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m* =0 LIMIT OF NONMINIMAL DESCRIPTION OF SPIN 2*

By W. TYBOR
Institute of Physics, University of Lodz**
( Received August 11, 1986)

It is shown that the theories of spin 2, equivalent in the massive case, are not equivalent
in the m? = O limit. While the massless theory of Pauli and Fierz describes the helicities
+2, the one based on the 3-rd rank tensor has no physical content (a pure gauge theory),
and the one based on the 4-th rank tensor describes the helicity 0 (a scalar “notivarg” theory).

PACS numbers: 11.10.Ef; 11.10.Qr, 11.15.—q

1. Introduction

In the previous paper [1] the nonminimal descriptions of a massive field carrying spin
2 (using the 3-rd and 4-th rank tensor with symmetries proposed by Fierz [2]) have been
obtained. These decriptions are equivalent to the minimal one of Pauli and Fierz [3].
All they are connected by the Legendre transformations. It is well known that the theories
equivalent for m> # 0 need not to be equivalent in the m? = 0 limit (e.g. the “notoph”
of Ogievetsky and Polubarinov [4]). The Pauli-Fierz theory in the zero mass limit describes
particles with the helicities +2.

In the present paper we give the analysis of the zero mass limit of the nonminimal
descriptions [1] in three manners:
— we solve constraints obtained from first order actions,
— we investigate a gauge invariance of the theory,
— we perform a canonical analysis.
We conclude that the 3-rd rank tensor is a pure gauge and the 4-th rank one describes
the helicity O (the scalar “notivarg” in the terminology of Deser, Siegel and Townsend
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2. The 3-rd rank tensor theory (m?> = 0)

2.1. The action
Let us start with the first order action [1]

1= fdx { - \/—mi Sup[O°hP = 1™ — (g 1P — g8 + (870 — g )]}

) w2571 @1)

where A** = B, h* = d,i™, h = hZ. The S*” has the symmetry of the Fierz tensor S**
= _Sﬁav’ s‘wapsaﬂv = 0, Sa = Saﬁﬁ.
From the action (2.1), after the following steps
1) mh® - h*,
2) m2 -0,
3) performing the point transformation

Saﬂv - Saﬁv_l__;_ (gavsp_gﬂvsa)’
4) performing integration by parts
we obtain
I = [ dx[\/2 Sg,h*" +% (i, ,i" —h?)], 2.2y

where S;, = 0°S,;,- We see that 5 is a Lagrange multiplier. The field equations following
from the action (2.2) are

1 2 -
B = — 72 (S 48"+ ‘/? g*'s, (2.3a)
P — ™ =0, (2.3b)

where S = S%,. Eliminating 4% from these equations we get the field equation for. S**
PSP+ 8"~ (S +5") +5 (g7 —g"0)S = 0. 24y

Eq. (2.4) is (up to the point transformation of S*") the m? = 0 limit of the ccjuation for .
the massive field S*" (see Eq. (2.5) of Ref. [1]). Eliminating 4* from the action (2.2) we get

I = [dx[—35,(8"+8")+3 5] 2.5y

This action can be obtained from the one involving the massive field S* Only (see Eq. (3.3)i
of Ref. [1]) after performing the point transformation and taking the limit m? — 0. Of
course, the field equation (2.4) follows immediately from the action (2.5).

Let us analyse Eq. (2.3b). It can be regarded as a constraint on the field 2. We deduce
the general form of 4%

W’ = &°°F. (2:6)
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Substituting it to the action (2.2) we obtain after integration by parts
I=0. 2.7
‘We conclude that the action (2.5) does not describe any physical degrees of freedom..

2.2. The gauge transformation

Let us look at the action (2.5) from another point of view. The action (2.5) is invariant.
under the following gauge transformation

85* = (g"d*~gP" o)A
+ePo 3+ % PO i —0mb), 2.8y

where 75 is.a general 16 component tensor.

Analysing the role of the gauge transformation (2.8) (in spirit of the second theorem:
of Noether) we conclude that (i) the part containing 5} restricts the functional dependence-
of the Lagrangian to 9,S*" only, (ii) the part containing A determines the relative weight:
of two terms in the action (2.5).

Confronting Eq. (2.8) with the general form of S** (see Appendix A}

1
S =— (g7 — " )F
v 2
+&%70, B} +1 e(3,B5—0,BY) .9y

F(x) is a scalar function, B%(x) is a general 16 comﬁonent tensor field) we conclude that
S*" is a pure gauge.

2.3. The canonical analysis
Using the decomposition (see Appendix B)
Saﬂv = (Sij’ A‘, Vi, NU’ Mij, Q)
we can rewrite the action (2.5) in the form!

I=[dx2, (2.10)
where the Lagrangian density is
&L = =3 [@V)*—20°VH(0"N,u—} 3,0 +30'M )
+2(8°N¥)? +4°NVo™S%s,,,, + 40° N0 A,
+(0,N™)*+5 (0'0)* +% 6,N™8,Q
+ 9(a’,,,M"")5 +60;M” "Ny +% (€"70,,S
+&™%9,, S} +'A7 + 07 4'2g"0,,4™)
-5 @A)’ +% @ V) -% 0,49,V 2.11)

! Some integrations by parts are performed to remove the velocities occurring linearly oniy.
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We observe that SY, 4°, O and M" are Lagrange multipliers. Let us define the canonical
momenta

53 mi i m
o= 77, —8°Vi+ 9, N™ -1 8'Q +30,M™, (2.12)
i 0z Onyif ; imk J 4 ojmk i
gaaoN = —20°N"+¢ amsk+8 amsk~
ij
~(@4I+ A +3 g0,4". @213

We perform the Legendre transformation?
I = [ dx(IT'8°V;+ PY3°N,;— ), 2.19)
‘where 5# is the Hamiltonian density
H = =LY +IT'0"N,;— 30" I'M,,,;
(a,n"—zéia ;NDHQ ;% P+ 0,7
+ &m0 Pk + (% 0,0,V + 0P, ) A" (2.15)

+

Wi

“Varying the Hamiltonian
H = [dx#
with respect to the Lagrange multipliers SV, 4°, 0 and M*/ we get the following constraints:
i - =0, 98,PM+%09,V" =0,
QI —20,0,N¥ = 0, 8,y 0"P}+2,;0"P; = 0.

They are consistent with the canonical equations

Oy i __ oH Orpi _ _ oH

Vi = ,  °I'= ,
8, 8V,

°NY = oH P = — -‘S-H—.
oP;’ ONy;

"To solve the constraints we use the standard decomposition of a traceless symmetric
‘tensor (see Appendix C). We obtain -

oL =0, Il = —20N, P;=0,
PL=%0V, Pi(x2)=0.

2 One can regard this transformation as one from the i.agrangian to the Routhian density #(V%, NV,
ITi, Pl Sii 48 0, MU, 5051 304%, 8°Q, 8° M), Actually, # does not depend on velocities. So, # is the
Hamiltonian density 5. Such a transformation is limited to velocities {v'} corresponding the regular part
2L
. 6].
av'ov! el

«©of the Hessian
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Inserting these solutions to Eqs (2.15) and (2.14) we get # = 0 and I = 0. So, there is no
physical degree of freedom.

3. The 4-th rank tensor theory (m* = 0)
3.1. The action
Let us start with the first order action {1]
I = [ dx[ —/2 m(B,,,0"S*"—2% BS)
—2 m( R,;S” +% R,,0"S— 1 RS)
+1 m(S5,5*" — 25,57 +1 m*(R,,B"** ~% RB) (.1)

where S* has the symmetry properties as in Section 2, R** = — RF"F* = __ R"™F — Rowv

EpyepR™™® = 0, R* = R***;, R = R and the same is valid for B,,,;.
From the action (3.1), after the following steps

1) mS*’ - S,

2) m* -0,

3) introducing the new field

Knvaﬁ - B‘”ap-*-zl: (guaRvﬂ+gvﬂRua_guﬂRva_ gvaRuﬂ),
4) performing the point transformation
K" — K -4 (88"~ g8 ™)K,
where K = K**

By
5) performing integration by parts
we obtain the action

I = [dx[\J2 8,K""™S,5,+% (545,57 —28,89]. 3.2)

We see that S*” is a Lagrange multiplier. The field equations following from the action
(3.2) are

§% = —2[0,K" +5 (8K’ — ¢"K")], (3.32)
0SB - ' S°BH 4 grsHvE _ Bsmve — (3.3b)
where K* = §,K*”,. Eliminating S** from these equations we obtajn
KPR 4 KR _ GBI
-3 [(0’K" +°K) + g/ ("K* + 0°K").
_ g,.p(avK¢+a¢Kv)_ gva(auKﬁ+aﬂKu)] =0, 34

where K™ = §,K*"®. This equation cannot be obtained by the point transformation
from the one for R,,,; (see Eq. (2.11) in Ref. [1]) in the m* = O limit.



374

Eliminating S from the action (3.2) we get
I = [ dx[—(3,K™)*+(0,K***)*]. 3.5)

This action can be obtained from the action containing B***# and R*"* only (see Eq. (3.6)
in Ref. {1]) after steps 3), 4) and 2).

Let us analyse Eq (3.3b). It can be regarded as a constraint on the field S%" determining
its general form

1
S#Y = — (8"A* +0°DP"—o"D™), (3.6)
NER
where 4 = — 4%* and D** = — D**. The factor 1/,/3 is chosen for further convenience.
The fields 4 and D* are not independent for &,,,,S*" = 0. So, we get
Euvap(0" A% +20°D*) = 0. 3.7

From Eq. (3.7) it follows that
(" A2 —2(0,4)* = 4[(8"D**)*—2(9,D)*].
In terms of A** the action (3.5) can be rewritten in the form:
—% § dx[("4*%)* - 2(0,4")"]. 3.8y
This is the action for the Ogievetsky — Polubarinov “notoph” [4]. So, the action (3.5}
describes the helicity 0 (a scalar “notivarg”).
3.2. The gauge transformation

‘The action (3.5) is invariant under "the following gauge transformation
KPP = g% o, +&7%5,0";
+ @@ + O+ g @0+ )
— M@+ ) — 20" + )
—2(g"g" —g"g" Yo", (3.9)

where ™" has the symmetries of the Fierz tensor 0" = —@*®, £,,,,0*" = 0 and obeys
the. condition 9,0 = 0.

Analysing the role of the gauge transformation (3.9) (in spirit of the second theorem
of Noether) we conclude that
(i) the part containing »®” restricts the functional dependence of the Lagrangian to 9,K"F
only,

(i) the part containing #” determines the relative weight of two terms in the action (3.5).
We adopt

<) (3.10)
8,0,K"% =0 (3.11)
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as the gauge conditions. It can be verified that taking into account these conditions
(i) one gets from the field equation (3.4)

OK** = 0;

(i) in the momentum space in the frame p* = (p, 0, 0, p) the tensor K***# has five inde-
pendent components S¥ = $, ! = 0 (see Appendix B). These components belong to
{2,0) @ (0, 2) representation of the-Lorentz group;

(iii) a gauge freedom is not removed completely. Only the component S33 is invariant
under the remaining gauge transformation. It  describes the helicity O.

3.3. The canonical analysis

Using the decomposition (see Appendix B)
K** = (T, 8V, A', K'™) (3.12)
we can rewrite the action (3.5) in the form
1 = [ dx2(TY, SY, A', K™, °TY, 5°8%), (3.13)
where the Lagrangian density is
& = —20°T%)* +(6°Ty)* — 40°T¥%,,,, 'S
—80°T"3,4, +2(3°5*)* —(8,, T™)?
—28YP8°SEG™ K g+ 2(0'SH)?
— 44 +4(0,4")* —86V"E"S,,,0,4,
— (0, K™H)? (amk'"f" )+ 2a,,,i"'""a"1<, - (3.14)

We see that 4’ and K™ are Lagrange multipliers.
Let us define the canonical momenta

0% .
ki = = —MOT“-I-2 klaOT:i
0°T,, $ 95
+2(79;8,,+ €779, Sk) — 4(3F A' + 6'4%), (3.15)
Pki a’g w0 ki sti mk stk rmi 2 ki stjam
556—0§-=4as — (™0, K™, +¢ ak,,)+ g0 K 1y s (3.16)
ki

and perform the Legendre transformation

I = | dx(IT¥3° T+ P6°S,,— ). 317
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The Hamiltonian density is

H = —F I+ (1) - 211404,

+ 210 A" + 870" S 0, A+ 46775, 5,014y — 30 S™) + (0, T™)?

~20,T™ K ) ++ (P +4 Pys™5, K™,

Varying the Hamiltonian
H < [ dx#
with respect to 4° and K"* we get the following constraints
OpIT™ — O’ + 2679 ,6*S,,,, = O,
ainkl_anikl+aleij___aleij = O,
where
QM = ¢mpi 23, T™¢" -8, T™ g’™).

These constraints do not contradict the canonical equations

aOTij — ﬁ aOHij = _ iH_
ij oT;;
o5 2 O o

if further constraints are obeyed:
aia lTU = 0,
do'm + ot o' MY — o' — ole' I = 0.

(3.18)

(3.19)
(3.20)

(3.21)
(3.22)

The constraints (3.21) and (3.22) are consistent with the canonical equations. So, there are

no other constraints.

To solve the constraints (3.19)(3.22) we use the standard decomposition of a vector

and a traceless symmetric tensor (see Appendix C). Let

m = 4y gimy, TV = 1944 0T,

iz = Ty = 0),
then we obtain
(i) from Eq. (3.19)
oy = —26%9,Sy, Hp= -317;
(i) from Eq. (3.20)

Pi+2)=0, T, =%iTy, Pr= —28”"31%7&;
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(iii) from Eq. (3.21)

(iv) from Eq. (3.22)
M (x2)=0, I, ,=-2m"
Using these solutions in the Lagrangian density (3.17) we get
Z =3 P d°S —#,
H = 5 PE—3(d'S)>
The ficld equation for the scalar S is
Sy = 0.

In the momentum space in the frame p* = (p, 0,0, p) we get S, = S33. So, we confirm
the result obtained in Sections 3.1 and 3.2.

To conclude this Section we compare the action (3.5) with the one (describing also
a scalar “notivarg”) obtained by Deser, Siegel and Townsend [5]. This last can be rewritten
(in our notation) in the form

=3[ dx(-} K0, K+K"0,K,;).

There is no point transformation of K**** connecting it with our action (3.5). So, the action
(3.5) can be regarded as the alternative formulation of the scalar “notivarg” theory [7].

4. Final remarks

Let us briefly summarize our results. We have shown that the theories of spin 2,
equivalent in the massive case, are not such in the m* = 0 limit. While the massless theory
of Pauli and Fierz describes the helicities + 2, the one based on the third rank rensor S*” has
no physical content, and the one based on the 4-th rank tensor K*** describes the
helicity 0.

I thank Profs. V. I. Ogievetsky and J. Rembielinski and especially Dr. P. Kosifski
for their interest in this work.

APPENDIX A

In this Appendix we obtain the general form of S*” obeying Eqs (2.3a) and (2.3b)3.
Decomposing S** into the symmetric ¢*" and the antisymmetric a*’ parts

S = "' o™ (AD)

3 1 thank Dr. P. Kosifiski for exhaustive discussion of this point.
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we get from Egs (2.3a) and (2.6)
1
B = — (g™ —0d"d")F.
4 NG "0 ")

Because 9,0,S*" = 9,5 = 0, we conclude that
o0 = 0.
"The solution of Eq. (A3) has the form
o = "9, 4,,

‘where 4, is a vector function. We get

1
n o _ mY— . ABAY vaf
N -Ji(g O - 0%0")F +¢&"0,4,

1Y Ax puz v _ vu " auvh
I;/Z(g 01 "5 —L g3 F ¢ A,,].
We conclude that
1
ST = T P Ay A

where
0,4 = 0.

The tensor 4" obeys the condition (as a consequence of $™'+S* =

A 3 4 (1 g"5"+1 g0~ g 0")F = 0.

‘We seek the solution of Eq. (A5) in the form
AGIIV - HG#V+Z¢‘¢V,
where IT®" is the general solution obeying
G JI* =0, [I*™4+[I" =0,

and ™ is the special solution obeying

0,2 = 0,

PRl e ——( g0 +1 g¥d" — g"d")F = 0.

V2

The general solution has the form

pvy . anyb v
™ = ¢ B},

0)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7a)

(A7b)
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where Bj is a 16 component tensor field. We seek the special solution in ‘the. form
Y = (ag™d" + bg™ 0" + cg""d")F.
From Eqs (A7a) and (A7b) we get ¢ =0, @ = —b = 1/2,/2 and
I = 5 (g™0"— g™ d"F.

i

So,
S = —= (g0 — g"O)F +¢™P Ay + 6770, B,
J
where
= 3(9,B,-0,Bp)

as consequence of &,,,,S™" = 0.

APPENDIX B
1. Let us consider the tensor S** = —S#* obeying the condition
tumapS?" = 0. (B1)

We introduce the new variables S = $#, 4', BV = —B% V', N = N* (N! = 0), Q@ and
MY = —M# (i, j = 1,2, 3) defined by

Sijk — 8iijk +gikAj_gjkAi’
S0 _ Bi_i SO0 _ V'
5% = NY+1 g0+ MY,
In these variables Eq. (B1) reads
Si=0, BY=-2M",
So, we get the following decomposition of S%”
S = (SY, A, V', NY, g, MY),

where S and NY are traceless.
2. Let us consider the tensor K*** = K**' = — K*"* obeying the condition

uvaﬂKﬂWﬁ =0, (B2)
We introduce the new variables T = 7%, ¥ = S/ and 4’ (i,j = 1,2, 3) defined by
KOin — Tij’

K()s'jk — ijmSi'-f‘gijAk'—gikAj.
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In these variables Eq. (B2) reads S} = 0. So, we get the following décomposition of K***
Kavaﬁ — (Tij, Sij, Ai, Kijmn),

where S¥ is traceless.

APPENDIX C
The well known decomposition of a vector into transversal and longitudinal parts is
Vi= Vit ¥

where
J

. , 1 . , , 1 . ) ;
Vi=Vie—dop, W= -0y, 4= 00

The analogous decomposition of a symmetric traceless tensor a* is

a’ = a'(+2)+a" (£ 1)+4"(0),

where
ij Vo i aii
a’y(+1) = — -Z-(aaT+6 ay),
i, 3 1 inj 1 _ij
a’(0) = 3 ]-55’+?g a,
1
ap = a'+ i 00;a’, ap =— a4,
a' = 0;a"
We see that

ai(+2) = ai(£1) = aj(0) = 0,
0,a%(£2) =0, 8a"(x1) = af,
0,a%(0) = —d'a,.
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