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EQUATIONS FOR A SUBSPACE OF UNSTABLE PARTICLES
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The equations connecting the Hamiltonian of a physical system pnder consideration
with the projection operator onto a subspace of unstable particles are given. Solutions of
these equations are found for the Lee model.

PACS numbers: 11.10.Qr, 11.10.St

1. Introduction

All hitherto existing papers analysing the decay laws of unstable states (i.e. analysing
a function which describes a proba:bility that a system initially at # = 0 being in the unstable
state stays in the same state up to time ¢) can be collected into a few thematic groups. For
example, there is an analysis of a shape of the decay function following from the physical
properties of the system — the question here is what are deviations of this function from
the exponential form for very large and very small times [1-4]. In another gro/up of papers
an influence of the measurement methods on a shape of the decay function was analysed
i3, 5;11]. Possibilities of extension of a standard formulation of Quantum Mechanics
in the Hilbert space, in order that this extended theory included nonhermitean operators
were also analysed. This led to a complex energy and states decaying with the increase
of time, e.g. [12, 13). Next, some authors assumed that unstable states were described by
vectors which belonged to a proper subspace 5, of the state space »# and the time evolution
in this subspace was given by a semigroup of contractions. Then they tried to construct
the whole of the state space and to find the total unitary group U(f) describing the time
cvolution in o, on the ground of Sz.-Nagy Theorem refetring to the extension of the
semigroup of contractions to the unitary group [14]. So, it was possible to find the generator
of this group — a Hamiltonian [15-17].

In all these papers there was no discussion of how to find unstable states belonging
to 5, having 5 and the Hamiltonian H. One of the earliest papers [18], connected with
an analysis of the decay phenomenon in Quantum Mechanics contains a necessary and
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sufficient condition for a given vector to describe unstable state. Unfortunately, this condi--
tion is not very helpful in searching for unstable particles in the system. Namely, let us
follow Fock and Krylov [18] and consider the vector

la) = [ cdE)|E)E, 1.1)

e (H)

where o (H) is the continuous part of the spectrum of H, |E) is an eigenvector for .H to
Eeo/H) and

CE|E'Y = E—E'). (1.2)

And now, if |«) is an unstable state and |«; £) = e™*¥|x) is the wave function of the system

attime ¢ > 0 then |Ca]e; £)[? is the probability that the system being at # = 0 in the unstable
state |a) is in the same state at time ¢ and it is obvious that |{a|a; £)|* must tend to zero
as t — 0. Krylov and Fock derived the formula:

Cale, ) = | e ™dW(E), (1.3)

co(H)
where

dWLE) = |c(E)*dE, (1.4)

and proved that the necessary and sufficient condition for [{aja; £>|> = 0 as # — oo is the
continuity of the integral energy distribution function W (E).

In this paper we shall give formulae different from the Krylov and Fock one, which
enable us to construct the subspace of unstable particles which will be denoted by 5,
It seems, this may be of some importance in investigations of multiparticle composite
unstable objects. We start also from the function of type [xlx; £)}2, but obtain a new
necessary condition in order that vectors from some subspace of the Hilbert space of the
system dwcnbe the unstable states — Section 2 gives explicit relations between given
Hamxltoman H of the system and the projector P onto subspace Jt’ . These relations are
tested in Section 3 by applying them to the simplest version of the Lee model.

2. Equations for a subspace of unstable particles

Let us assume that the physical system under consideration is described by a selfad-
joint operator H — the Hamiltonian, acting in the Hilbert space # of states |a), |p) € H#
of the system. Let us assume further that the unitary group of operators U(f) = e *¥
describes the total evolution of the system.

We are not interested in the properties and the behaviour of the whole system but
only of its certain property described by the states in some,closed subspace (let us denote
it as o) of o [19, 8]. This subspace can be described by means of a projector P

#, = pw. @1)
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The property we are interested in, is connected with the question if the system being at
the initial moment 7 = 0 in a state |a) € &), is at the latter instant ¢ in o) or not. So, the
probability that a state |a) €. created at ¢ = 0 is in 5 at ¢ > 0 will be investigated,
i.e. thé function

af
2(t,0) = ¥ Kale "Hlad|?, 22
vell
where: |a), |«,) € #y and {|a,)},e is an orthonormal and complete set in J#;:
;ﬂ e, o = 1, = P. 2.3)

In quantum theory, a general notion “particles” and also “unstable particles” is usually
joined with the eigenstates for some Hamiltonian H, (so-called free Hamiltonian) to the
discrete eigenvalues E,:

Hole,) = E,|a,). 249

Thus the decay of unstable particles |«,) is due to the interaction H,, and thé behaviour
of the system is described by a Hamiltonian H = H,+ H,. It means that a basis of the
subspace of unstable particles #,,, or its closed part &’y < 3, can be composed of the
normalized- eigenvectors |a,) of H,.

The natural conclusion following from the above is that an operator P projecting onto:
an arbitrary closed subset 2, of the subspace 5, of the state space 5’ commutes with Hy:.

[P: HO] =0. (2.5)<

The quantity 2(¢, o) is expected to converge to zero as ¢ —+ oo for every la) € Pof,.
if it were to describe a decay [18, 16] and if P2 were to describe unstable particles, and it is.
salled the decay law of the unstable state |a) [17, 20, 21]. The smallest closed subspace of
o which consists of all such Po# will be denoted by 5#,,. It is assumed that # © o,
> M, i.e. that S contains unstable particles, decay products (37, is usually called the
subspace of decay products) and other (stabie) states [20].

The formula (2.2) can also be written as follows (for lad € Po#¥ < #,,)

P(1, ) = {e|PP()P|a), (2.6
where:

P(1) = é*Fpe~"H, Q.7

Now we can formulate the necessary and sufficient condition for vectors from a sub-
space P3¢ to describe unstable particles. Namely, we can say that [22]
vectors from a subspace Ps# describe unstable particles (i.e. Po# < o)
if and only if for every |¢) € #°

lim {@|PP(t)P|p} = 0. 2.8y

1= ®
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Using the polar identity one can express the above criterion in terms of operators:

PH# < H#,, < w-lim PP(f)P = 0, 2.9)

t—>
where: w-lim is the weak limit in the set of all linear and bounded operators in .
Formally, it follows from (2.9) that we have for a projector P onto. o < H#,,: either

w-lim P(f) = 0, (2.10)

t-r o0

w-lim P(t) = IT = 0, @.11)

-+ o

where IT % IT? is such linear, bounded and selfadjoint operator that

PI = IIP = PIIP = 0, 2.12)
{in other words

I = (1—-P)A+A*(1-P)+(1-P)B(1-P), (2.13)

and A4, B = B* are any linear, bounded operators).

One of the obvious methods of studying the limits of type (2.9)~(2.11) is by taking
the Laplace transforms and by applying Tauberian theorems. If f(t) - y as ¢ = co then
{see e.g. [23])

y= ,l-i.?+ e2{f(1)} (o), (2.14)
where:
Z{/(0} (2) ‘1—50}0 f(e "at, .15)
Rez > 0.

Thus, one can conclude (taking into account (2.10), (2.11)) that the necessary condition
in order that

w-lim PP(1)P =0 (2.16)
is, either
w-lim eZ2{P(1)} (e) = O, (2.17a)
e~ 0+
or ;
w-lim e Z{P()} (e) = I # 0, (2.17b)
=0+

where: IT — see: (2.12), (2.13).



415

-Applying the Parseval relation between the Laplace transforms [23] to the Z{P(1)} (2)
we obtain instead of (2.17), either

o
welim— | R(A—ig)PR(A+ig)dA = 0, (2.188)
e~0+ T
or
w-lim % R(A—ig)PR(A+ig)dd = II, (2.18b)
e~0+

-

af
where R(z) = (z— H)™! is the resolvent of H, and the weak limit is taken for vectors from
the domain of H which is supposed to be dense in 2. Using the property (2.14), identity

22 {P()} (2) = P—iZ{[P(t), H]} (2), (2.19)

and the Parseval equality, two new equations for P can be easily derived: either

o0

i
P - wilim '[ R(i—ie) [P, HIR(A+ie)dA = O, (2.202)
g0+
or
P- —2% w-lim j R(A—ie) [P, HIR(A+ie)dA = II. (2.20b)
g0+

-
Of course, these equations are completely equivalent to (2.18) but not more singular than
those.
From all solutions of equations (2.18) or (2.20) only those will be useful which additio-
nally satisfy the following requirement
P=P"' =P #0. (2.21)

One should stress that equations (2.182) and (2.18b) (or (2.20a) dnd (2.20b) will have
different solutions, if they exist. Let us denote by P, the solutions of the equation (2.18a)
or (2.20a) and by P, projectors obtained from (2.18b) or (2.20b). We have that

P, P, =0. (222)

All operators projecting onto subspaces contained in 5#,,, which describes unstable parti-
cles, must fulfill one of the above derived equations, thus generally

”upCUPa‘;?@UPb‘#' (2'23)
a b

The set of projectors, for which the condition (2.9) takes place, is a subset of operators
obtained for a given H as solutions of equations (2.18a), (2.18b) or (2.20a), (2.20b).
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One can show that solutions of the equation (2.18a) project onto such subspace of ¢,

which describes unstable states of the system decaying irrespective. of what states were
occupied at the initial time 7 = 0 (i.e. irrespective whether states in o © P, were
occupied or not).
" The equation (2.18b) defines a subspace of # containing unstable states which wéuld
decay only if the system was in a state from P,of S o, at t = 0 and the states described
by vectors, from ¢ © P, ¢ were not occupied at this moment. This means, in terms of
particles, that the system under éonsideration at the initial moment ¢ = 0 cannot contain
‘any ‘other particles and sources besides the unstable one, so that the decay should be
observed.

In: principle, a search for projection onto single particle states in simple. quantum
field theory models will nat be facilitated by these equations. Usually it is rather clear
which particles should be unstable there. It scems that for more complicated. states (e.g
multiparticle composite objects and the like) our equations should be more useful.

Let us stress that the fulfillment of the equation (2.18a) or (2.18b) (or (2.20a), (2.20b))
,together with the requirements (2.5), (2.21) is the necessary condition for the subspace
Po# to describe unstable particles. .

At the end of this Section we have to make two remarks. First, it seems that equations
(2.20) have an advantage over (2.18) because they enable us to include the requirement
(2.5) in a simple way and, of course, they are not more singular than (2.18). Second, there
are Hamiltonians, for which equations (2.18a), (2.20a) have solutions (see the next Section)
but the problem of the existence of solutions of equations (2.18b), (2.20b) is open at present.

3. An example: the Lee model

In this Section equations (2:20) will be tested by applying them to the well known Lee
model in its simplest version [24, 25]. This model describes two spinor particles V and N
interacting through spinless boson 0-particle according to the Hamiltonian

H = Ho+H,, G.D
where
Ho = my [ &PV BV (D) +my [ &N BNG)+ | d*koya* Epagf),  (3.2)
and
— . 8o 3"f[w(,-")] J: 3= + > -._-o -
Hy = n)P f d’k N d’p[ V7 (p)N(p k)q(k)+h.c.]._ 3.3

Spinor particles V and N are static while the 6-particles, associated with the a*, ¢ operators
are rélativistic ones with energies

o) = VP12, (34

The real cut-off function f[w(k)] and the coupling constant g, together with bare masses
my, myand p are parameters of the model. The creation and -annihilation operators V+,:V,
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N+, N and a*, a fulfill obvious commutation relations for bosons and férmic;nS'[ZS, 26}..
The Hilbert space of states is constructed in the standard way [25, 26]. The “charges”
Q; = ny+ny and Q, = ny+ny (Where ny is the V-pamcle number operator, 7, is the
@-particle number operator, and so on) are conserved in the model.' Hence, the Hilbert
gpace of states may be decomposed into the direct sum of sectors #(q1, ,) having definite
values gy, ¢; of O, and Q,. The first nontrivial sector is (1, 1) (where g, = g, = 1)
to which we shall confine our attention in what follows. A typical element from this sector is
v, ¥ne> = v, 0>+10, yne) = [ d°Pyv(P) V3D

+ [ @pd*qyme(p, 9) IN;_3, 67, (3.5)
where y(P) and py(P, ) are both square integrable with respect to p and p, g respectively,
and vectors

df -,
Vi> = V() 10),

df i - + -
INz-3, 02> = N"(p—q)a™(q) 10, (3.6)
. : ' i
(/0> — is the normalized eigenvector for H, and H to the zero eigenvalue — a vacuum —
defined: as usually [25]) are eigenvectors for the H, to the my and (my+(q)) eigenvalues

respectively, and they form and orthogonal and complete basis there.
The condition (2.5) implies for the considered sector that generally

P = [ d®ppu() IV3> (V3

+ Id PdS‘IPNe(P, q) |Np -q» q) <e‘ Np qI . (3°7)

Thus the problem of finding the subspace of unstable states in the »(1, 1)-sector resolves

itself into a calculation of functions Pv(P) and pyy(P, ). One can do this by means of equa-
tions (2.20).

From (2.21) it follows that
pv(D) = PY(P),
Pro(P: @) = Po(P» 9)s 3.8

i.e. that values taken by py(p), pne(P, 7) can be equal to 0 a.c. or 1 a.e.; (2.21) implies that
pv(P), Pne(P, g) can be some characteristic functions on momentum space, thus generally

0<pvp) <1, 0<pne(p, 9) < 1. 3.9)

For such P there does not exist any solution of the equation (2.20b) while the equation
(2.20a) is solvable and gives

2—0+

% R(A+ig) |y, 0DdA = 0, (3.10)
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and analogously for matrix elemrents of <0, ¥41()I0, vned and {whs 0 ()0, Yred t¥pe.
Weé have

af N
R(2) Ipv, vne> = lav(Pvs Pnes 2)s One(Pvs Pres 2))
= | &®Gov(vv, vres 7; D IV + § °pd°done(v, ¥rei 23 P, D) IN7—3, 6>, (3.11)
where:
o ]
ov(Pv, Ynos 23 @) = {z—my+ p(z—my)}~*

Slo®1 vel@ ) }
V2o@) oF)-(z-myf’

X {w(&)—go a’r (3.12)

-> - df . -
eno(Pv: Vo3 23 D, @) = (z—my—o(q)) ™}

. s flo@®] R ..}
x {goev('l’v, ¥nes 25 P) N +yne(P: D ¢ 5

(3.13)

and

a ,(Plo®] 1 e
9’3(2) = gOJ 20)(;) (D(E)——zd k’

P(x+i0) = F(x)+ —;-I‘(x). (3.14)

From (3.7) and (3.10) we obtain an equation for py(p) and pen(D, 9). For my > my+p
it has the following form

@

oo e L[ TG
J‘d pev(P)wv (P)yv(p) {1‘— o J‘ md}-}

- J ETHONYD) f da{ f Pipn(5, D)

xg,f’[w@] [ 1 _ 1 ]
® 20(q) Lo(@-0-10 w(@—0+i0

1
* o TF &P
for all pi(7), pu(p) € £*(dp),

ho(o) ud o —my+my+F(o). 3.16
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. 1 .
The integral over A (with p < 4 < o) multiplied by o in the first term of the equation

(3.15) is equal to 1 (see: [24]) and the integral over ¢-in'the second term of this equation
reduces itself for pue(P, §) = const. - pie(p) > O to the previous one, and generally for
Pro(P, ) > O it differs from zero. This and (3.8) mean that nontrivial solutions of the
equation (3.15) are

Pra(P, @) = Oae., G.AN,
and

pv(D) = xs(P), (3.18),

where: x5(p) is equal to 1 if pe S = R® and is equal to zero if p € R%\S, and S is an arbitrary.
set of non-zero measure in the momentum space R3, or

pv(P) = 1ae.. (3.19),

Equat’ions of type (3.15) for matrix elements {yyg, 0] (*)|0, ¥ and <0, v5] (D10, Yne).
do not give any additional information about py(p) and pye(p, ).
Finally, one can come to a conclusion that the operator

P = { &pIV3) (V3] (3:20

is the maximal projector onto subspace of unstable particles in the #°(1, 1)-sector (compare;
f26).

Let my < my+p. Then the equation (3.15) and the similar one for other matrix
elements have no solutions besides the trivial one:

pv(®) = pre(3, @) = Oae., (321
and then

P=0. (3.22)

This means that there are no unstable particles in the (1, 1)-sector if my < my+ pu, as was
to be expected.

The authqr wishes to thank Professor W. Garczyriski for many stimulating conversa-
tions and suggestions.

REFERENCES

[1} L. A. Khalfin, Zh. Eksp. Teor. Fiz. 6, 1371 (1957) (in Russian).

[2] L. Fonda, G. C. Ghirardii, Nuovo Cimento 7A, 180 (1972).

[3] L. Fonda, Proceedings of the XIII Winter School of Theoretical Physics in Karpacz, Vol. 1, University

of Wroclaw Press, Wroclaw 1976.

[4] W. Garczyfiski, i’romedings of the XIII School of Theoretical Physics in Karpacz, Vol. 1, University
. of Wroclaw Press, Wroclaw 1976.

{51 H. Ekstein, A. J. F. Siegert, Ann. Phys. 68, 509 (1971).

{6] L. Fonda, G. C. Ghirardii, A. Rimini, T. Weber, Nuovo Cimento 15A, 689 (1973).



420

171 W. Garczyiiski, Acta Phys. Pol. B7, 627 (1976).
(8] W. Garczyfiski, Phys. Lett. 56A, 434 (1976). -
81 C. B. Chiu, B. C. G. Sudarshan, B. Misra, Phys. Rev. D16, 520 (1977).

HO] P. Exner, Czech. J. Phys. B27, 117, 233, 361 (1977).

{11} B. Misra, B. C. G. Sudarshan; J. Math. Phys. 18, 756 (1977).

{12] A. Brzeski, J. Lukierski, 4cta Phys. Pol. B6, 577 (1975).

{13] T. K. Bailey, W. C. Schieve, Nuovo Cimento 47A, 231 (1978). '

{{14] F. Riesz, B. Sz.-Nagy, Functional Analysis, Appendix, Frederick Ungar Publishing Co., New York
1960,

{15] D. N. Williams, Commun. Math. Phys. 21, 314 (1971).

{16} K. Sinha, Helv. Phys. Acta 45, 629 (1972).

117} P. Exner, Commun. Math. Phys. 50, 1 (1976).

{18] N. 8. Krylov, V. A. Fock, Zh, Eksp. Teor. Fiz. 17, 93 (1947) (in Russian); V. Fock, N, Krylov,
Journal of Physics (Ed.: Academy of Sciences of the USSR —Moscow) 11, 112 (1947),

{19] W. Krélikowski, J. Rzewuski, Bull. Acad. Pol. Sci. Ser. Sci. Tech. 4, 19.(1956): Nuovo Cimento.
25B, 739 (1975) and references one can find therein.

120] P. Exner, Czech, J. Phys. B26, 976 (1976). ;

{21] L. P. Horwitz, J. P. Marchand, Rocky Mount. J. Math. 1, 225 (1971).

{22] K. Urbanowski, On the Relation between a Hamiltonian and the Projector on the Subspace of
Unstable States of a Physical System, Preprint No 552, Institute. of Theoretical Physics, University
of Wroctaw, Wroclaw 1982; W. Garczyfiski, K. Urbanowski, Quantum Theory of Decay of Weakly
Coupled Systems, University of Wroclaw Press, Wroclaw 1986.

23] G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer
Verlag, Berlin, Heidelberg, New York 1974,

{24] V. Glaser, G. Killen, Nucl. Phys. 2, 706 (1956/57).

{251 S. Schweber, An Introduction to Relativistic Quantum Field Theory, New York 1961,

26) W. Garczyfiski, K. Urbanowski, Acta Phys. Pol. BS, 199 (1977).



