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Energy of the lowest collective states and the electromagnetic transitions between
them are studied theoretically for even-even nuclei in the radium region. Quadrupole- and
octupole-transition probabilities B(E2) and B(E3) are considered. The energy as well as the
probabilities are found to be sensitive functions of the shape of the collective potential energy
of a nucleus.

PACS numbers: 21.10.-k

1. Introduction

There is continuous interest in the explanation of the abnormal properties of nuclei
around radium. In particular, such unusual properties are observed in the spectra of the
lowest states of these nuclei. In even-even nuclei, they consist in a very small energy of the
lowest negative-parity states and in an anharmonic character of the spectra [1]. Both
properties are usually interpreted as being connected with a strong anharmoﬁicity of the
collective potential energy of a nucleus, treated as a function of the octupole deformation
£3. The anharmonicity consists in an appearance of a minimum of the energy at the octupole
deformation different from zero, 3 # 0. Such minimum has been obtained in theoretical
calculations [2, 3]. The position of the minimum (i.e. the value of the octupole deforma-
-tion) and its depth (which is a measure of the stability of the deformation) is, however,
much dependent on specifics of the models used in the calculations (cf. e.g. [4, 5]). It seems
reasonable then to calculate a quantity which much depends on the potential and which
can be measured. Possible measurement of it could thus help in deciding how large and
how stable the octupole deformation of these nuclei is. The reduced octupole-transition
probability B(E3), besides the energy of the collective states, is such a quantity.

The scope of the present paper is to calculate the B(E3) and B(E2) transition probabili-
ties between the lowest collective states, for even-even nuclei in the radium region, and
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discuss the sensitivity of these quantities to the exact shape of the collective potential
energy. The energy of the states is also calculated. The paper is an extension of the study
[6], where B(E3) has only been calculated for the first negative-parity state. Part of the
results discussed here have been presented in Ref. [7].

2. Method of calculations

We consider the lowest intrinsic collective excitations of a nucleus as being of vibra-
tional nature. Two lowest-multipolarity degrees of freedom are taken: quadrupole and
octupole deformations. They are described by the Nilsson parameters ¢, and &5, respectively.
The hamiltonian, when taken in its classical form, is

H = % (Buazé§ +.Bzge3é§) + V(Sz’ 83)9 (1)

where B, is the mass parameter describing the inertia of a nucleus with respect to the
deforamtion ¢; (i = 2, 3) and V is the potential energy. The potential ¥ is calculated micro-
scopically. The mass parameters are taken constant (independent of deformation), for
simplicity. The values B,,,, = B,,,, = 300 h? MeV-! and B,,, = 0 are used. They are
based on the cranking results of Ref. [8]. Only the intrinsic excitations are considered.
Thus, no rotation is included.

The quantum hamiltonian (being the quantized version of the classical hamiltonian
(1)) is numerically diagonalized in the basis of two one-dimensional oscillators, correspond-
ing to £, and ¢, degrees of freedom. The eigenvalues give the collective energies, while
the wave functions are used for the calculations of B(E2) and B(E3).

The form of the hamiltonian (1) tells us that the excitations are the quadrupole and
octupole vibrations of a nucleus, coupled to each other by the potential energy V{e;, &3).

3. Results and discussion

Before presenting the results for the energy spectra and the transition probabilities
B(E2) and B(E3), obtained with the potential ¥ based on a microscopic model of a nucleus,
let us remind the situation for a pure one-dimensional oscillator. This is shown in Fig. 1.
The energy levels are equidistant and the transition probability B(EA; i — i—1) satisfies
a simple rule. It increases linearly with the number of the level & B(EA;i— i-1)
= i-B(EA; 1 = 0). Thus, if our two-dimensional potential ¥ (e,, £5) was simple super-
position of two oscillators in &, and ¢, our spectrum E; and transitions B(EA;i — k)
would also be simple superpositions of the oscillators spectra and transitions.

Fig. 2 shows the potential energy ¥ obtained for ?2*Ra in a microscopic approach.
It is calculated in three different ways. The potentials (D) and (Y) are obtained by the
macroscopic-microscopic method with two different smooth parts of the energy. In the
case (D), the droplet model with the parameters of Ref. [9] is used for the smooth part,
while in the case (Y) the Yukawa-plus-exponential model with the parameters of Ref. [3]
is taken for it. In both cases, the microscopic part (shell correction) is calculated by the
Strutinski method, based on the Nilsson potential with the “A4 = 225 parameters [10].
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Fig. 1. Spectrum and transition probabilities for a one-dimensional oscillator
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Fig. 2. Contour maps of the potential energy V(e,, £) obtained microscopically for 224Ra in three variants:
(D), (Y) and (S) described in text. The numbers at the contour lines give the values of the energy in MeV.
For each variant, the cross shows ;he position of the minimum of the energy
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The potential (S) is obtained as a total single-particle energy of a nucleus smoothed by the
pairing interaction [11]. This potential is expected to be good for not too large changes
in the deformation of a nucleus. It is also obtained with the Nilsson single-particle potential
with the “4 = 2257 parameters.

One can see that the three potential energies V differ significantly. While in the case
(D), the minimum of V¥ is obtained at the octupole deformation e3 = 0, the minimum
(of about 0.3 MeV depth with respect to the energy at €9 = 0) is observed at £J ~ 0.07
in the case (Y). A deep (of about 1.6 MeV) minimum appears at €3 ~ 0.13 in the (S) cdse.

The appearance of the minimum at £J # O is a manifestation of an anharmonicity
of the potential ¥ in the octupole degree of freedom &,. It is because the potential is sym-
metric in 5, V(—&5) = V(e,), and the minimum at ¢ = O is a necessary condition for the
harmonicity of the potential. Due to this, the potential (S) is strongly anharmonic in the
octupole degree of freedom e;. The large differences in ¥, calculated in different ways,
stress the importance of a study of the sensitivity of the calculated quantities to the changes
in the potential, as pointed out in the Introduction.

Figs 3-5 show the energy spectra and the B(E2) and B(E3) transition probabilities
obtained with the (D), (Y) and (S) potentials, respectively. Seven lowest levels and the
largest probabilities B(EX) of the transitions between them, given in the Weisskopf units
(W.u.), are shown. Solid lines correspond to the levels of positive parity and dashed lines
to those of negative parity. The E2 transitions are denoted by solid arrows and the E3
transitions by dashed ones. The state with the largest E2 transition to the ground state
(g.s.) is considered as the first quadrupole excitation (1q), that with the largest E2 to the
1q state as the second quadrupole state (2q) and so on. The same concerns the octupole
excitations, with E2 being replaced by E3. The states, which are mixtures of the above
states, are denoted by ig+jo+ ...

One can see in Fig. 3 that the spectra of both quadrupole and octupole excitations,
obtained in the case (D), are close to harmonic (equidistant). Also the ratios of the transition
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Fig. 3. Energy spectrum of the lowest seven states and the largest B(E2) and B(E3) transition probabilities,
given in Weisskopf units, obtained with the variant (D) of the potential of Fig. 2
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probabilities are close to those for the harmonic oscillator. The mixed state, 1q+ lo,
is rather direct superposition of the first quadrupole, 1q, and the first octupole, 10, states.
All the lowest mixed states are simple superpositions of the quadrupole and octupole,
almost harmonic, oscillations, which are only weakly coupled to each other. One might
expect such picture from the form, itself, of the potential energy (D), given in Fig. 2.
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Fig. 4. Same as in Fig. 3, but for the variant (Y) of the potential
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Fig. 5. Same as in Fig. 3, but for the variant (S) of the potential

In the case (Y), Fig. 4, the quadrupole excitations are still close to harmonic. The
octupole excitations, however, are more distant from this limit. The ratio of the energy
of the second excited state to that of the first excited state is: E(20)/E(lo) = 2.71 and
the ratio of the octupole transition probabilities: B(E3; 20 —-10)/B(E3; lo — g.s.) = 1.13.
This is connected with the appearance of a flat minimum (of about 0.3 MeV depth) of the
potential ¥ at ¢3 # 0, which means an anharmonicity of the potential in the é; degree

of freedom, as stressed above.

The largest anharmonicity in the octupole excitations appears in the case (S), Fig. 5.
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This is due to the deep minimum (about 1.6 MeV) of the potential energy, appearing at
£3 # 0. The largest B(E3) probabilities appear in this case for transitions between the follow-
ing pairs of states: 1o — g.s., 30 — 20, 50 — 4o, etc., characteristic for the model case
of the double-oscillator potential [12]. The strongest is, naturally, the transition between
the lowest pair, 1o — g.s., for which the wave functions of its members are most similar
to each other (when neglecting the difference in the parity) and the corresponding energy
levels are most close. Structure of higher states (e.g. the seventh state in the figure) appears
to be complex, in this strongly anharmonic case.

4. Conclusions

The following conclusions may be drawn from our study:

(1) The energy spectrum and especially the transition probability between the levels are
sensitive functions of the shape of the potential energy.
(2) The energy spectrum of the -octupole excitations and the probability B(E3) of the
octupole transitions between them are particularly sensitive to the position &3 and to the
depth 4V, of the minimum of the potential energy. This depth (being the energy gain due
to the octupole degree of freedom) may be considered as a measure of the anharmomclty

of V, treated as a function of ;.
(3) For large 3 and large 4V, the spectrum is much anharmonic. Also the rules for B(E3)
are much different, in that case, from those for the harmonic oscillator. The largest B(E3)
appear for the following transitions: lo — g.s., 30 = 20, 50 — 4o, etc. The strongest
one is that for 1o — g.s. ' ’ ‘ ’
(4) The transition probability B(E3) from the lowest negative-parity state (10) to the ground
state (g.s.) seems to-be the most direct measure of the value of the octupole deformation
of a nucleus.
(5) All transition probabilities between the lowest states may be divided in to two groups:
large (allowed) transitions and very small (forbidden) ones, indicating for a simple structure
of the states. This structure becomes, however, more complex with increasing excitation
energy of the states.
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