non-abelian character of the theory, it will appear in the interaction terms. To understand
better the nature of this field let us consider a configuration, where only this field is present.
This configuration corresponds to a constant field

1
Bu = E]Ti Qu(o) (9.8)

or constant link variable U, = exp (iB,) on all links in direction y. The plaquette variables
P,, are also constant

P, =UUUIU! 9.9)

and when we expand around B, = 0 terms like ((Tr P,,— N)+c.c.) we get for the cor-
responding Wilson action ‘ ’

v
SO = — = E Tr [B,, B,J* + O(B®). (9.10)
o
u<v

Equation (9.10) suggests that zero-momentum modes may have a different scaling than
the momentum-carrying modes. This includes not only the g, but also volume dependence.
In effect these modes may compete in perturbative expansion with other, more populous
modes. In fact the form of the zero-momentum part of the action is the same as the Wilson
action on a one-point periodic box. Properties of such a system were discussed in an earlier
publication [41] and many results obtained there will find a direct application here. Eq. (9.9)
shows us that one can also expect a more complicated structure for the vacuum (minimum
of the action). All configurations with

(U,U]=0 ©.11)

are classically equivalent, but may have different quantum properties.

10. Non-constant modes in the finite box

In this Section we shall discuss the computation of the lattice partition function Z on

a periodic box
l l . 1
Z = f DU (n) exp (— —g—5 S(U)) , (10.1)
o
u.n
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where S(U) is the Wilson action (3.10). We shall use the parametrisation in which the con-
stant commuting modes play a special role. Since all translationally invariant saddle points
of the action, satisfying (9.11) can be brought to a set of constant diagonal fields we para-
metrize the link matrices as ‘

U,(n) = exp (id,(m)) exp (iB,), (10.2)

where B, are diagonal and A,(n) satisfy the constraint

. 1 4
Ql%(0) = S Z A% (n) = 0. (10.3)

Equations (10.2) and (10.3) define B, and 4,(m) in terms of U,(n). Reparametrisation
(10.2) will modify the measure in (10.1). Let us compute the Jacobian which goes with it

H DU,(n) = H dA,(n)dB,5 (711,—2 z A;’.‘“(n)) J (4, B). (10.4)

Consider an arbitrary diagonal and constant unitary matrix C,. For a given U,(n) define
the matrix A5(n) by

exp (iA5(n)) = U,(n)C}(n). (10.5)
Consider the diagonal part of AS(n) and form the following functional of the configura-

tion {U,(m)}:
()= j dC, (71—,2 Z Ag‘"a'(n)> . (10.6)

This functional is clearly an invariant on all the configurations of the form Uy (m)V, with
arbitrary diagonal and constant ¥, since V¥, can be reabsorbed in the integration (10.6).
In (10.6) the measure dC, is flat. '

The Jacobian J, becomes

J(A, B) = exp (= T, Su(n)—log I, (D)), 10.7)
where S, is the traditional local measure factor defined by
DU, = dA, exp (—Su(4,))- (10.8)
We can verify (10.7) by writing (10.4) as

H DU ) = H AU (n) j dC,é (17}—,2 Z Aﬁd‘“(n)) It

= J‘dB,, H dA, exp (— Z S,(n)—log I,,) é (_V{_/z Z A;‘,‘“'(n)) .
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In the last equality we used the fact that the measure of the abelian subgroup is flat
dC, = dB,. The importance of (10.7) lies in the fact that 7, depends only on A4, further-
more both S, and log I, behave like 42 for small 4.

In this way we have checked that, when the gauge fixing will be introduced, measure
terms in the action will not influence our parametrisation in which the diagonal B fields
are minima of the action and 4 fields are fluctuations around them. This is in contrast
to parametrisation where one studies fluctuations around any set of constant potentials.
See e.g. Refs [55-58].

Before we proceed with the computation of the partition function Z let us observe

an important symmetry of the parametrisation (10.2). Consider a gauge transformation
Q,(m) which is periodic modulo the element of the center Z(N) of the group SU(N) and has
a form:
2nH
NL

Q.(n) = exp (—i ? n,‘) . (10.9)

{13

Here H,, is a diagonal, traceless integer matrix and there is no summation over u. The
eigenvalues 4, of the matrix H, can be written as

h;.z =k,+N l,i,,
where
ky= =Y Lo
Under such transformation the link variable becomes
Ui(n) = Qi(m)U,(m)Q,(n+ p). (10.10)
This results in a local rotation of A,(m) and a shift on B,

A,(m) = Qf(m)4,(m)Q,(n),

) 2n
Bu=B.- N1
"

1, (10.11)

Variables 4,(n) for v # u are only rotated and corresponding B, are unchanged. Diagonal
matrices B, can be parametrized by their diagonal elements B with a constraint } B} = 0.
i

The shift in Eq. (10.10) can be rewritten in terms of these elements as

B' =B M 2m
L’* NL ¥

"

which shows that we can always find a gauge transformation of the form (10.9) which trans-
forms a configuration with arbitrary values of B, into a configuration where all N(N—1)
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variables BY:

B/ = B,—B],
n gy 2" 10.12
L” 13 L“ . ( M )

As we shall see variables BY will play a special role.

Combining transformations of the form (10.9) we can satisfy relations (10.12) for all
1 =1,..,d The importance of these constraints will become clear if we compute the
effect of the rotation (10.11) on the fields Q,(p). We shall express the result as a relation
for the (i,7) elements QY and Q%' of the N x N matrices Q. Note that this relation will
be the same for all v. Recalling definition (9.2) of the field Q, we see that

() = Q).

where
' 2r j ’
Pu=Put (—=L), Po=DPpe #n (10.13)
o

Eq. (10.13) means that the effect of the gauge transformation (10.9) on the fields Q,(p)
is a translation in the momentum space by (If‘——l,’;) units (cf. (9.3)). The parametrisation
which satisfies (10.12) is necessary in order to have a well defined concept of momentum
for the Q fields. Configurations where (10.12) is not satisfied are gauge equivalent to config-
urations with shifted B and redefined momenta.

Let us now discuss in more detail the choice of the gauge fixing term. This term must
be chosen in such a way that quantum variables Q,(p # 0) tend to zero when g, goes to
zero. The gauge choice which seems the most promising for our objective is the back-
ground gauge (5.24), where we identify the background field with the constant, diagonal
and commuting field B,. In the momentum representation the gauge fixing term becomes

Ses(p#0) =% ;01 > 2, (p+BHQI(m)i. (10.14)
rV A

In (10.14) Qf{ is the (i,/) element of the Nx N matrix Q, and the lattice momentum

P5(q) is defined as before:

PE(g) = T —1. (10.15)

The background field enters (10.14) only through the differences of eigenvalues (10.12).
We can note here that the momenta 2 ,(p+B") are never vanishing as long as p # 0,
provided Bff satisfy constraint (10.12). Again this constraint is essential, since otherwise
we could get new zero modes of the quadratic part of the action. As can be seen from
the discussion these new “would he zero-modes™ are simply the gauge copies of the zero
modes we already have.
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Let us postpone the discussion of the gauge fixing in the zero-momentum sector to the
next Section. It will turn out that the Q¥/(p = 0) variables are at least of order gi/? for any
B field configuration if we choose the right gauge in this sector.

The ghost determinant one obtains from (10.15), admitting only non-constant (p  0).
gauge transformations, reads to leading order

Sen(p # 0) = Zo (02 (p+ B")0'(— p)+0(g5’?), (10.16)
p#*
8]
where
2%p) = Y I2E(p)% (10.17y

Including all the terms discussed so far we get an effective action

Sere = Sw+Sgs. +Sen+ Suss (10.18)

where S,,, = g5 log J,(Q). Rescaling the momentum-carrying modes by a factor g, (cf. (9.7))
we get explicitly:

1 i o
2 Sete = E Q)2 (p+BN)Q(—p)
0

p#0
i j

+ :Lo "()?*(p+ B~ p))
i,J

14
+ ’ Tr (1- U, U, UIU) +0(g}/?). (10.19)
2 E ,
H,y

The terms with order g3/? start with cubic terms with one zero-momentum Q field. As will

be discussed in the next Section, it is more convenient to keep the zero-momentum action
in its integrality, without scaling out the coupling. The variables U, are defined as

U, = exp (iQ,(p = 0)) exp (iB,) (10.20)

and Q,(p = 0) having no diagonal elements.

We can now perform in the partition function all the integrals over the non-zero-
-momentum degrees of freedom in the leading order. To the one loop terms the result
is & determinant which can be computed immediately by observing that the corresponding
part in (10.19) is diagonal. The result is

d—2
Z,B) = [] [#*(p+B))] =

p¥0
ij
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The free energy F,(B) is defined as
Fy(B) = —log Z,(B)

= d_}% Z log (#*(p+B")). (10.21)

p#0
iJ
The termi proportional to d comes from the d polarisations of the Q variables, whereas
the term —2 comes from the ghost.
Let us normalize this free energy by that of a free gluon gas

-2, )
Fa =22 vy Z log #%(p) (10.22)
p#0
and define
AF,(B) = F(B)—F,. (10.23)

This function contains all the information concerning nontrivial B dependence of the deter-
minant (10.21). In view of (10.12) it is useful to consider 4F, as a function of ﬁ,, where

B,=L,B, (10.24)

and the remaining L, dependence is tacitly understood.

11. Behaviour of the determinant of the non-constant modes

In the last Section we have computed the determinant over the non-constant modes
of the system. This determinant was given in terms of a finite, but in general large prdduct.
Here we shall discuss its behaviour for small B and some aspects of the global behaviour
of this determinant. The derivation of the global form of this determinant will be given
in the Appendix A.

The first remark to be made is that AF,(B) is symmetric under BY — — BY. Therefore,
if it is analytic at B = 0, it admits the expansion

AFy(B) = 1 ¥ m2 Y (BY)* +0(BY). (11.1)
4 +J

The coefficients in such an expansion can be computed by directly performing the sum

over one of the momentum components. If we use the identity

[T(z—e") =2-1 (11.2)
Pu

the following quantity comes in naturally when doing the summation:

chg(p,) = 1+2 Z sin? -‘;-“. (11.3)

e#n
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For small p, g(p,) reduces to the modulus ( Y p2)'/2.

e#p
Finally we obtain for the mass in (11.1)
" ’(1 1) +3 Zs‘nh"(‘ L,a(p1)) (11.4)
=—-s\t—7z) 2 1 7 Lyq(p1))- .
a-2  °\" 12)7? - 2

In (11.4) the sum is over d—1 dimensional lattice of momenta with ¢ # u. Expression
(11.4) coincides with the one obtained in Ref. [42] and [43]. Their results were derived,
strictly speaking, by expanding around constant non-commuting background fields. How-
ever, to order B2 the resulting free energy is the same, since commutator terms can appear
only in higher orders of expansion (11.1). One may be surprised to discover terms of the
form (11.1) after a discussion concerning the effective action I',(B) in Section 5. Mass
terms like (11.1) would break the gauge invariance of I',(B) strongly advocated there.
The answer to this controversy is that (11.1) is a typical finite-size effect, which will not
play a role in global quantities like I',(B). It can be considered as a modification in the
measure of integration for the zero-modes. ,

We shall now look at various limits for these expressions in the case d = 4:

(@) Isotropic case (L, =L, p = 1,...,4, L - o0). In this case m,f =m? and m? is
negative (it was erroneously assumed to be positive in Ref. [43]). Numerically we get

m? = —0.140...

In the isotropic infinite-volume limit the quantity L,q(p,) stays always finite and non-zero.
Therefore, no infrared problems are met and this remains true for all higher orders in B:
function AF,(B) is analytic in this limit. Thus the B-dependent part of the free energy
is of order ¥-! with respect to the free energy of a free gluon gas. This means that the one
mode we did not take into account, namely the p =0 mode, may well modify it (and
actually does, as will be shown in Section 13). ‘

(ii) Finite-temperature limit. We keep L, = T-! fixed and let L, = L, = L; = L,
become large. Infrared effects start to play a role because L,g(p,) — 0 as L, — co. This
implies for the mass in the fourth direction:

1
2 _ 3
Fmy = sf(z) sinh (3 Lyq(py)) = 3L4 (11.5)

We neglected terms with less than volume divergence and took the continuum limit. This
result, first obtained by Weiss, represents the electric mass the gluon acquires in the high-
-temperature phase [59-61). This mass is positive. The other, spacelike, masses are all
equal in this limit. For the computation of, say, m; one has to look at the behaviour of
Lyq(p.) (Eq. (11.3)). Since Ly — oo, this quantity will stay finite only if p, = 0, and never
becomes zero. The free energy per spacelike volume f(B) = AF¢(ﬁ)/L3 does to order B*
not depend any more on the spacelike background fields. The latter do still play a role
in the terms of order L7 3 as we shall show in the Appendix A.
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The coefficient of B* has a divergence of order L?. This means that function f(B)
is non-analytic due to infrared divergencies.

The global behaviour of determinant (10.21) is discussed in Appendix A. For our
discussion the most interesting is case (7). The result can be summarized as follows: in the
iegion of integration over the B fields determinant is an analytic function of B. It becomes
singular only when the constraint (10.12) is violated. If the B field scales as gi/? this de-
terminant will give a contribution O(g,) to the partition function Z. In order that a per-
turbation theory for these modes could be constructed we shall need a gauge fixing in
the zero-momentum sector such that the non-diagonal zero-momentum fields Q,(0) are
forced to zero for all values of B (also if B ~ O(g3/?)). This problem will be discussed in
the next Section.

12. Contribution from the zero-momentum sector

As we mentioned in the last Section the determinant over non-constant modes of the
action (10.19) is an analytic function of BY = L,BY in the integration domain (10.12)
when we take the isotropic limit L, = L — co. This result remains true also in the limit
L, = a,L,L - 0, a,finite. This means that information about the weak coupling behaviour
of the zero-momentum sector is contained in the zero-momentum part of S, Eq. (10.19)
and that the computed determinant will contribute only in higher orders of perturbation
around the saddle point of the action S(

1 14
—S¥ =— Tr 1- U, U,UUY), (12.1)
0 8o
nv
where 1 is Nx N unit matrix and
U, = exp (iQ.(p = 0)) exp (iB,). (12.2)

Action (12.1) is invariant under a global gauge transformation and under a multiplication
of a link variable U, by an element of the center of the SU(N) group. We can rewrite (12.1) as

@ =~ Z Tt G,.Gl, (123)
™
where
G, =[U, U] (12.4)

(12.4) shows that saddle points of (12.1) correspond to G,, = 0 and can be brought, by
means of the global gauge transformation, to the diagonal form. Parametrisation (12.2)
can be used to study fluctuations around the saddle points or, as we shall call them, forons,
Let us introduce the “momentum” operator 2;(B)

2:(B)Q, = e* Q¥ -0, (12.5)
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Using this operator we can expand the action (12.1) in powers of Q,:

SE =V Z Tr {(Z,(B)Q, - 27 (B)Q,)’

+(2,(B)Q.,— 2, (B)2,) [ Q.. 0,]+[Q., Z:(B)Q,]
+1Q., 27 (B)Q,]~[2,(B)Q,. 2, (B)Q.])

- [Qw Qv]2 + } (126)
It is useful to note that if B becomes small and of order @, then (12.6) becomes
S@ =-VYTr(4, 4,7, (12.7)
By

where A, = B,+Q,.
The action of the momentum operator (12.5) on the (i, j) element of the matrix 0, is

2BV = (P PO _1)0Y = PU(B)QY. (12.8)

If the matrix B, is degenerate, i.c. eigenvalues BL and B,{ are the same, then the correspond-
ing #(B) = 0. For one p we can use the global gauge symmetry to order eigenvalues
of B, in such a way that equal eigenvalues foliow each other. If we write 57’;'{'(8) asa NxN
matrix then we shall get a block of zeros for indices (i, /) where eigenvalues B;, are degene-
rate. Assume now that we have the same structure of blocks of zeros for all g“i, u=1,..d.
This means that all matrices have the form

PEB)=| O , p=1,..4d, (12.9)

where the first block of zeros has dimension ¥, second ¥, up to V. If there is no degeneracy
of eigenvalues P = N, ¥, = 1, ... P. If the degeneracy is complete P = 1, ¥V, = N. Of
course always

¥V, = N. (12.10)

Partition {V,,r = 1, ..., P} classifies the toron. Writing effective action (12.6) in terms
of Q¥ we see that for (i, ) inside the block of zeros there will be no corresponding guadratic
term in the action. The number of quadratic modes is
P
dN*~ Y vD, (12.11)

r=1

but among them we have the gauge modes

iV~ PUB). (12.12)
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These have to be eliminated with the help of the gauge fixing procedure leaving E,(V')
Gaussian modes:

P
E,(V) = (d-1)(N*- Y} V] (12.13)
r=1

The modes Qf{ which are not Gaussian appear in the action (12.6) in the cubic terms at
most linearly and only in quartic terms they appear alone. If we recall that effective action
is multiplied by a factor 1/g3, we can expect that Gaussian modes will scale as g, and
the quartic modes as g3’'2. Each block ¥, x ¥, has ¥?—1 quartic modes. The remaining
mode is the “toron” mode, which only changes value of the degenerate eigenvalue Bf, in
this block. The number of quartic modes is thus

EWV)=d _i (V2-1). (12.14)

If we introduce the scaling factors g, and gi/> we obtain the jacobian proportional to

(g )iEz(V)+*E4(V) , (12.15)

and the partition function Z will be dominated by the partition {V'} for which the power
M in (12.15) is the smallest. In Appendix B we show that for every group SU(N) the struc-
ture of partition depends on the dimension d of the system and that there is a critical
dimension d, = 2N/(N—1) such that:

— ifd < d, {V} is the purely quadratic one, P = N V,=1r= 1 ., d.. This corre-
sponds to the regular toron. \

— if d >d, {V} is the purely quartic one, (the singular toron) P = 1, V, = N. The
power law in these two cases is given by

M =3@d-DNWN-1), d<dq
d>

=1 d(N?-1), (12.16)

d = 4 is a critical dimension for SU(2). These regions on the {d, N} plane are drawn in
Fig. 14 together with the critical line N = d/(d—2) which separates the two regimes. As
was shown in Ref. [44] this means that naive power counting presented above may not
be sufficient, and that there will be an extra logarithmic factor in (12.15). For any SU(N),
N >3, d = 4 is a dimension where the purely quartic behaviour dominates. This means
that all matrices B, u = 1, ..., 4 are completely degenerate i.e. they are proportional to the
unit matrix. The link variables Uff = ¢'® must belong to the center Z(N) of the group
SU(N), which in view of the structure of (12.1) permits us to consider only fluctuations
around B, = 0.

To be able to propose a systematic procedure to compute the partition function Z we
have to define the gauge fixing procedure for the zero-momentum sector. If we simply
add a term analogous to the one for p # 0, namely

Si2 =32 | X 2L (BNQ)(p = )

Li B
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it would simply vanish for the important region B, — 0. The gauge fixing term must be
chosen such that the Q fields are forced to be zero if Sgof’ = 0 for all values of B,. A possible
choice can be

S = %; | Y (2, (BHQY +aiQ )]
sJ "

ﬂ 2
43w

with « and B arbitrary positive constants. The term proportional to f was introduced to
.. . i . :

eliminate the configuration Qf,j = ~B,'{. From the gauge fixing term we can compute the
o '

ghost determinant. This determinant becomes zero on the toron itself, i.e. at Q = 0.
This is obviously a general feature of any gauge fixing and is perfectly legal.
We are now in a position to proceed with the systematic computation. Once we have

. 1
a good gauge fixing we can divide the action —; S{f? into a big part S, and a small part S;.

(o]
If momenta 2 ,(B) are O(1) then S, will contain terms quadratic in Q and §; terms cubic

in @ or higher order: However, if the momenta 2 ,(B) become small, i.e. of the order of
the Q fields, then, clearly all the terms in S, will all carry a total number of the £ ,(B)
and Q, factors equal to four. In this case S; contains all the terms of order five or more.

1
The first approximation to the free energy will be obtained by integrating exp <— ? So)
0
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over the Q variables. As we shall see for the case d > d, we can obtain the lowest approxima-
tion without formulating the systematic expansion very precisely. We need only the fact
that the gauge fixing like (12.17) is possible. The necessary ingredient is that we can perform
rescaling of variables and extending integrations to infinity, which we are allowed by the
gauge fixing.

13. Combined contribution and finite-size effects for Wilson loops

The gauge fixing procedure for zero-momentum modes proposed in the last Section
guarantees that Q,(p # 0) = O(go) and Q,(p = 0) = O(gg'*). Computation with such
gauge fixing can in practice prove very difficult to handle. In this Section we shall limit
ourselves to the leading order effects due to the singular torons. This case includes the physi-
cally interesting SU(3) group in 4 = 4 dimensions (but not the SU(2) group in d = 4
dimension, which being the critical dimension for this group is the most difficult to handle).

Consider the partition function Z, where all the @ modes (both with p # 0 and p.= 0)
were integrated out. The partition function is given by the remaining B integral:

7 = (gg)}(d— 1IN(N—-1)¥ —1)
xe Fuf Hi dBj exp {”(; AFo(BY)+ Fo(B,/L,, g5/V))}
By s}

x (1+0(g5"))- (13.1)

We used the expression (10.19) for the effective action, hence the argument in the zero-
-momentum free energy F, was B, = B /L, and g2/V instead of ga. F, is the free energy

1
one obtains integrating exp( Sﬁ?}) Eq. (12.1) over the Q¥(p = 0) variables. All
g

the bulk effects are in the factors in front of the integral in (13.1). The finite-size effects
we are interested in are contained in the integral.

As was shown in Section 11 the contribution from the non-constant modes AF, (B)
is regular for small B. For the s1ngu1ar toron (cf. (12.6)) the leading order contribution
w111 come from the region where B = O(g3/?) so to the lowest order we can forget about

(B) In the case, where regular torons dominate, B = O(1) and we would need the whole
stmcture of AF, (B) to compute (13.1). For a singular toron the leading order of the mtegral
in (13.1) comes from the zero-momentum part of the effective action. This leading order
behaviour can be computed by considering the integral over the zero-momentum modes
of 8. We can use the parametrization

DU, = [] dA4; exp (—Su(4,)), (13.2)

where we take
U, =exp(id,), 4, = 32 AL (13.3)
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The integral over the zero-momentum sector becomes

|4 1 oG
Zy = JdAZ exp {" [ Sul(d)+ —5 Seer(A)+ — g.f.(A)]} det (—) , (13.4)
g 25 S

where G is a gauge fixing of the type discussed in the previous Section. We can observe
here that the singular toron is itself invariant under the global gauge transformations (not
50 the regular torons) and we may use

det (6—(—;) fdﬂ exp <— iz s.f.(A)) =1 (13.5)
ow g0

to eliminate ghosts and gauge fixing from (13.4). That means that to lowest order Z, can
be written as:

g2 +d(N3—-1) : .
Zy = (7°) f I I dAj exp (Z Tr [A“,Av]2+0(g(1,/2)), (13.6)
au ",

where we scaled the A, potentials with the factor g3/>¥~ '/, It can be shown that for d > d,
the quartic integral in (13.6) remains finite even when the integration region is extended
to infinity.

The method described above can be used to compute the leading-order zero-momentum
effect on the averages of the Wilson loops. As before we limit our computation to the case
d > d, and to the leading order O(g). To this order, as we have shown, the contributions
to the partition function Z from the zero- and non-zero-momentum sectors factorize. This
means that when we compute the average of the Wilson loop in the leading order we get a
sum of contributions coming from these two sectors. Contribution-coming from the non-
~zero-momentum sector is the same as in the standard perturbation approach where one
takes B, = 0. This is because B, become of order go'* and do not couple to the momentum-
~carrying modes in the lowest order This contribution was computed before (Ref. [42]).
Here we shall evaluate the zero-momentum contribution.

For the zero momentum sector we shall use the simple scaling result

Z—IJH d4° <Z T [{e, A,]Z) exp (g_é Z Te[A,, Av]2>

ny

2

= a1 3. (13.7)

Consider the expectation value of a Wilson loop of size Rx T in the {1, 2} plane. The
product of the link variables along the loop we call U(R, T) and we compute

(13.8)

Tr U(R,_T)>
~ .

W(R,T) = <
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If we expand the loop (13.8) and the action in terms of fields we get for W(R, T) a series
W(R, T) = 1—c,g2N +higher order in g,. (13.9)

The coefficient ¢, receives contributions only from the expansion of W(R, T) from p # 0
and p = 0 sectors:

¢y = ¢4(p # 0)+ci(p = 0). (13.10)
For ¢,(p # 0) calculation is standard [42] and gives

N*-1(1 1
c(p #0) = T {Hf Z 70) (ICXP (ip,R)—1

p+0
T-1
x|y exp(ikpz)iz+(R(-—>T,1<—>2)>}. (13.11)
k=0 .

At this order, the p = 0 contribution comes from the expectation value (13.7) of the square
of the commutator:

1 ;
c(p=0) = NV {—Tr [R4,, TA,]*>.

_(RT 1 N’-1
"V 4@d-1) N?

(13.12)

The contribution we have evaluated is indeed the finite-size effect: it has a factor 1/¥ in
front, but for large loops, where R and T are of order L/2 it does not vanish. For even
larger loops, where R = T = L it is the only contribution which survives at this order,
since ¢,(p = 0) vanishes. ’ _

Computation of higher-order corrections to the Wilson loop coming from the zero-
-momentum sector or from the interactions between zero- and non-zero-momentum sectors
is much more complicated and requires introducing systematic treatment of the gauge
fixing and ghosts in the zero momentum sector.

14. Discussion

In the last Section we have derived a leading-order contribution to the averages of the
Wilson 16ops coming from the zero-momentum sector. We can see that this contribution
is not negligible, particularly for large loops. Wilson loops are not the only objects which
feel the contribytion from this sector. One may expect an even stronger effect for quantities,
which involve correlations of plaquettes. An example of such quantity is the 0+ glueball

correlation:
Toe+(V, 1) - !
O T (d=1)Hd-2)
B,

s
@0
r

(14.1)

Tr P,(r, 1) Tr P,,(0, 0)
N N c
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P...(m) are plaquette placed at a distance {r, t} from each other. The contribution.
e zero-momentum sector [63] is to the lowest order

4 2 2
25 v, Tr[Ad, A,]* Tr[4,4,]
Foss(V,t;p=0) = — 50+ :
oV 6P =0= G ya—2y V2 Z< N N /e
o
& ¥ N1

T @-DN@-2° V2 ANt (142

) V, is the spacial volume of the lattice. This last result can be obtained by differen-
log Z,, (13.6) twice with respect to 1/g2. I'o ¢+ also gets a contribution from the p # 0
This however falls for large ¢ either as a power (symmetric box L, = L - o) or
ntially (asymmetric box L, — o0, L; fixed) [63]. In both cases for ¢ large enough
omentum contribution starts dominating over the p # O contribution.

is result shows that finite-size effects can seriously contaminate measurements
elations, even casting doubt on the experimentally obtained values of masses.
ere is a simple solution which consists of introducing non-trivial boundary condi-
n a lattice. Such twisted boundary conditions were proposed in Ref. [62] for gauge
s in a finite periodic box. Twisted boundary conditions can be easily generalized
ttice system [44] and their effect is to eliminate a number of zero-modes and reduce
ze effects. As we have observed in Section 10 there is a strong interaction between
ysical momentum p and the group momenta B. The same effect appears, when
boundary conditions are introduced: its effect is like a shift in momenta (9.3)
xed fraction of 2n/L which in particular affects the zero-momentum sector. For
roups and lattice dimensions a complete elimination of zero-modes is possible [66].
e result of our analysis suggests that using twisted boundary conditions in numerical
Carlo experiments is a simple way to reduce the finite-size effects. Commonly used
¢ boundary conditions seem to maximize these effects,/On the other hand physically
ing quantities, like glueball mass, in the weak coupling have the same infinite volume
1 the twisted and in the untwisted system.

e author thanks Professor G.’t Hooft for many fruitful discussions and for hospital-
he Instituut voor Theoretische Fysica, University of Utrecht. He also gratefully
vledges many discussions with C. P. Korthals Altes, J. Groeneveld and A. Gonzalez-
o. Finally, he acknowledges support from the Stichting voor Fundamenteel
oek der Materie (F.O.M.).

APPENDIX A

The global behaviour of the determinant over the non-constant modes

¢ shall now try to analyze the global behaviour of F¢(ﬁ) as a function of l? We shalk
trate now on a single (7, j) term in (10.20) and drop the (i, /) index on B. The mo-
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mentum sums, which l'appear in (10.20) can be expressed as

' 2n—e ©
. 2nl
Z f(e™) = f dot Z é < T £ —cc) f(€"). (A.1)
Pu 0—-e ly=—o *
‘We can also use the Poisson formula for periodic functions
aL, : .
olly—— )= exp (iq,aL,). (A.2)
2n
Ipy=—w qu=—o©

Applying this to the free energy Fq;(ﬁ) and including the p = 0 term gives

F(B) = zdi—_(? +log P*(B)

= ¥ (e *F(g), (A3)

{qu} B

2n - )
F@=vV j H (% ei"“L““") log (2 Z (1—cos oc,,)) . (A%
(1] B i - u

‘Eqs (A.3) and (A.4) allow a systematic expansion of the determinant for large V. The zero-
--momentum contribution on the r.h.s. of (A.2)

2 B\Z ﬁl ’
log #*(B) ~ log > —£ +0(— (A2")
! Ll” L

"

is included in (A.4) and must in the end be subtracted out.

Let us distinguish between the two limits:

() Symmetric case: L, =L - oo for u=1,...,d The leading contribution as
¥V =L%*> o is given by the B-independent term (¢, = ¢, = ... = q; = 0) in F(g):

2n
FO)y=v J H % log (2 Z (1—cos a,,)) . (A.5)

f‘(O) coincides with the infinite lattice free energy. The finite-volume corrections appear
together with the B dependence in the next order. To compute them, we note that when
the g, are not all zero we may write

where

2]

o d
Fg) = -V f = H Ugr (7. (A6)
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Using the asymptotic expansion of the modified Bessel functions I ;:

22
1 4(0) ~ exp(-q L\//ZZ);_)JE(I +0(1/x)) A7)

. ‘ =42 1\
F(g) ~ — (nZQi) T(%d)+0<z)o (A.8)

n

we obtain

Substituting (A.8) into (A.6) one finds a logarithmic singularity for small B canceled by
the zero-momentum subtraction from the r.h.s. of (A.3).

It is useful to go back to (A.3) and perform the summation over g, (excluding ¢, = ¢,
= .. =¢g;=0):

[+

- o o~ dx . _
F(B)—F(0) = —-VJ—;_—(I I Hy (x, B)—(Iy(x)e A)“), (A.9)
[¢]

n

where

Hy(x,B,) = ¥ 1,1 (x)e ~Bee, (A.10)
qu

As L goes to infinity, the latter tends to the following expression containing the Jacobi
function

. 1 \ 1
Hy(x, B) = —=—=95(Bj2n, il?[2nx)+ 1o(x)e " — —— . (A.11)
. \/ 2nx 2nx

Plugging (A.9) and (A.11) together we get for L — o

o

~ A _ dx _ A
F(B)y—-F(0) = — J ;—(27rx) 42 <H 33(B,/2m, i/21cx)—-—1). - (A12)
4]

n

To get (A.12) we changed variables x - xL? and took the limit L —» co. Note the
disappearance of the volume factor on the r.h.s. of (A.12). This formula, after removal
of the logarithmically divergent term (A.2') yields a smooth dependence of the determinant
if [B,] < 2n. ‘
(if) Asymmetric limit: L, = L > oo, u = 1, ...,d; L, = I —finite, « = d; +1, ..., d.
In this limit we find that the free energy F(B) splits up in two parts. One part is proportional
to the big volume ¥, = L* and depends only on the field B,, « = d; +1, ... d. The other
part is proportional only to the small volume v = *~%, and is exponentially suppressed
in the fields B,. Its behaviour in the fields B, p =1, ..., d, is smooth like in case (/). We
write this as
F(B) = V,vF (B + F(B,; B,). (A.13)
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This splitting is achieved by using the following identity:

V(H Hp,(x, B)—Ig(x)e™®)

it

V{ H HL.(x’ B)—(Io(x)e )" "’} Uo(x)e™ 5"

a=d;+

+ ¥{ [] Hy (x, B)~(Io(x)e 5"} 1'1 H&(x, B). (A.14)

a=d+1

V is as before the total volume ¥,v.
Integrating the r.h.s. of (A.14) with the measure | — gives for the first term indeed
x

0
the first term in Eq. (A.13), the correction term in the large-L limit can be evaluated using
the duality transformation for ¢ functions [65]:

-]

(2nx)~129,(Bj2n, if2nx) = Y exp (—% x(B+2nm)?) (A.15)
n=-—o
to give
o dl
L d N
FuyB,;B) ~ — f —x(an)"‘/z(I l 8;3(B,[2m, i/2nx)-1)
X
(1] n=1
d A
x [ exp(—BiL:x21%). (A.16)
a=di+1

The bulk terms F(,,(Iia) have’ been computed by Weiss [59, 60] for d= 4, d, = 3
(finite temperature) and by Liischer [64] for d =4, d; = 1 (zero temperature).

APPENDIX B
The zero-momentum power-laws

Here we shall demonstrate inequalities for power laws used in the text.

Let us call M({V}) the power of a given toron with partition (¥;, ..., V}), which
means that this toron, after rescaling its variables will contribute to the partition function
a factor g?M("»,

We have

M({V}) = 3 E;+% E,, (B.1)
where

I 4 P
E;=d-D(N*~ Y V), E,=dY (V:-1). (B.2)
r=1 r=1
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We rewrite (B.1) as
MV} = S(V)d+f(V),

where

S(V) = L(N*+4-P), f(V)=—-+4, 4=N*- i V2. (B.3)
: r=1

Theorem: For a fixed SU(N) gauge group, the dominant power M = inf M({V}),
)

is the power of the regular toron (P= N, V, =V, = ... = Vy =.1) for d < d(N);
and it is the power of the singular toron (P = 1, V; = N) for d = d(N). )
It is equivalent to say that the following two inequalities hold for any partition {V'}:

For d <d(N) M{V}) =M., =L@d-1)N(N-1), (B4
For d Zd(N) M@V} > My = 2(N*~1)d. | (B.5)

Note that at d = d, the two right-hand sides are equal and give a power M(d,) = 1 N(N +1).
The proof is based on the inequality

(P-DN < 4, (B.6)
which comes simply from
P
4=V -YXV:=YVV=Y VY 1=NP-1). (B.7)
i#j i=1t  j#i

Let us derive (B.4)
M{V}) =M, = 3 (N*+A4—P)d—24)—% (d—1) (N*~N)
= ;(4(d—2)+(N—P)d+(N*~N) (2—d)).
From (B.6) we have
M{V})~M, > (N~P)2—d)N+d)
=3 (N=P)(d—2) (N(d)~N). (B.3)

For any non-regular toron P§ N—1 so that for N < N, (which is equivalent to
d>2 and d<d) one has M— M, ., > 0.
The proof of (B.S5) is similar. From (B.2) we have

MU{VD~Myiag = 4 [(d~24-(P—1)d]
and (B.6) gives us
MV} —Mipg = 3 (d—2)N—d) (P—1)
=3 (d=2) (N-Nd)) (P-1), (B.9)

which is positive for any non-singular toron above the critical dimension.
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