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Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The
Coulomb effects between the proton and the target nucleus are investigated. The mathematical
formalism introduces three-body integral equations which can be exactly calculated for such
simple models. These coupled integral equations suitably include the Coulomb effects due
to repulsive or attractive Coulomb potentials. Numerical calculations of the differential
cross-sections of the reactions 28Si(d, p)?°Si and “°Ca(d, p)**Ca are carried out, showing
the importance of the Coulomb effects. The angular distributions of these reactions are
theoretically calculated and fitted to the experimental data. From this fitting, reasonable
spectroscopic factors are obtained. Inclusion of Coulomb force in three-body model are
found to improve the results by about 6.826%, as an average value corresponding to the
different reactions considered.

PACS numbers: 25.45.-z

1. Introduction

Recently, nuclear reactions have been investigated [1-3] theoretically following
different formalisms based on three-body problem. approaches [1, 4, 5]. These studies
result in the form of three-body integral equations. In developing these three-body integral
equations; the short-range nuclear interactions are used, while the long-range Coulomb
potentials are ignored. In cases of bound three particles, the approximation of considering
only the short-range nuclear interactions is valid and reasonable results are obtained [6].
However, in the cases of nuclear reactions two charged particles separate asymptotically.
In these latter cases (the nuclear reaction processes), the Coulomb potentials act. Thus,
in nuclear reactions, the long-range Coulomb potentials must be included as well as the
short-range nuclear interactions.

Different approaches [7-10] have been presented in formulating the three-body mtegral
equations in the presence of the Coulomb forces. One of these approaches is that suggested
by Schulman [7], executed by approximating Coulomb Green’s functions in momentum
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space. Introducing this approximation for the Coulomb forces in the three-body system,
Osman [7] introduced modified Faddeev equations which are applied for different three-
-body problems [11]. The second approach, introduced by Noble [8] and Bencze [8],
uses the Coulomb potentials only in free Green’s functions in the three-body integral
equations by which they obtained well-defined equations. In order to make these equations
suitable for calculations, some approximations suggested by Adya [8] and Sawicki [8]
must be used. The third approach was that introduced by Veselova [9] who investigated
the Faddeev equations for screened Coulomb potentials making use of the Gorshkov’s
renormalization technique [9]. Veselova developed three-body integral equations for reac-
tions of three particles with-a kernel well-behaving in the limit of two-body transition
operators. For this, Veselova restricted her approach to three-particle energy of negative
values which are below the breakup threshold, thus excluding breakup reactions. The
fourth approach was introduced by Alt, Sandhas and Ziegelman [10}. They described the
three particles scattering groblem by including the long-range Coulomb force together
with any arbitrary short-range potentials in the AGS quasiparticle formulation [12] of the
three-body problem. Alt et al. [10] in their approach have given Coulomb-modified integral
equations which are exact for any general short-range interactions and suitable for negative
as well as positive three-particle energies. The formalism of Alt et al. [10] has been consider-
ed by van Haeringen [10] for the simple model of proton-deuteron scattering.

"To include the Coulomb forces in the three-body system, the two-body Coulomb
T matrix off-the-energy-shell have to be well defined in considering the Lippmann-Schwin-
ger equation. For three-body systems, it is easier to introduce the studies of the T matrix
in momentum representation. Besides that, Merkuriev et al. [13] introduced formulae
for the three-body integral equations in coordinate representation. For the three-particle
systems, Alt et al. [10] derived effective two-particle integral equations for the T matrix
amplitudes valid for general separable and local potentials. In case of three charged
particles, the Alt et al. [12] formalism is exact but very difficult to calculate [14]. Therefore,
Coulomb-modified form factors with overlap integrais are needed in which the partial-
-wave projection of the Coulomb 7T matrix is of great importance. Then, both the Coulomb
T matrix and its partial-wave projection are approximated by their first Born term.

In the present work, we are interested in studying the direct nuclear reactions with
nucleon transfer as a three-body problem. We consider-that only two particles of the three-
-particle system are charged. In this way, the Coulomb force acts in one subsystem only.
One of the most interesting tools in studying the static properties of nuclei, are the diréct-
-stripping nuclear reactions. We consider in the present work the deuteron stripping nuclear
reactions. In this type of nuclear reactions, we are considering a simple model of three
interacting particles (the proton, the neutron and the target nucleus). This three-body
system is simply including the Coulomb force in only one subsystem, since the Coulomb
force acts only between the proton and the target nucleus. Following the Alt-et al. [10]
formalism, the three-body integral equations are developed including the Coulomb force.
The Coulomb T matrix is deduced. The nuclear reactions 288i(d, p)2°Si and 4°Ca(d,. p)*Ca
are considered at incident deuteron energies 18.0 MeV and 7.0 MeV, respectively. The
angular distributions of these stripping reactions, as well as for deuteron elastic scattering,
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are calculated. The theoretical and numerical calculations are.¢ompared with the experi-
mental measurements. From the fitting, the spectroscopic factors for the deuteron stripping
reactions are extracted.

In Section 2, the three-body integral equations as well as the Coulomb 7 matrix are
introduced. In Section 3, we present the numerical calculations and results. Discussion
and conclusions are given in Section 4.

2. Three-body integral equations and Coulomb T matrix

In the present work, we are interested in studying the rearrangement collision process
between three particles as a three-body problem. Two particles are taken as charged parti-
cles, while the third particle will be taken as neutral particle. This present study enables
us to study the deuteron stripping nuclear reactions. Let us now consider the particles
1 and 2 as the two charged particles and denote them generally with / and j, while the
particle 3 referred to as k will be the neutral particle. Thus, the Coulomb force exists only
in the subsystem 3 (denoting the Coulomb interaction between particles 1 and 2). We
follow here the formalism of Alt, Grassberger and Sandhas [12] of the quasiparticle
approach. Thus, the three-body equations for elastic and rearrangement scattering are
given by the amplitudes '

T; = v+ zk:vikGo;ka;, 43

where Gy, is effective free Green’s function given by

G s = 6 g 29
{4:lGo;(Z) |9;> = 6(q:—q7) SM,—E, @
If the masses of the three particles are m,, m, and m, and their momenta are k,, k, and k;,
then the notations y; and p; are used as the reduced mass and relative momentum of
particles j and k, respectively. On the other hand, M, and ¢q; are the reduced mass and
corresponding relative momentum between particle i and subsystem of particles (j+ k).
Thus,

mjmk

i = Ty 3
a inj‘i'mk ( )
k.—mk
pi = T Mk (4
m;+m,
M, = my(m;+my) ’ ®
m;+m;+my
k;—m(k.+k
g = (m;+m)k,—myk;+ k). 6)

mi+mj+mk

E; is the two-particle binding energy of the pair (j+k).
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In the present work we use separable nuclear potentials and non-separable Coulomb
potentials which act only in one subsystem. Thus, the effective potential v;; has a form
which can be represented as

a; \ 1
(@lofD) 14}y = [Di (Z— 2’&)] @il (=5,
(Go@) +[813+63 +(1 =55 (1~ 8, ]G BTLZ)Go(2))
N
+8,(1~80)GoDTLDGHZ) 19,5 > [D,( - 27“;—)] . ™
In equation (7), Go(Z) is three-particle free Green’s function
Go(Z) = (Z—-Ho) . ®
D(Z) is defined for the subsystem (j-+k) and (k+i) as
DAZ) = 1KIGAEGoZ) 19> ®
for i = 1 and 2. For the subsystem (i+)
Dy(Zs) = 1KpIGES)G(Zs) Iy, (10)

where G(Z) is full Green’s function for a screened Coulomb -potential, and is given as
G(Z) = (Z—Ho—Vo) . an
Here, V. is the screened Coulomb potential represented as

gl riro)
Vc(r) = lezez

(12

and it depends on the screening radius ry. Also [, are the form factors. T is the screened
Coulomb amplitude and satisfies the Lippmann-Schwinger equation via equations (11)
and (12).

The effective potential v can be decomposed in two parts as

v” = véj‘i'v:j, (13)

where v}; is the long-range part describing the pure screened Coulomb scattering of the
charged particle i from the centre of mass of particles j and k. f; is the shorter-range contri-
bution. Then,

vt!j(qig Q}; Z) = 5ij(1 —‘5i3)Vc(‘Is"q;) (14)
and

a 4 \1"”
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x[Go(Z) + Go(2)T(Z)Go(Z)]+ 6;(1 - 0:3)Go(Z)
X[TAZ) = VIGo(D)} v 145D +8,(1—d:5) Ve
x (i~ {[B4» 4i; 2~ 11+[F(as 4} 2) - Bgs» 4’ D)])- 15)

The function B; and the factor F; are given and represented as

\ \/2
P i) oM, T oM,

B4, q:;2) = 16
l(ql 4 ) kz Z— ‘h k2 Z__q;Z ( )
2u; 2M; 2p, 2M;
and
2 1/2 3
Flqq:2)=|D;{Z— =—}| k
i =[o(z- 2| [
* m ,
vi(k)y; [k+ " +k. (Qi“‘h] A PEAN
x 2 : 2 | Dil Z2- — ] .
k+ mk ( . ') 2 Z k Z_q,) : 2M, _
mj+mk 4= H 2M 2[1{ 2Mi
%)
Then, the effective transition operator T;; can be decomposed as
T; = Ty+T;. (18)

In this decomposition, the operator T" is defined by the Lippmann-Schwinger equation
T = v+ T oiGouTiy (19
The second quantity on the right-hand side of equation (18) is expressed as

= 3 (14 T'Go)uvu(1 + GoT);. (20)

If the operator T' is given in terms of another amplitude TY(Z) as

TH2) = 6,1-3:3)Te(2), (21)

then, equation (21) stands for the definition of the amplitude TY(Z). Then, from equations
(19) and (21), making use of equation (14), we have in momentum space an expression:

¥ ;1 Z
Tiao g3 2) = Velgi—g))+ | gy EI= 10T 452). @)
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For physical three-particle energies in which the momentum g, is equal to its on-shell
value, equation (22) is the momentum representation of the Lipmann-Schwinger equation
of two-particle energy Z; = Z—E,. Thus, Ti(q;, 4;; Z) is the screened Coulomb amplitude
for two particles, one of them of a mass m, and the other of a mass (m;+my). Also, the
second amplitude T7; represented by equation (20), is the Coulomb-modified strong ampli-
tude. This last amphtude can-be calculated using a partial wave expansion. The expressions
of the two amplitudes, the screened Coulomb amplitude and the Coulomb-modified strong
amplitude, enable us to calculate the Coulomb corrections in the three-body problem.
These amplitudes can be applied to study the elastic and rearrangement scattering processes
in nuclear reactions for one neutral and two charged particles as a three-body problem.

3. Numerical calculations and results

In the preceding section, three-body integral equations and the T" matrix for three-
-body system with one neutral particle and two charged particles are given by including
the Coulomb force in one system. These equations can be applied for the case of deuteron
stripping nuclear reactions. In these equations the short-range nuclear forces are considered
as rank-one separable interactions. For deuteron stripping reactions, we have a deuteron
bound state between the neutron and the proton in the initial channel, while in the final
channel we have a residual nucleus, R, which is a bound state of the captured neutron and
the target nucleus, 7. For the short-range nuclear interactions we use here simple rank-one
two-body separable interactions of the Yamaguchi [15] form as

v4(g%) = Agl(q*+B2) (23)
and
ve(g?) = )vnf(q2+ﬁé), (24)

where A, and 1 are the renormalized coupling constants. The different parameters in the
Yamaguchi two-body nuclear interaction expressed by equation (23), for the deuteron
bound-state, are determined by varying the parameters i, and B, independently, to .fit
the deuteron binding energy ¢4 taken as 2.225 MeV. The relation between these parameters
is given by

mig = 8ufa[/m &s+Bal*. (25)

The values of the different parameters of the neutron-proton potential are determined
by minimization referring to the low-energy parameters, scattering length and effective
range, and to the experimental phase shifts. The numerical values of the other two param-
eters A4z and B which appeared in equation (24), can be obtained by expressions similar
to that of equation (25), for the different reactions considered. The Coulomb force exists
only between the proton and the target nucleus and thus it acts in one subsystem only
and is represented by a screened Coulomb potential expressed by equation (12). Using
the method of minimization and by varying the parameters 1, and 8, independently to fit



387

the deuteron binding energy and the other observables, making use of equation (25),
the numerical values of the two-body potentials can be obtained. The numerical values
of the parameters in the neutron-proton potentials are: the range ;' = 0.752 fm; equiva-
lent strength 1; = 113.9 MeV. Similarly, for the neutron-target nucleus two-particle interac-
tion the numerical values of the parameters are: the range fg ' = 1.028 fm; equivalent
strength A; = 73.303 MeV and Az = 74.261 MeV for the two reactions considered using
the 28Si and 4°Ca target nuclei, respectively.

The formalism presented in Section 2 is very suitable for computation and manageable
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Fig. 1. The differential cross-sections of the nuclear stripping reaction 2*Si(d, p)**Si of incident deuteron

energy 18.0 MeV, leaving the residual nucleus 2%Si in its ground state. The solid curve is our present three-

-body calculation with Coulomb forces included. The dashed-dotted curve is the three-body calculation

without Coulomb forces. The dashed curve is the DWBA calculation. The experimental data are taken
from Ref. [17]

Fig. 2. The differential cross-sections of the nuclear stripping reaction “°Ca(d, p)*'Ca of incident deuteron

energy 7.0 MeV, leaving the résidual nucleus *'Ca in its ground state. The solid curve is our present three-

-body calculation with Coulomb forces included. The dashed-dotted curve is the three-body calculation

without Coulomb forces. The dashed curve is the DWBA calculation. The experimental data are taken
from Ref. [18]
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on the computer. The method of Kopal [16] is used in performing the numerical calcula-
tions. The integrals are solved and are replaced by mesh points.

Using the present theoretical expressions, numerical calculations are carried out for
deuteron-induced nuclear reactions. The differential cross-sections for deuteron stripping
as well as for deuteron scattering reactions are calculated. Theoretical calculations of the
angular distributions for the deuteron stripping reactions #8Si(d, p)*?Si and 4°Ca(d, p)*'Ca
are performed at deuteron incident energies of 18.0 MeV and 7.0 MeV and are introduced
in Figs 1 and 2, respectively. The present theoretical calculations using three-body model
which include the Coulomb force are shown by solid curves. Numerical calculations using
the same three-body model but with the Coulomb force excluded, have been carried out
for the same reactions and are shown by the dashed—dotted curves. These curves for both
calculations of the three-body model, with and without the Coulomb force, are compared'
with the experimental data represented in Figs 1 and 2 by the points and are taken from
Refs [17] and [18], respectively. DWBA calculations following a perturbation approach

TABLE 1
Extracted spectroscopic factors
Spectroscopic fact:

Incident Present pectroscopic lactors Previous

Reaction energy 1 JT TBM work

(MeV) with CF | Present TBM DWBA
without CF | calculations®
285i(d, p)*°Si 18.0 | 0.99%1 0.9376 0.9841 0.530
40Ca(d, p)*'Ca 7.0 %’ 0.9284 0.8643 0.8421 0.742

3 See Ref. [19)

[19] are also done for these reactions for the purpose of comparison and are represented
by the dashed curves in the same figures. From the comparison of the present theoretical
calculations with the experimental data, the spectroscopic factors in each case are extracted
for the different reactions considered. All the values of the.extracted spectroscopic factors
in the cases considered are shown in Table I. For the purpose of comparison also, the
previously obtained spectroscopic factors are shown in Table I, taken from Refs {17]
and [18], respectively.

Deuteron elastic scattering on the target nuclei 22Si and 4°Ca is considered. The nu-
merical calculations of the angular distributions of the deuteron elastic scattering are carried
out using the present three-body model and are represented in Figs 3 and 4. These calcula-
tions are represented by solid curves for the case including the Coulomb force and
by dashed-dotted curves for the cases without Coulomb force.

From the values of the spectroscopic factors listed in Table I, we see that the effect
of including the Coulomb force in the three-body model of deuteron stripping reactions
is that it improves the results by 6.2419; to 7.4119,.
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Fig. 3. The angular distributions of deuteron elastic scattering on 2%Si at deuteron incident energy
of 18.0 MeV. The solid curve is our present three-body calculation including Coulomb forces. The dashed-
-dotted curve is the three-body calculation without Coulomb forces

Fig. 4. The angular distributions of deuteron elastic scattering on 4°Ca at deuteron incident energy
of 7.0 MeV. The solid curve is our present three-body calculation including Coulomb forces. The dashed-
-dotted curve is the three-body calculation without Coulomb forces

4. Discussion and conclusions

In the present work, the three-body integral equations and the T matrix of a three-
-body system composed of a neutral particle and two charged particles are given. In these
equations, the Coulomb force is included in only one subsystem of the two charged particles.
The present three-body equations including the Coulomb forces are applied to the deuteron
stripping and deuteron elastic scattering nuclear reactions. The present theoretical and
numerical calculations of the differential cross-sections are shown in Figs 1-4. These theo-
retical calculations are compared with the experimental measurements in Figs 1 and 2.
From Figs 1 and 2, we see that the present three-body model including the Coulomb forces
introduce good agreements with the experimental angular distributions. From the compar-
ison of all the present theoretical calculations and the experimental data, spectroscopic
factors are extracted and listed in Table I. Better and reasonable values of the spectroscopic
factors are obtained for the case of three-body model including the Coulomb force. The
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inclusion of the Coulomb force in only one subsystem improves the results by about
6.826%.

We can conclude-that the present three-body model, in spite of its simplicity, accounts
for all the characteristic features of direct nuclear reactions. We see that the Coulomb
forces are very important and must be included in shree-body calculations.

I am very grateful to Professor Abdus Salam and Professor Paolo Budinich, the Inter-
national Atomic Energy Agency and UNESCO, for hospitality at the International Centre
for Theoretical Physics, Trieste, where most of this work was done. Thanks are also due to
the Centro di Calcolo dell’Universita di Trieste for the use of their facilities.
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