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The problem of axial anomaly is analyzed within the framework of analytic regulariza-
tion scheme. The form of triangle anomaly is obtained.

PACS numbers: 11.10. Gh

The problem of anomalies attracts recently much attention. In spite of many efforts
their meaning and consequences remain to some extent obscure. There exists now the mathe-
matical theory which infers the very existence of anomalies from nontrivial topological
structure of gauge group; however, they also do occur in topologically trivial context.
From the point of view of perturbation theory the situation is also quite interesting. The
form of anomalies does not depend on the regularization procedure (up to the finite renor-
malization) but the way they occur does. This problem was analyzed within the framework
of the momentum cut-off [1], Pauli-Villars [2], point-splitting [3] as well as dimensional [4]
regularization schemes. As far as one is dealing with vector gauge theories the techniques
preserving explicitly the vector gauge invariance are favoured. However, when dealing
with the most general coupling of vector and axial-vector fields one can choose the regulari-
zation at will, gaining subsequently the apropriate final form by the addition of suitable
counterterms. »

One of the best developed regularization schemes is the so-called analytic regulariza-
tion/renormalization introduced by Speer [5}. It consists in replacing each propagator
P(p) (p*—m} +ie)* by (u)*~ - P(p) (p?>—mi +ie)™*, 4 € C, with Re J, sufficiently large;
u is some reference mass.

The Feynman integral becomes then a meromorphic function in CX(L is the number
of internal lines of the graph under consideration), the pole at l, 1 corresponding to the
divergence of the integral one has started with.

The complicated structure of the pole at 4, = 1 corresponds to the complicated
eombinatorial structure of the overall divergence and the subdivergencies. To obtain the
finite results the special renormalization procedure is applied consisting in using the so-
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-called generalized evaluator [5] which replaces the recursive structure of usual subtrac-
tions.

The whole scheme is quite complicated but it simplifies considerably in the case of
one-loop diagrams. In this case adopting the usual Feynman procedure we arrive at the
following expression for the amplitude

H o *doyd(1— Z &z)P Wps m; a)
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The a-integral is now convergent (provided there are no massless fields or at least the exter-~
nal momenta are nonexceptional) and the dlvergence appears as the pole in I'-function
at A= L.

One can then define the finite part of the amphtude by expanding the integrand in
A at the point A = L, taking the first-order term in the expansion (which cancels the pole
of I'-function) and putting 1, = 1 in other places. It is easy to show that this is indeed
a renormalization — the divergent part is local; it differs in general by a finite counterterms
from that used by Speer.

Let us apply this scheme to the simplest case of AVV anomaly. The well known graphs
for the AVV and PVYV vertices are given in Figs 1 and 2, respectively.-
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We write as usual

F*(p, @) = I'*"(p, 9)+I"(q, p),
F*(p, ) = I'"(p, 9)+I'™(q, p),
with
dr Try*yy'[y(p+1)+mly[yr+ mIyr(r—g)+m]
en*  [m -+ 1 [m* = [m*-(r—q)’]

dr Tey’yy(p+n)+mly"[yr+ mlyly(r—g)+m]
@n* [ -+’ [m* -] [m*-(+9*]

r™(p, q) = ie*

r"(p,q) = ie’

Performing the traces we obtain the following expression for regularized form of I'*

dr N*"(p, g, 1) ()" >
(27[)4 [mz _(r_q)Z]h [m2 _(r+ p)l]lz [m2 __r2]/13 v

Here A = A;+2,+4; and

r = 4

N*(p, g,1) = —m*e*™(p—q)y+(r* —m*)e*"’r,
TP qe”“"r,, + g” 'eapaypﬂqér T ("" Sa'h-l- r"e"'h)Pn‘h
+(P"qp +4°p ﬂ)g“vhr? +(p— q)‘rl eapvﬁr’
+(P P 4 P, — PP (= g),,

Introducing the Feynman parameters and integrating over the momentum » we arrive
at the following expression
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D= mz—x(l—-x)qz—y(l_y)pz_zxyp -q,
4={xyIx=>0y>=0x+y<1},

N*'(p, q: x, y) = e*"’(py— qx)s (m* + pg+(p— q) (Py — gx)— (py — %))
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+(&E™(py—ax)" + 7" (py — 4x))psq, — € (py — 4x),(P°ds + 4" Pp)
+ky(py — ax), (€' (py — gx)" + " (py — qx)") — m*e**(p—q),
- (py—gx)* (py—qx), (P— ).

In the sequel we assume for simplicity that the photons are on the mass-shell,
ie. p2=¢g*=0.

The integral representing I'**” is superficially linearly divergent. However, for dimen-
sional reason it can diverge at most logarithmically. This divergence appears now as a pole
in I'-function at A == 3. It can be easily checked that the residue of the pole is actually
zero, i.e. as in other regularization schemes the triangle diagram is convergent. We can
now remove the regularization according to our prescription to get

ie? ) D
I'*(p, q) = oy J-dxdys““”"((p—q)p—3(yp—xq)ﬂ)ln e
4

ie? N*¥(p, q; x,
+ J‘ dxdy ———————-(p q Y) .

4n? D
4
Let us observe that the u?-dependence of the first integral is spurious. I'*'(p, q) is con-
vergent and need not be regularized. The corresponding expression reads

me? dxdy
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Let us now contract I'**(p, q) with k,. After some rearrangements we. get

L2

| dxdye™ . p,2—3 2
4ﬂ2 xaye qapﬂ( - (x+y)) n—I;{

kzra '”(P, q) =
3
ie?
+ i J dxdye” q,pp(x+y)

D
4
. 2 vap
ie 4pgs" xy(x+y—1
+ 2| axay P9 g ppxy(x +y )’
4r D

a4

Now it can be checked that the fourth integral on the right-hand side cancels against the
first one and we find

ie? v
12n%

k. (p, @) = 2mI'*'(p, @) — Pads
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or
2

ie”
2 suwppaQﬂ' (1)

kF*(p, q) = 2mF*(p, q)— S
7/

Let us, in turn, examine the vector-current anomaly. By adding two contributions from
I and I'™ we get after some simple calculations

22

6n®

PF(p, @) = — —5 & pugp. (V)
Let us conclude with some remarks. We see from Eqs (1), (2) that both currents are treated
symmetrically in the analytic regularization approach. By adding to F**" the finite coun-
terterm
ie®
R =5 & (p—a)p

we obtain the modified amplitude F*** such that

p ™ =0,

.2
~ e
kaFam = 2mF" — —'2—7? 8"Wﬂpaqp.

This is the standard form of the axial-current anomaly. We can also repeat the analysis
of Bardeen [3] within our framework. There one considers the general theory consisting
of quantized spinor field with arbitrary internal degrees of freedom having arbitrary nonde-
rivative couplings to external scalar, pseudoscalar, vector and axial-vector fields. The
renormalized vacuum-to-vacuum amplitude is defined and its behaviour under the general
gauge transformation is investigated. '

I am grateful to Prof. J. Rembielifiski and Drs S. Giler, P. Maélanka and L. Szyma-
nowski for helpful discussions.
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