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A new method of computing quark propagators on a lattice is developed. It reduces
the four-dimensional problem to the series of inversions of the two-dimensional fermionic
matrices. The technique is applied to compute chiral properties of quantum chromodynamics,
and to obtain masses of the lowest lying hadrons.

PACS numbers: 12.38.Gc

1. Introduction

For some time quantum chromodynamics has gained a status of the theory of strong
interactions. The spectacular success in describing the short distance phenomena triggered
many attempts to obtain predictions of the theory also in its nonperturbative — large
distance, domain. At present, the only way 1o achieve this goal is through the lattice formu-
lation of QCD. Its strong coupling expansion reveals the confinement of quarks and forma-
tion of flux tubes. On the weak coupling side, we recover the perturbative expansion of
the continuum theory. In addition, one predicts a universal and well defined scaling which
must hold while approaching the continuum limit. Nonperturbative predictions are obtained
with the aid of the Monte Carlo calculations. To this end one uses techniques well known
from statistical physics. However, introduction of the fermionic degrees of freedom requires
the development of new methods. Therefore, in spite of the fact that many physical resuits
are already available, the search for new algorithms is by no means a closed subject.

We have developed a new method for computing a quark propagator in an external
field, and applied it to the lattice QCD. Propagator of a quark is the basic block in construct-
ing hadronic propagators, and hence, in calculating the spectrum of elementary particles.
For this reason, an effective technique for computing propagation of elementary matter
field is needed in every lattice simulations of QCD with fermions.

* This work was partly Supported by the Polish Atomic Agency, Grant no. CPBP 01.03.
** Address: Instytut Informatyki UJ, Reymonta 4, 30-059 Krakéw, Poland.
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Plan of this paper is the following. In Chapter 2 we introduce basic concepts of lattice
gauge theories, and discuss shortly their various applications. Chapter 3 contains the con-
struction of fermions on a lattice which will be needed for latter study. Our method of
computing quark propagators is presented in Chapter 4. Application to QCD without
dynamical quarks and our results on hadronic spectrum are discussed in Chapter 5. Sum-
mary and conclusions fill Chapter 6.

2. General formalism and survey of the subject

Consider four-dimensional, hypercubic lattice of the size Tx L*. To every oriented
link /, labelled by (n, ), assign a SU(3) matrix U,(n). The action of the pure gauge field
reads [1]

Se =Y Tr(Uo+Up, (2.1

where U, is the product of the link variables along the elementary oriented plaquette,
and the sum runs over all plaquettes on the lattice; f = 6/g2, g being the bare coupling
constant.

Statistical system defined by (2.1) is intensively studied and the structure of the underly-
ing continuum theory slowly emerges [2]. Central question: how close can we approach
the continuum limit, with the available resources, is being asked from various perspectives.
Measurements of the string tension have confirmed the confinement of colour charges -~
a unique property of nonabelian gauge theories. It has been expected for a long time, but
proved only in the strong coupling regime on a lattice. An approximate scaling was shown
to hold for B == 6.0, indicating that we may approach the continuum physics [3]. Masses
of glueballs were also measured, and data are consistent with scaling [4]. Another result
of physical interest concerns the existence of the deconfining phase transition to the gluon
plasma [5]. Study of this phenomenon, which occurs at finite temperature, is also done
with the action (2.1). In this approach, the size of the lattice, say in T direction, controls
the physical temperature of the gluonic system. The transition temperature T, was found
to scale for 6.0 < B < 6.3, demonstrating again the onset of the continuum behaviour.
Finally, the original program of Wilson [6] is vigorously continued, and provides direct
information about the renormalization group flow of the gauge coupling constants [7].

Construction of the complete quantum chromodynamics on a lattice is achieved by
adding to (2.1) the contribution from matter fields [1]

Sp = —a® Y {K Y [$(n) r =y U (p(n+w)+Pn+p) (r+7) U (m)p(n)]
n un

—p(mp(n)} = Y, Hn)Mg(n, m)p(m). (2.2)

n,m

Here, the Dirac fields w(n) are assigned to each lattice site. They are in the fundamental
representation of the SU(3),,,.., and also carry a flavour index which will be suppressed
in the following. Parameter r distinguishes various formulations and will be discussed in
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the next Chapter. Due to the Pauli principle, quark fields in the Lagrange formulation
are described by the classical Grassmann variables [8]. The Euclidean path integral for the
full theory reads:

Z = [ [dUdydiple” Fa*59), (2.3)

where Haar integrations are performed over all link SU(3) matrices and Grassmann
intcgrals over p(n) and y(n) variables.

Common approach to (2.3) is to integrate out the quark fields explicitly, since the
integrand is Gaussian in ¥,

Z = [ [dU] det (Mg[U])e™ MY, (2.4)

and to treat the remaining integration by Monte Carlo. Direct stochastic evaluation of
(2.3) is practically impossible due to the non-positivity of the Grassmann integrations.
On the other hand, the statistical system with the partition function (2.4) is well defined
(det M[U] is positive definite) but the new effective action is nonlocal. Therefore, Monte
Carlo simulations of the full QCD with dynamical fermions use a lot of CPU time, and only
very recently some results on moderate size lattices (10*) became available [9].

Computation of hadronic spectrum, considered by many as an ultimate test of the
theory, has only begun [10]. With dynamical quarks, however, extraction of masses of
various resonances is obscured by the continuous background of lower mass pairs. This
is particularly annoying in the Euclidean formulation of the theory. New methods must
be developed to analyse the “data” from the MC simulations with quark loops. Neverthe-
less, some results obtained with dynamical quarks (contained in det M) are rather encourag-
ing. Studying the qq potential in the full SU(2) theory, Schmidt [11] has found indications
of the Debye screening. Also an effect of the virtual qq pairs on the transition temperature
to the quark-gluon plasma was found consistent with the intuitive expectations [12].

As was mentioned above, the effective Boltzmann factor in (2.4) is a nonlocal function
of the gauge configuration {U}. This means that all the simplicity (and speed) of the local
thermalization algorithm (e.g. Metropolis or heat bath) is lost and replaced by the tedious
gévaluation of the determinant of the huge matrix, for each update (change) of every link
variable. Still, the two existing techniques which deal with the problem, succeed quite
remarkably in reducing a number of operations necessary to include the determinant
[13, 14]. Nevertheless, the CPU time required for simulations with dynamical fermions
is about three orders of magnitude bigger than the one needed if the quark loops are ne-
glected [20]. In view of this situation a recent proposal to apply a complex Langevin tech-
nique directly to the partition function (2.3) or to its Hamiltonian version is very interesting
[15], though at present this approach is applicable only to the two-dimensional models
[16]. Together with the proposed in Ref. [17] local representation of fermions in 3+1
dimensions, it may form a useful approach to the notoriously difficult problem of dynami-
cal quarks.

A lot of information about the spectrum of hadrons was obtained in the so-called
quenched approximation proposed first by Weingarten [18] and by Parisi and Hamber [19].
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In this approach one neglects influence of fermions on the gauge field. Quarks are viewed
as propagating in the fluctuating background of the quantum Yang-Mills field. Any feed-
back from fermionic degrees of freedom is ignored. Hence the name of this scheme, bor-
rowed from the theory of alloys in metallurgy. Technically, the quenched approximation
amounts to setting det M = 1, since the determinant describes the net effect of the fermionic
field. The remaining influence of quarks shows up only in the various observables which
can be built from the y variables. Consider, as an example, {py) — the average value of the
quark condensate:

1 ~
Pmy(n)) = Ej [dUdypdp](n)yp(nye” e =50, (2.5)

Integration over Grassmann variables yields

i _ _ . -
Ppmy = — deU] (M7 '[U]),n det (M[UT)e™ %, (2.6)

i.e., one must average the inverse of the fermionic matrix (2.2) over the quantum fluctuations
of the gauge field. In the quenched approximation, the link variables have an unmodified
exp (—Sg) distribution of the pure Yang-Mills theory.

For mass calculations one uses more complicated observables on the RHS of Eq. (2.6).
In general they are fourth (sixth) order polynomials in the fermion field. Using known
symmetries of the theory suitable combinations of the % and y are built in order to select
separate propagation channels (see next Chapter). Correspondingly, one averages some
combinations of the inverse fermionic matrix

(Mg [UDpn = S(n, m, [U]) = <p()B(m)) 2.7

which is nothing but the gauge covariant propagator of a quark in a background gluonic
field.

The problem of nonlocality in generation of the gauge configurations has been avoided
in a quenched approximation. However, fermionic observables are nonlocal functionals of
the gauge field U. Therefore, computation of the spectrum of hadrons calls for a lot of
computer time even in the quenched approximation. For this reason a search for effective
algorithms for computing quark propagators still continues [20, 21, 42]. Of course, the
study of fast methods of inversion of large sparse matrices is also relevant for the
ungquenched theory. In the latter, the inverse matrix is also needed for updating the determi-
nant in addition to constructing fermionic operators.

Finally, we would like to discuss the extraction of the mass parameters from the
Monte Carlo “experiments”. Detailed formulas depend on the discretization chosen for
fermions and will be derived in the next Chapter. Here, we present only the general
approach. Consider the evaluation of the partition function (2.3) in the temporal gauge
Uo(n) = 1. Then, all the integration variables can be divided into T groups {U,(i, n),
w(i,n), w(i,m)} =S, i =1,...,T, each group belonging to one three-dimensional time
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slice n, = i. Then Z can be written in the form

- ) T
Z = Z '75152f5253 fSTsl = Ti ‘7_ ) (2.8)
51,52,..,8T

T is the transfer matrix of lattice theory [22], and the lattice Hamiltonian is defined by
I = exp (— aH), a being the lattice spacing. For large 7,Z ~ A5, where 2, is the maximum
eigenvalue of the transfer matrix'. Equation (2.8) is nothing but the lattice version of the
Feynman-Kac formula [23]. Consider now the generél Green function

1
€O(1)0(1)) = f[dwad@]om)O(zz)e‘s 2.9)

for arbitrary integer times t; < t,,t = f,—t;. It is readily seen that

(O(t)0(t)) = Tr (0T 0T H T T

R

A" kZ KiAd TIKkIOND 2
.l

[

R [(y/ho) +(AifAo) ™', (2.10)

where only leading contributions, for large ¢ and T—¢, have been retained. In terms of the
energies

CO(t)0(t,)y = Ry[e™ ErmEoat | o= Er=ET=0aqy 2.11)

where dots denote contributions from the higher excitations. What particular state domi-
nates the sum (2.11), depends on the matrix element <0{O|k)>. In principle, constructing
appropriate operator O, one could excite only single state from the vacuum. In practice
we use lattice symmetries in order to restrict maximally the number of states contributing
to (2.11). This will be discussed in the next Chapter.

3. Fermions on a lattice

3.1. Species doubling and Wilson formulation

The simplest lattice action for free fermions reads:

n

3
Sw="5 Z [Py, + ) = B+ ()] + ma® Z Pym, (1)

and corresponds to r = 0 in the expression (2.2). Classical continuum limit of Eq. (3.1)
gives obviously the Dirac action. Note that the first derivative is approximated by the
difference of the fermion field taken over two lattice spacings. Only such a choice results

! Incidentally an Fucliean Monte Carlo appears to be the most effective method to diagonalize
7, hence also the Hamiltonian.
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in the hermitian action, which in turn is necessary for positive definite transfer matrix
{22]. This is different from the bosonic case, where the second derivative is defined over
two lattice spacings.

From (3.1) one obtains the propagator

S(ky = [i ) y,sin (ak‘,)—i—ma]_l, —n < ak, <, 3.2)
H

which reduces to the standard form when ke — 0. However, some other excitations also
survive in the continuum limit @ — 0. They correspond to the corners of the Brillouin
zone ak, = *n+agq, for such momenta propagator reduces again to the familiar con-
tinuum form exhibiting a free particle pole at g ~ 0. This is the famous species multiplica-
tion discussed extensively by many authors [24-26]. In particular, existence of species
doubling was proved by Nielsen and Ninomya under rather general assumptions of hermiti-
city, locality and translational invariance [24]. We would like to emphasize here the differ-
ence between the fermionic and bosonic cases. Nilsen and Ninomya showed that in general
sin (k,a) in (3.2) is replaced by a function F(k,a) which has a single zero at k,a = 0,
and is periodic. Therefore F(k,a) must have at least a second zero in the Brillouin zone.
For bosons, however, F has a double zero at the origin, hence no species doubling is implied.
The last property can be traced back to the different discretization of the kinetic term in
the action, as discussed above. To conclude, the multiplication of fermionic modes occurs
because only shifts by‘even number of links represent the space translations. Single link
shifts mix various “internal” modes even in the naive formulation.

Two approaches are commonly used to cope with additional states. In the original
Wilson formulation one uses the action (Eq. (2.2) with r = |, and U = 1)

Sw = 2 APy —K Y [9m) (L =y p(n+m+dn+p) A+y)pm]}. (3.3

It has the appropriate continuum limit if K = (8+2ma)-!. All additional excitations
acquire a mass M ~ 1/« and decouple in the continuum limit. However, chiral symmetry
is now explicitly broken even if m = 0 (K = 1/8). Nonsymmetric terms vanish only when
a — 0. Therefore, chiral symmetry of the continuum theory together with its spontaneous
breakdown are expected to be recovered only in the limiting transition.

Lack of the chiral symmetry introduces additional difficulty in extracting physical
quantities from lattice simulations. The hopping parameter K (or equivalently the bare
mass of a quark /m) is renormalized by quantum fluctuations. On the other hand, K is the
direct input parameter controlling all physical observables. Commonly adopted procedure
consists in computing measurable quantities for a series of K values, and then extrapolating
them towards an unknown, a priori, point K = K. K, corresponds to the chirally symmetric
quantum theory, and is determined by vanishing of the pion mass. This procedure introduces
additional uncertainty since K, fluctuates with gauge configurations. Also extraction of the
renormalized current mass of a quark becomes tricky. Finally, numerical computations
of quark propagators require four times more memory and CPU time than the staggered
fermion approach (see below).
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However, quantum number content of various operators is very transparent in Wilson
approach. Also introduction of the explicit flavour breaking is simple. For this reason
Wilson fermions are intensively used by groups with large computing resources [27-30].

3.2. Kogut-Susskind fermions

In this formulation, often referred to as staggered fermions [31-34], one saves a lot
of the computer storage paying the price of rather messy quantum number analysis. Since
we shall be using this approach later on, it will be discussed now in some details.

It turns out that one can pre-diagonalize the action (3.1) [35]. Define a new four-
-component field ¥°(n), b =1, ..., 4,

w(n) = A(mx(n),  §(n) = FHmAt(n), (3.4)
with .
A(n) = Y1V, no= (ng, ny, ny, ny). (3.5)
Since
ATy A(n ) = (=17 = o (), (3.6)

all four components »” decouple

3
S, = Z {% Z a,(n) [;Z”(n)xb(n +u)—7(n +;4)xb(n)] + ma“;?"(n)xb(n)} .37

b.n 73

The same trick works for the full interacting theory: all 64 modes are grouped into four
identical groups, each group containing 16 interacting excitations. From now on, we will
skip the index b on the y field and restrict the analysis to one copy. Remaining degrees of
freedom will be soon interpreted as four flavours of a Dirac fermion. Before doing so, let
us discuss the chiral properties of the theory.

It is readily seen from (3.7) that kinetic term couples y on even (odd) sites with y on odd
(even) sites only. Therefore the theory has a global U(l)x U(l) symmetry:

y(even) = e“y(even), F(odd) — F(odd)e™ ™,
x(odd) - €®y(odd),  j(even) — F(even)e ”, (3.8)

for m = 0. This is all what remains from the full chiral SU(f) x SU(f) invariance of the
continuum action. However, this remnant of chiral symmetry is sufficient to protect quark
mass against renormalization when m = 0. Contrary to the Wilson case, we know a priori
that the chiral limit of the renormalized theory remains at m = 0. Therefore, we know
where to extrapolate physical observables measured for various m’s.

In addition, one can study spontaneous breaking of the lattice chiral symmetry as
anticipated from the continuum physics. It should be stressed, however, that this study
provides only some clues about the analogous phenomenon in the continuum. The real
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question is: do we see signs of the restoration of the full chiral group? In other words, do
other members of the pseudoscalar octet become light, ultimately degenerate, with the
single Goldstone boson expected from (3.8)? A substantial amount of the human and
computer effort is being spent to answer these questions [37, 39].

Spin diagonalization (3.6) works without any change also for the interacting theory.
The coupled action reads:

Sks = a* ¥ {3 X [ma(mU (mx(n -+ ) — i(n+ me,(mU K mx(m] + mag(n)x(n)}. (3.9)

Spin and flavour structure can now be rediscovered by regrouping all 16 modes of the
y field [25, 32]. Consider splitting of the whole lattice into elementary hypercubes labelled
by even sites

n,=2N,+n,, n,=0l1; p=1,.,4 (3.10)

Sixteen four-vectors ;7 point towards the corners of a hypercube. Define a new 6-component
field on a blocked lattice

1L(N) = (=D"@N+n),  T(N) = (=) Z2N +n),
(-—-l)N - (_1)N1+N2+N5+N4. (3.11)
The 16-component quark field on the coarser lattice is a linear combination of y,
W) = 3TN, TW) = L LB, (3.12)
where
I, = YivEvRyL. (3.13)

The Greek and Latin indices label the Dirac and flavour degrees of freedom. Inverse
transformation reads:

K(N) = 23 Ty q"(N),  Z(N) = 23 (NI (3.14)
Structure of Eqgs (3.12) and (3.14) suggests treating internal 16 dimensional space

as the tensor product of the Dirac and flavour spaces. Indeed, in terms of the quark
field the action takes the form

Sks = (2a)* ; {X (N [, ® DA, +ayl ® 156,Ja(N)+md(N)a(N)}, (3.15)

where

1
4,9(N) = i La(N +u)—q(N — )],

1
0,4(N) = e [a(N +p)—2g(N)+ q(N — )],
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and matrices y, and ¢, act on the spin and flavour indices, respectively. Convenient repre-
sentation of t, is t, = 7.
From the Fourier transform of (3.15) one gets the free propagator

2 .
A(k) = (ma)2+ 5 Gz (ak) { Z Lisin(ak,) (v, ® 1)

"

~(cos 2ak)— 1) (I ® z;zs)]—znm(x ® 1)} (3.16)

T A
which has only one pole in the Brillouin zone — SL < ak, < 5 as desired. In the continuum

limit the first and third terms reproduce the standard Dirac propagator, second term being
higher order in a. On the lattice, however, this term is a source of some artefacts. It generates
flavour changing interactions which remain also in the coupled theory. Secondly, it breaks
parity, and hence one is not able to separate directly opposite parity states in this approach.

The simple strategy to identify particular channels is the following (see the next
Section). One builds corresponding correlation functions in the ¢ representation using
symmetries of the continuum theory. Then, everything is transformed into the y repre-
sentation which is much easier to handle numerically. Another approach analyses the y for-
mulation with respect to the full discrete symmetry group of the lattice action (3.9) {36,
38, 39]. In particular, the field combinations belonging to the irreducible representations
of this group were found, and their composition in terms of the continuum symmetry
identified.

3.3. Hadronic operators

Before we review the construction of hadronic operators for staggered fermions,
let us elucidate an effect of additional modes on the example of the naive approach (3.1).

A. Quantum numbers in the naive case

It is enough to consider a free case since interactions do not change the quantum
number content of various operators. The lattice propagator (3.2) of a free fermion reads:

d*x e 1A= 17,5,(K)

Sm0) =8 = | 505 ot +si0)”

3.17)

where —7n < k, <, and s, = sin (x,). In the continuum limit (3.17) acquires contribu-

tions from the 3* regions of the Brillouin zone (see Fig. | for a two-dimensional example):
K, = e n+ap,, =0 +1; i=1..,3"

lim a73S(n) = ¥ (= 1)""Sg(x,), (3.18)

a—0 7

Expanding (3.17) and merging together contributions from & = +1, gives
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X,
L/ Y 3
3 () G zl
0 0 £

Fig. 1. Location of the fermionic modes which are important in the continuum limit of the two-dimensional
propagator (cf. Eq. (3.17))

where we have defined

"
X n

an*,n* =0,
B {—an", gt =1 7" =01

and Sg(x) is the continuum Feynman propagator:

m+iy
m>+p*

d4p ipx
SK(x) = J(2n)4 e (3.19)
Equation (3.18) gives directly contributions of additional species to the quark propagator.
Important point for the sequel is that Sg(an) is a smooth function of », while the lattice
propagator S(n) is not. Characteristic phase factors (— 1) have been factored out explicitly
in (3.18) and will be ased later on to identify various modes.
Consider now, as an example, a correlation function in the naive pseudoscalar channel.
The Grassmann integrations give

P p(n)BO) w(0)> = Tr [¥°S(n, 0°S(0, m)] = K(n). (3.20)
Zero momentum channel is projected out by summing Eq. (3.20) over n
Mps(n) =Y Tr [¥’S(n)y°S(—n)). 3.21)

We substitute (3.18) into (3.21) and look for the contributions which are important in the
continuum limit. Clearly, Mpq has a structure:

Mes(n) = Aps(n)+ Bes(n) - (= D)™ (3.22)

It is crucial to realize that only certain pairs of modes survive summation over n in
the @ — 0 limit. Due to the smoothness of Sg{an), only diagonal terms would be free from
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the oscillating factors (— 1)" and would not vanish when a — 0. In the case of the amplitude
B, products differing only by the (—1)" would contribute. Next, we observe that

Se(x,) = I,Se(It,  n®even,
7 Se(x,)y° = [L,Se(x)IY, 0’ odd, (3.23)

with x, and I', defined in (3.18) and (3.13), respectively. Using this relation to eliminate
partly reflected arguments in Sy, we obtain finally

Mag(n) = M,s(n,)+(— 1Y*M (n,), (3.24)
where
Mg(n) =Y Tr [FSan)[ Se(—an)] (3.25)

have well defined quantum numbers in the center of mass frame. We see that a pseudo-
scalar and scalar states couple to the naively defined pseudoscalar channel.

Other channels are separated if we insist on different pairing of modes in (3.21).
This is achieved by summing over n with suitable phase factors. If we define

Myz(n) = T [(= D)™+ (=™ +(=1)"]K(n),
Mpy(n) = 3 [(= D" ™ +(= 1"+ (= D™ " IK(n),
My(n) = 3, (= D™""""K(n), (3.26)

then one finds contributions listed in Table I (see Appendix for more detailed derivation).
This concludes the quantum number analysis of the naive approach. Since the naive and
staggered formulations are basically related by the unitary transformation (3.4), resuits
in the staggered formulation are the same [37] but require longer derivation. In exchange
for this effort one is able to discuss partly the flavour content of the theory.

TABLE 1
Quantum number content of mesonic channels in the naive and staggered fermion formulations!
Amplitude Phase factor % Operator i— i - St?te
. 4 | B | 4 | B | A | B
- ] | |

PS |1 A AN B A A %
VT [ (=D (=D (=) oyt kR L 1= 1+ e | B
PV (_l)n,,~w:,,+(_1),;,,«+p:,,IL(_,l)nywzs yiys 1 iy * — I - Y
S (—=etnyta: { yop* fi 1 ( o+ § o+t 7 g S

! The 7 and g states have different flavour content from those coupling to the pseudoscalar and vector
channels.
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B, Staggered mesons

In the g-representation, the Dirac structure of required operators is obvious. Consider
the following currents {32, 37]

Jap(N) = q(N)I' ® Tpq(N), (3.27)

with I", given in Table I. In principle, the flavour content () can be chosen independently.
In general case, however, resulting carrents are nonlocal in the y representation. Therefore,
numerical study of these channels is subject to larger statistical errors — hence, more time
consuming. General currents (3.27) have been used to study e.g., restoration of the full
SU(f) x SU(f) chiral symmetry {37, 30}. In the following, we will restrict the analysis to
hadronic states which saturate the Green functions of the local (in y representation) currents.
This requires Ty = I'%.
According to the discussion in Chapter 2 we expect (for small Ma)
MAN) = 3 <IN A(0))
N

— KP(A)[e_ZaMP(A)Nl+e"aMP(A)(T_2Nr)]+”-, (328)
where dots denote contribution from higher recurrences. On the other hand, correlations
of the y fields are easier to compute numerically; therefore, they are more widely used.
With the aid of transformations (3.12) and (3.14) one can relate M (N,) to the four basic

Green functions measured in the Monte Carlo experiment [32, 37, 64]. They are given by
Egs (3.21) and (3.26) with K(n) simply related to the propagator of a y field:

3
K(n) = 4 bZ_l [T 0)),1%. 3.29

Note that the correlations (3.26) are defined for all lattice times, while those in Eq. (3.28)
are given only for even time separations. Total amount of information contained in both
sets of propagators is the same, since we have twice as many functions (3.28), while the
correlations (3.28) receive contributions from two channels each. Assuming (3.28), rela-
tions between the Green functions (3.28) and (3.26) can be inverted, giving finally

Mgug(n,) = E,(n),
My(n) = Ey(n,)+Eg(n) (—1)",
Mpy(n,) = Eg(n,)+Ejy,(n) (= 1),
My(n,) = Ez(n)+Egn)(-1)", (3.30)
where
E,(n) = R[e™ Mo e MoT7m |

in close agreement with the naive analysis (Table I). Formulas (3.30) are widely used in the
literature in order to parametrize MC data and to extract masses of lightest hadrons
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[37, 62-66]. Equations (3.30) differ from the expressions derived in Ref. {64] by terms
vanishing in the a — 0 limit. However, corrections derived in [64] do not exhaust all the
terms of the order O(a?). For example, the O(a?) opposite parity contributions to (3.28)
were not included. Continuum parity is not conserved on the lattice (y° term in (3.15)).

" Therefore we expect an O(a?) contribution from the opposite parity states to (3.28). Also,
the group theoretical analysis of Ref. [36] does not confirm any extra terms in (3.30). On
the other hand, mixing between the opposite parity states in (3.30) is the genuine property
of the staggered formulation reflecting the fact that only even shifts on the K-S lattice
represent space translations.

C. Staggered baryons

For baryons, the situation is more complicated [40, 32, 36]. Even in the continuum,
baryonic propagators have richer structure than the mesonic ones. Baryons are essentially
different from their antiparticles. In particular, the relative parity of a baryon and an anti-
baryon is —I. Therefore, in a given parity channel, one encounters a baryon and an anti-
particle of its opposite parity partner. They can be easily distinguished since they propagate
forwards and backwards in time, respectively. As a consequence, baryon propagator is not
symmetric on a periodic lattice. For example, in a proton channel (1/2)* state dominates
at small n,, while a N(1/2)~ resonance determines the slope at small 7—n, In addition,
one has mixing of various parity states peculiar to Kogut-Susskind fermions.

The only local baryonic operator reads [32, 36, 40]:

1
v = 3 e E r?ry*ef*(N) [4,(N) (CT, ® CT*)ay(N)], (3.31)
n
where C is the charge conjugation matrix: CyﬂC* = —yf:. In terms of the y fields, ™
is given by

P“(N) = £ Y (= DVp(2N +1),
n

FUN) =+ LT (—D"PRN +1), (3.32)
1
with
1
w(m) = 5 et (M ndn)- (3.32a)

Define the field »% with specific parity

YEN) = 3 (11y)™ p* (V). (3.33)
Correlation functions in a given parity channel
BoN) = T <F% (NYE0) (3.34)

N.,2,a



532

are expected to have simple behaviour when a — 0. According to the earlier discussion
we parametrize B as

By(N) = K e MMy K e MralT=2W0y | (3.35)

where we have abbreviated M, = My,,.. After some algebra, one obtains

B.(N,) = 2B(2N,)+ BQ2N,+ 1)+ B(2N,—1). (3.36)
B(n,) is given by
B(n,) = »Z gijkgi'j’k’<ii(n)Zj(n)Zk(n)Xi'(O)Xj’(O)Zk'(O)> (3.37)
it

and is directly measured in lattice Monte Carlo. Assuming the form (3.35) for B,(N),
one can solve Eq. (3.36) for B(n,). This gives

B(n) = R, [e™ ™™ (= 1)t M=)
+R_[(__1)ute-—aM,n;+e—aM_(T——nA:}. (338)

Equations (3.30) and (3.38) will be used in Chapter 4 to extract masses from our Monte
Carlo data.

4. The Alternate Direction Implicit method in four dimensions

As was discussed in Chapter 2, computation of hadronic spectrum requires a lot of
CPU time even in the quenched approximation. Most of the time is spent on the measure-
ments of hadronic propagators. One constructs the latter from a quark propagator which
is nothing but the inverse of a fermionic matrix defining the action of matter fields (cf.
(2.2) and (2.7)). Elements of the inverse matrix are nonlocal functionals of a gauge field.
Modifications of M~-'[U] resulting from a local change of a single link variable cannot
be calculated just in a few operations, as is the case for the pure gauge Boltzmann factor.
On the other hand, computer effort required for the measurement of M-'[U] is smaller
by orders of magnitude from that needed in the unquenched approximation. In the latter
case one must know det (M) (or equivalently M-1) to decide on every update of each link
variable. Therefore, fast algorithms for inversion of the large sparse systems are in demand
and study of new methods continues [20, 21, 42]. The most popular is the conjugate gradients
technique of Hestens and Stiefel [43].

We will present results of the application of the generalization of the Alternate Direc-
tions Implicit (ADI) method to the problem [44, 45, 46). This algorithm gives, in our
opinion, more physical insight into the very process of inversion. At the same time it is
particularly suited for vector computers.

The method is the following. Consider the system of linear equations

MgX = B, “.1)



533

with the right hand side describing a unit source?. Assume that the matrix My can be
decomposed into a sum

My =2Z,+2,. 4.2)
Then, one can rewrite above equations in the form
r+2)X = (r—2,)X+B,
(r+Z)X = (r—Z)X+B, 4.3)
with the auxiliary relaxation parameter r. Define the iterative procedure X = B
X®TUD = (14 2) " [(r—Z)X™ + B],
XY = 4 2) " (r=Z XD 4 B]. (4.4)

For suitable r, X ¥ converges to the solution X = My 'B. We work with Kogut-Susskind
fermions in four dimensions (Mg = iMy,, cf. (3.9)). In this case, the most symmetric and
optimal splitting of My reads:

2%, = ima-S,-S,, 2, =ima—-S,—Sq,
(isu)n-n‘ = aﬂ(”) [U“(n)én*-y,n’ - Uz(n,)én*-u,n']' (45)

Matrices r+ZX;, i = 1, 2, describe two-dimensional propagation of a fermion in a back-
ground field. They correspond to the set of decoupled two-dimensional theories. We will
refer to this property as “dimensional reduction”: full ADI iteration is basically composed
of two inversions of the fermionic matrices restricted to the two (alternating in their orienta-
tions) planes. These are completely decoupled procedures and can be easily vectorized.
Also a simple and rather flexible segmentation of the algorithm is possible. In the most
extreme case, only one plane of the link and fermionic variables must reside in the fast
memory at each stage of the computations.

The rate of convergence of (4.4) depends on the value of . We have fixed r by minimiz-
ing the spectral radius (i.c. the maximal eigenvalue) of the error propagating matrix

E=(r+Z) ' (r=Z) (r+Z)"(r=2y) (4.6)

for free fermions. In this case, r+ X, and r+ X, commute and the problem reduces to finding
the minimum of
2

, 4.7

r—ag
max

rt+o

o being the eigenvalue of X, One obtains r, = i v/ (711(1)2-%-/1,2,; with /n., = 24/2. It turns
out that the optimal value of r for the interacting case is smaller than that by ca 30%.

% In a recent paper Parisi and Billoire suggested using more complicated RHS for reduction of the
statistical noise [47).
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This reduction may come from the decrease of the effective range of the eigenvalues resulting
from the disordering effect of the gauge variables.

Other choices of r are of course possible. In particular, Wachspress and Jordan have
derived separately an iteration dependent set of relaxation parameters {r'™} which minimize
the spectral radius of a product EM for some fixed number of iterations M. In some cases
this procedure speeds up the convergence remarkably. Unfortunately, both theories apply
only to the positive definite and commuting matrices and cannot be easily extended to our
case. One could invert MEMy instead of My, fulfilling at least one of the requirements.
Resulting algorithm, however, does not satisfy dimensional reduction and becomes messy.

The ADI approach is useful ,only when one can simply invert matrices r+%,. They
describe two-dimensional propagation of a fermion in a given background field {U}.
Hence, there is an exciting possibility that r+X; could be inverted analytically. Solution
of this problem in the U(1) case, in the continuum is known [48]. Recently Rothe has also
found corresponding expression in the nonabelian theory [49]. No exact solution on a lattice
is known at the moment, therefore, we recede to the numerical approach. Z;+r are sparse
matrices corresponding to the nearest neighbours interaction on the two-dimensional torus
(periodic boundary conditions are used). For an L* lattice X;+r are built from 3L x 3L
blocks describing one-dimensional propagation of a coloured quark. In terms of these
blocks, X; are modified tri-diagonal matrices — modification coming from periodic bound-
ary conditions. We have adapted the recursive Thomas algorithm for solving tri-diagonal
systemis, and used it to invert r+ Z; exactly. Of course, other methods could be also applied
here. Choice of the particular procedure depends on the available resources. One alternative
possibility would be the ADI itself. As was discussed carlier, the optimal relaxation param-
eter is large and imaginary Im ro ~ 1.7. Therefore, the effective mass for the internal
ADI inversions would be large, and corresponding spectral radius is estimated to be
0im ~ 0.07. Hence, very few internal iterations would be needed to secure a sufficient accu-
Tacy.

Every attempt of inverting M faces a problem of the critical slowing down when the
quark mass ma becomes small. The eigenvalues of My have the form v, = ima+1,, with
A, varying over the symmetric interval on the real axis. Therefore, it is the quark mass
which screens v, from being zero. Consequently the rate of convergence of any inversion
procedure is decreasing with ma. Common approach to this difficulty is to compute physical
quantities for ma > 0, and then to extrapolate them to the interesting region ma = 0.
For this reason, performance of the method for small ma is the crucial check of every
procedure.

Our technique was tested on a small (4% x 8) lattice. Fig. 2 shows the error 4, defined
to be

AN) = [MeX™ ~B|/v/N;, Ng=3TxL? (4.8)

as a function of the number of iterations N. Two observations are evident from this graph:
1) the algorithm converges for small quark masses (ma = 0.01) though the critical slowing
down is substantial, and 2) it is more effective to reach small quark mass through a series
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Fig. 2. Dependence of the error of the ADI method (cf. Eq. (4.8)) on the number of iterations, for various
values of the quark mass. Dashed line — ma = 0.01, X(® = B, Solid line — X®(m;4+ 1) = XV(my)

of converging iterations at higher (progressively decreasing) values of ma (solid line),
than by performing many iterations starting from X{0) = B at small ma. In the first
approach, one generates' results for the intermediate masses and prepares better starting
point for the next ma.

Further increase of the overall efficiency can be achieved by perturbing X(m) in s while
moving to the next value of m. Namely, after converging at given quark mass m, to, say,
X(m,), we can use the information contained in all earlier results — X(m,), j <i—to
extrapolate X(m;) to m;,,. This procedure improves the starting point for the next mass®.
With some knowiedge of the structure of the singularity at ma = 0, one can also use better
dependent and independent variables for the extrapolation. With all these tricks we have
reached, with the same number of iterations, ten times smaller error at the last value of ma.

We have also looked at the error 4 defined as

max?*

A, (N) = max (MeX® = B),l,

and for the relative errors corresponding to 4 and 4,,,,. Comparison of 4 and 4, tells
us*how uniform in space is the inversion. Typically, 4 and 4,,,, differed by one order of
magnitude. All four eirors were falling exponentially with the same slopes.

Fig. 3 presents the spectral radius as extracted from our data, and the one given by the
formula (4.7), with the optimal value for r = r,. They agree nicely, for a range of quark
masses, provided we choose i,,, = 1.7 rather than the free value 2.8. As expected, the
method would diverge for ma = 0. For small ma, critical stowing down becomes a problem
for ADI and for other approaches. In this situation the pre-conditioning of My proposed
in Refs [21, 28] is very promising. The idea of Batrouni et al. is rather general and it would
be very interesting to couple it with the ADI approach.

In Fig. 4 we show the comparison of the convergence rates between conjugate gra-
dients and ADI. The conjugate gradient data come from the work of the Wuppertal group

3 This trick was suggested to me by Ph. De Forcrand.
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Fig. 3. The spectral radius of the errcr propagating matrix (4.6). Solid line — exact expression in the free
case (cf. Eq. (4.7)). Black points — interacting case, ‘“data” are obtained from the ADI test run
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Fig. 4. The error 4 as a function of the number of iterations. Solid line — ADI; dashed line — conjugate
gradients (CG)

[29, 52-54]. The CG algorithm converges to the exact answer after at most n iterations,
n being size of the matrix. This property is only of the academic interest here, since our
problems need n ~ 108, To reach satisfactory precision (4 ~ 10-%), ADI required half
as many iterations as CG. Similar figure was obtained from the comparison with the data
published by Barkai et al. in Ref. [55].

Our algorithm is prepared for effective optimization only on large machines. With
~1 MWord of memory*, much of data independent of the quark propagator, can be pre-
computed once for all iterations, considerably increasing the speed of the inversion. For

“ Results presented here were obtained on the CYBER 205 computer in Bochum which has
374 KWords of memory available to the user.
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this reason, we have compared here only the rate of convergence of both methods. This
parameter is an implementation independent characteristic of a given method. Present
version of the ADI program requires O(.4">'*) arithmetic operations per iteration. Again,
with larger memory available this can be reduced to O(A4"), A being the number of lattice
sities. ’

Taking into account other properties (physical appeal of the dimensional 1eduction,
easy vectorization and flexible segmentation), we feel that ADI is a useful alternative to
conjugate gradients and other methods of inversion of the large sparse matrices. The follow-
ing discussion of our results on the quenched QCD demonstrates the capability of this
approach.

5. Results

We used the ADI method to study the lattice QCD in the quenched approximation.
Preliminary results of this calculation were reported elsewhere [45, 46]. The simulation
was done on the 16 x 8* lattice at § = 6.0 using the CYBER 205 computer in Bochum.
With Kogut-Susskind fermions we succeeded in packing the whole problem into 375
KWord memory of the Bochum machine, partly at the expense of the speed of the algorithm.
The SU(3) algebra was performed using the 8-bit coding technique of Bunk et al. [52].
This is a very effective, space saving method which requires only one CDC word to store
an SU(3) matrix. Twelve uncorrelated gauge configurations were used for averaging fer-
mionic observables. The configurations were prepared starting with twelve larger (28 x 163)
well thermalized configurations, generated by A. Konig for other purposes [53]. Smaller
configurations were cut out from large lattice and then, imposing periodic boundary condi-
tions on 16 x 82 lattice, we ran 400 sweeps in order to thermalize the local heating at the
boundaries. Thermalization was performed with the aid of the RAUPE program written
in Wuppertal by Schilling et al. [54).

In principle, ADI works for arbitrary small ma > 0. Spectral radius, as given by Eq.
(4.7), (with r = r,) is smaller than 1 for ma > 0. Aside from the critical slowing down,
however, it is not recommended to go to the too small bare mass of a quark on a finite
lattice. With decreasing ma, the finite size effects become more pronounced. This bias is
strongest in the Goldstone boson channel. Correlation length tends to infinity when ma — 0
and the influence of the boundaries grows accordingly. Therefore we have restricted quark
masses to ma = 0.16, 0.09, 0.04 and 0.0225. Nevertheless, during the tests, our method
performed satisfactorily also for smaller mass (= 0.01, cf. Fig. 1). Barkai, Moriarty and
Rebbi have achieved smallest, up to date, value of ma = 0.01 on a 32x 16 lattice [62].
However, recent study of a finite size effects in the SU(2) theory conducted by the Saclay
group indicates that even a 32x 16> lattice may not warrant ma = 0.0l [56}°.

According to the discussion in Chapter 4, we were decreasing quark mass successively,
starting from the largest value of 0.16. For every ma we did enough iterations to reach

5 The quenched QCD on a lattice up to 48 x 24 and at the quark masses down to 0.005, is being
studied now by the Los Alamos group [57].
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the accuracy 4 ~ 10-° (cf. (4.8)) which was sufficient for the present purposes. This required
64 iterations for ma = 0.016 changed gradually to 200 at ma = 0.0225.

We would like to emphasize that all the results presented here are considered 1) as an
illustration of the applicability of the ADI method, and 2) as an independent test of the
conclusions of other authors obtained with different techniques. Our data are necessarily
biased by the finite size effects and by large uncertainties in the extrapolation from
ma = 0.0225. However, before we move to larger lattices (and hence larger computers),
we felt it is necessary to check an overall performance of the new method on a smaller
example.

A. Chiral properties of the theory

There are two ways of realizing continuous symmetries in Nature. In the Wigner
mode, the physical states form irreducible representations of the symmetry group. On the
other hand, the Goldstone-Nambu mode occurs when the ground state breaks spontane-
ously the symmetry of the interactions. Wigner multiplets do not occur in this case. Instead,
massless Goldstone bosons appear for every broken direction in the group space. The latter
scenario has been suspected for a long time to occur in strong interactions [58, 59, 60].
It was suggested by the lack of the degenerate in mass multiplets with opposite parity,
and by the existence of the unusually light octet of pseudoscalar mesons. The symmetry
in question is the SU(3),.¢ x SU(3),;z, chiral symmetry of the flavour transformations.
It is expected to be broken down to the diagonal SU(3),..,,; Which shows up in the Wigner
mode. Broken axial generators call for the massless pseudoscalar Goldstone bosons. The
order parameter, which signals spontaneous breaking, is the quark condensate {yy).

As was discussed in Chapter 2, Kogut-Susskind formulation of lattice fermions has
enough remainders of the chiral symmetry to make the study of its spontaneous breaking
feasible. Two generators of the remnant U(1) x U(l) symmetry are [32]

V=1®1 and A =7y;® (s, (5.1

where V corresponds to the continuum U(1)y, and A generates the only part of the SU(4),
which remains on a lattice. It is not the continuum U(!),, since 4 has a nontrivial flavour
structure. It was shown in the strong coupling limit that {py) ~ (yx) is non zero for
ma — 0, and hence that the strong coupling vacuum breaks the invariance generated
by 4. A mass of the flavour non-singlet pseudoscalar state was also shown to vanish in the
chiral limit [32].

Nonperturbative study in the continuum limit can be done only with the aid of lattice
Monte Carlo and is the subject of rather vigorous activity [61-66]. We begin with the
quark condensate. For two light flavours, (py) is given by

3
a*(Pyd = 3> =3 Y. £Ga(0,0, [UDDr, (5.2)
a=1
where the propagator of a y field is obtained from (2.7) and (3.9)
Gub(ma ”) = (M;l[U]):f; (5'3)
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Our results for {ypy) are shown in Fig. 5 together with the quadratic extrapolation towards
ma = 0. We obtain for the intercept,

@*CPPlma=o0 = 0.05(1), (54

indicating spontaneous breaking of the chiral symmetry. This number and our results for
finite quark masses agree with those quoted by other authors [62-64]. Of course, the extra-
polation to ma = 0 introduces a systematic error which can be only crudely estimated.
We did that by removing the last data point from the fit and comparing the resulting inter-
cepts. The difference was the same as the uncertainty caused by the propagation of the
statistical errors quoted in (5.4).

05 .0 U5
m Q

Fig. 5. The quark condensate, as measured for ma = 0.016, 0.09, 0.04 and 0.0225. The line shows
the quadratic fit and the extrapolation to ma = 0.0

We move now to the Goldstone boson sector. Integrated pseudoscalar propagator
(3.21) receives contributions only from the pion and its recurrences. Our results are shown
in Fig. 6 for a range of quark masses. Indeed, no oscillatory component, characteristic
of the (—1)™ factors in Egs (3.30), is seen. This demonstrates that there is no 0* ™ partner
of a pion, in accord with the nonrelativistic quark model. Any exotic state, which could
contribute to this channel from pure symmetry considerations, is ruled out. This agrees
with earlier results [62-65].

We have fitted Mp(n,) with the formula (3.30) including one excited state in a pion
channel. All 16 points in n, were used. We did not symmetrize with respect to n, = TJ2.
Fits were repeated removing one, two or three points closest to the source, in order to check
stability of resulting patameters. As usual, if one removes too many small n, points, the fit
becomes unconstraint. Keeping small #, data points does not meet the large », requirement
and results in higher y2. One looks then for the intermediate value of the cut-off ™ which
fulfills all three requirements: good fit, small errors, and reasonable stability. Fits were
done with the aid of the CERN MINUIT program and errors on masses correspond to the
change of y2 by 1. :

Statistical errors grow larger with decreasing mass of a quark. For heavy quarks,
effect of the gauge field is small compared to the rest energy of the constituents. In the
chiral limit, interaction energy dominates and propagators are more sensitive to the fluctua-
tions of the link variables. Consequently, all fits become more difficult for smaller ma.
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Fig. 6. The pseudoscalar propagator Mps(s;) measured for four values of the quark mass ma
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Fig. 7. The mass of a pseudoscalar state versus y/ma. The linear fit is described in the text

For the pseudoscalar propagator, a signal to noise ratio is high since there are no can-
cellations in the MC prescription for My (cf. Egs (3.21) and (3.29)). Our two state (four
parameters) fits were stable for »™" =0, 1, 2, 3 and for all quark masses. Pion
mass is shown in Fig. 7 together with the fit linear in ,/ma. The fit nicely extrapolates to zero
as it should for the Goldstone boson. The linear dependence on \/ma is expected from the



current algebra. The Gell-Mann-Oakes-Renner relation reads:

mifl = m{Py), (5.5)

and together with the data from Fig. 7 gives

© = \V2a(Pydif, = 2.46(5). (5.6)

This number agrees with the data of Barkai et al. and of other authors [63, 65]. Eqs (5.4)
and (5.6) will be used shortly to determine the pion coupling constant f,.

The signal for n" is also clear, the mass is stable, within larger errors, for ™" < 3.
The one-state fit to My gives worse x> and overestimates the pion mass. Only with a n’
included is the behaviour of m, consistent with the relation (5.5).

Vanishing of a pion mass in the chiral limit is a consequence of the Goldstone theorem
applied to the relict U(1) symmetry of K-S fermions. Once a non-zero value of (ypp)
has been measured, a massless state in the 5 ® ¢5 channel has to occur. Less obvious is the
problem of restoration and subsequent spontaneous breakdown of the remaining part
of the SU(4), group. This requires study of the more general currents (3.27) which lead
to the nonlocal operators in the y representation and will not be studied here. For the SU(2)
case, this question was addressed by Billoire et al. {37] who presented a numerical evidence
tor the onset of the degen:racy of non-local would-be Goldstone bosons with the one
in the ys ® t5 channel. Similar study for the SU(3) gauge group is being conducted by the
Los Alamos group [57].

Coming back to the Gell-Mann-Oakes-Renner relation, we note that it is expected
to work only for small ma. On the other hand, Fig. 7 and similar results of others, show
that it is valid in much wider range of quark mass. From these two facts we conclude that
fZ must have the same dependence on ma as {py). Otherwise, the graph in Fig. 7 would
not be linear. Indeed, very precise recent measurements of the Saclay group [56] show that
the pion mass is not proportional to /ma for very small quark mass ma ~ 0.01. This
indicates that f? and (yy)> may differ at small ma. For larger ma, however, the linear
regime remains [50].

B. A rho mass and the lattice scale

Vector-tensor propagator was measured according to the expression (3.26a). It is more
sensitive to statistical fluctuations due to the cancellations implied by this formula. Physi-
cally, correlation length (¢y; ~ 1/m,a) in this channel is smaller, and thus the propagator
falls more rapidly in n, what results in bigger relative errors. Our data show clearly the
oscillatory behaviour indicating that both parity partners couple to this channel. Two-
-state fit (3.30b) was stable but within larger than for My errors, and only for 2™ = 2.3,
The rho mass and its lincar extrapolation are shown in Fig. 8 together with masses of
other states,
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Fig. 8. Masses of the lowest lying hadrons. Lines represent the linear or quadratic fits to the ma dependence

Physical values of the pion and rho masses were used to fix the quark mass and the
lattice constant a. We obtain

m = (m,+my)/2 = 3.4 MeV, (5.7a)
a-! = 0.93 GeV. (5.7b)

The main uncertainty of these estimates comes from poor determination of the rho mass
and, consequently, from the freedom of the extrapolation. Change of m, within one stand-
ard deviation gives:

3.1 MeV < m < 4.2 MeV, (5.8a)
0.91 GeV < a! < 1.05 GeV. (5.8b)

Our numbers (5.7) are consistent with the results of Gilchrist et al. {64] and Bowler et al.
[65] obtained on the lattice of the same size. However, our a-! is smaller than the one
obtained by Baikai et al. [62]. Technically, the difference comes from our higher value
of the tho mass measured in lattice units. This is what one would expect from finite size
effectsS. '

6 No agreement has been reached yet on the precise value of the lattice scale a. Various authors
quote a~! in the range (0.9-2.1) GeV [62-66]. Larger lattices favour 1.5 < a~! < 2.0.
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Having fixed lattice scale, we can determine now other quantities in physical units.
Renormalization group invariant value of the quark condensate is given by [67, 64]:

3
<{pw>inv = “4/11<¢‘I)>a A = e (5.9)

Our result (5.4) gives for the contribution from one flavour
Ciu) = 0.5(Pydiy, = [215(15) MeV]?, (5.10)

what compares nicely wih the experimental value 225425 MeV [68]".
From the slope (5.6) and from a®(yy)> we obtain for the pion coupling constant

fo = 120(10) MeV  (exp: 130 MeV), (5.11)

what again compares favourably with experiment. Our errors do not include uncertainty
in the determination of ¢~' which would add 109 to the relative error of all presented
here results.

C. Other masses

Figure 8 summarizes our results on the spectrum of low-lying hadrons. Propagators
were measured and analysed according to the Eqs (3.26b, ¢, 3.37) and (3.30c, d, 3.38).
Quality of fits was similar to the vector case. Good y? was achieved, although fits were
stable only within large errors and in the limited range of ™" and ma. The scalar and
pseudovector amplitudes also show oscillatory component as expected from Eqs (3.30).
Hence, the 1 and ¢ states contribute to Mg and M,y. Their masses are consistent with
the ones extracted from the pseudoscalar and vector channels. This is encouraging and
agrees with the observations of other authors but it is too early to draw definite conclusions
about the restoration of the SU(4) symmetry.

In the three-quark channel, we have measured only the correlation between the local
operators (3.32a) which is dominated by a proton and an N(1/2-) resonance (3.38). In
addition to the oscillatory component, baryonic propagator shows a regular change of
sign, coming from the contribution of the antiparticles. This was clearly seen.

Baryonic correlation seems to be less fluctuating with the gauge configurations. This
may indicate that we are still in the static quark regime, where the large mass of three
constituents governs mainly the time decay of the correlation function. The same conclusion
is also indicated by the large ratio of the proton to rho masses (see Fig. 9) which is the
common disease of simulations with heavy quarks [41, 51, 63, 66]. For larger lattices
(ma = 0.01) this number goes down to 1.4 [62] and the remaining discrepancy (experi-
mentally nmi,/m, = 1.2) can be blamed on the quenched approximation. Our number
is consistent with the result of the Edinburgh group obtained on a lattice of the same
size [5i].

7 We were unable to get this number from the raw data and the scale a quoted in Ref. [62].
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Fig. 9. The ratio of a proton to rho masses measured for ma = 0.016, 0.09, 0.04 and 0.0225

With the lattice scale determined in (5.7), the physical masses of non-strange hadrons
read:

my, = 1070 (100) MeV (1270 MeV),
mg = 930(100) MeV (1230 MeV),
ms = 740 (60) MeV (980 MeV),
m, = 1360 (60) MeV (940 MeV)

and 109 of the relative uncertainty in a~! should be added to the above errors. Clearly,
there is a room for improvement. We would like to emphasize, however, that the main
difficulty in extracting physical masses in the chiral limit is caused by rather weakly con-
strained extrapolation procedure towards ma = 0. Our “raw” data obtained at finite
ma are consistent with those of other authors what shows that our method of computing
quark propagators has passed the first test. Improving the quality of the extrapolation
clearly depends on the available computing resources and is left for the future.

We move now to strange particles. Using kaon mass as an input, we obtain from the
pseudoscalar propagator

m, = 90 MeV.
Then, the masses of K* and ¢ are predicted to be:

my. = 890 MeV (892 MeV),

m, = 1050 MeV (1070 MeV).

)

This agreement with the experiment is not surprising, since the vector propagator was
earlier used to fix a lattice constant. Therefore, we conclude only that the dependence of the
vector meson mass on the quark mass is correctly reproduced by lattice simulation,

D. fK/.fn

Recently, Billoire et al. determined the ratio ¢ = fi/f, using additional information
contained in the residue R of the pseudoscalar propagator [56]. They did it for a SU(2)
theory. Our data allow us to repeat their analysis for the SU(3) case.
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From the sum rule
Gaa(03 0) = ma Z IGab(O’ n)lz (512)
nb
and from the Gell-Mann-Oakes-Renner relation (5.5), one obtains

2
(afp)” = M Re(ma), (5.13)

(mpa)
where P denotes a pseudoscalar at the quark mass ma, and Ry is the residue of the pseudo-
scalar propagator at the bound state mass mpa. According to the definition of the coupling
constant fp, contributions from the higher excitations have been dropped from the RHS
of (5.13). From (5.13), one can direc:dy determine dependence of f, on the quark mass.

Our data on Ry(ma) and mpa(ma) lead to the following linear parametrization:

2a® = A+Bma = 0.0024 (6)+0.084 (5) ma. (5.14)

It is clear from (5.14) that f, = f,(0) is poorly determined by the data. Therefore it is not
advisable to use (5.13) directly to calculate the ratio £. Instead, one uses the relation

mia® = w’*ma, o = 2.46 (%), (5.15)

which we have found to work nicely over a large range of the quark mass (cf. Fig. 7
and Eq. (5.6.)). Eliminating ma one obtains for the ratio

2 2 2
mga B m
A+B—= 1+ — —
. 0 w? f? 5.16)
&= m2a® B m?’ >

In the last equality we have eliminated the troublesome parameter 4 by the physical value
of the f; = fp(0) = Aa2. Inserting our results for the slopes B and w? gives

& = 1.16(2)

to be compared with the experimental value 1.22(1) [68]. Billoire et al. obtain 1.24(6)
from their SU(2) data at f = 2.5. This nice result was achieved by trading two poorly
defined parameters 4 and a for the physical value of f, and the better measured slope w.

6. Summary and conclusions

Propagator of a quark in arbitrary external field is the basic ingredient in the Monte
Carlo simulations of lattice gauge theories with fermions. In quenched and unquenched
formulations a quark propagator is the building block of all fermionic observables. It is
also required during the generation of the gauge field configurations sensitive to dynamical
fermions.
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We have computed the spectrum of the lowest lying hadrons in quenched quantum
chromodynamics applying a novel technique to obtain quark propagators. The Kogut-
-Susskind formulation of lattice fermions was used. We have also presented the straight-
forward construction of various channels in the naive formulation. It is much simpler and
gives the same results as staggered appro‘ach. It also shows clearly the interplay between
additional modes in producing the final composition of various channels.

Our algorithm is based on the Alternate Direction Implicit method of inversion of the
large sparse matrices. It has a property of dimensional reduction — four-dimensional
propagation of a quark is built from a series of, partly decoupled, propagations in two-
-dimensional worlds. Apart from the physical appeal and (unexplored yet) possibility of
analytical approach, this technique is well suited for parallel processing used commonly
for solving problems of this size. The method is converging for small mass of a quark
(ma = 0.01) and is found to be a useful alternative to the generally applied conjugate
gradient algorithm.

The aim of this work is twofold. We wanted to test a new approach in the realistic
circumstances which would expose our algorithm to all difficulties of the “real world”,
i.e. small ma, large-size problem, and fluctuating quantum background field. Secondly,
our data can serve as an independent test of the results obtained by other authors.

Altogether results discussed in the previous chapter are rather satisfactory. Chiral
properties of the theory come out consistently and agree with the findings of other authors.
Statistical errors in the Goldstone boson channel are reasonably small, eliminating at least
one uncertainty in the extrapolation towards the chiral limit. The problem of systematic
errors introduced by the extrapolation is, of course, open. Its ultimate solution can be
achieved only by performing lattice Monte Carlo at the physical value of the quark mass,
which is still three times smaller than ma attainable in recent simulations. From our data,
we estimate ma,, = 0.0037(6). Apart from this difficulty, which is common to all lattice
computations, our raw data are consistent with those of other authors at overlapping
values of quark mass. Dependence on the ma in the range between non-strange and strange
quarks is also correct. The latter observation applies not only to the slope, but also to the
residue of the pseudoscalar propagator as confirmed by the reasonable result for f¢/f,.
To our knowledge, this number was extracted earlier only from the SU(2) data.

Other mesonic propagators have larger statistical errors, and hence the analysis of
these channels provides only qualitative information. Nevertheless, the general pattern
of various parity mixings is clearly seen and supplies additional tests of the present approach.
Similar conclusion follows also from the study of the baryonic channel. Peculiar to staggered
fermions, structure of the propagator is evident in the data. Ratio of the proton and rho
masses is consistent with data of other groups, and higher than the experimental value.

One must remember, however, that any comparison with the experiment is subject
to the limitations of the quenched approximation. For this reason, we have concentrated
rather on the consistency with other authors. To conclude, we think that the ADI technique
has passed its first nontrivial trial and can be readily applied to yet larger scale computa-
tions of the hadronic properties.
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APPENDIX

We shall derive here the quantum number content of the vector-tensor, pseudo-
vector and the scalar propagators which were defined in Eqs (3.26).

Consider, for simplicity, the contribution from one polarisation (i = 1, 2, 3) to the
vector propagator (3.26a)

Myr(n) = Z (= 1D"K(n) = 3 (=)™ Tr {y*S(npy*S(~m)} (A1)

g
n

with 7’ = 0 for u # i and n{® = 1. Using (3.18) we obtain

Myp =Y ¥ (=)0 T {3381 (x,)y° Se(— X)) (A2)

wom
Myp = Ai/r(nr) +(=1)"Byr(n,).
Only terms without the oscillating factors survive in the continuum limit, hence ' = n+#7®

for the Ayr, and ' = n+7+1® = n+7“*? for the By amplitude, where n$" = 1,

7 = 0. Consequently,

‘;IT = 2 Z Tr {)’SSF(xq)?SSF(‘"xq-n,(‘))}' (A3)
Pl ]
This can be further simplified with the aid of Eq. (3.23)

Ay = Y3 Te {1, Se(IIH, 4y Se(— X, o}
non

=16Y Tr {r;(i,sF(x)rgi,sF( ~x)}, (Ad)

where we have used the following property of I', (cf. the definition (3.13)):
IyLyvy = e O, &, 8) = 1. (AS)
For the B amplitude one obtains:

Byr = ZZ Tr {'ySSF(x,,)ysSF(—x,,+,,w;)}
P
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= Z Z Tl’ {ys[’,,SF(x)Ff,ysl",ﬁ,,(u)S,.-(—x)Ff,Jr,,(m}
n "
=16 Y Tr {9°T s, Sp(x)y° I yan Se(— )} (A6)
n

Note, that the y*> matrix appears in the final answers (A4) and (A6) only for even 5—y'.
Similar considerations give for the pseudovector amplitudes

Ay =16 Y Tr {Ihay®Se(x)° Ty Se(=x)}, (A7)
By =16 Y Tr {I}uoSe(Ol yumSH —x)}, (A¥)

and for the scalar propagators

AS == 16}: Tr '{FI(l:g)SF(X)r”(l:!JJSF(—.’C)}, (Ag)
Bs = 16 Y Tt {Sg(x)Se(—x)}, (A10)

where
=00 pEiks g =1, p=iks g = @
ph3 = (1, 1, 1,0)

Formulas (A4) and (A6)-(A10) justify the assignment of various operators listed in Table 1.
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