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The hydrodynamic treatment of the central region of ultrarelativistic nuclear collisions
using the bag model equation of state and assuming a smooth phase transition through
equilibrium mixed phase, is reviewed together with the calculation of transverse momen-
tum distributions of hadrons, dilepton spectra and the kinetic evolution of strangeness.
Transverse collective flow leads to distinct features in the hadron and dilepton spectra.
To study the flow, the events must be sampled according to their multiplicity, which es-
sentially fixes the initial conditions for the flow. The transverse momenta of the hadrons
show clear correlations with the equation of state. Boost invariant longitudinal expansion
leads to fast cooling of plasma and strong reduction of the average transverse momentum
of hadrons. It is argued that the highest values of transverse momenta which are reported
from the cosmic ray experiment, are not easily understood to be of thermal origin. Dilep-
ton spectra in the mass range of a few GeV may offer a possibility to get experimental infor-
mation on the initial temperature of the matter, Strangeness abundance is argued to be insen-
sitive on the initial temperature of the plasma, but may offer a way of determining the critical
temperature.

PACS numbers: 25.70.-z, 47.75. +f

1. Introduction

In these lecture notes I will discuss a hydrodynamic scenario [1, 2] for the description
of the central region of ultrarelativistic (E,, > 100 GeV/nucleon pair) nucleus-nucleus
collisions. Hydrodynamics is used to map the space-time evolution of the strongly inter-
acting matter during the collision. Once this space-time history is known, it allows, when
supplemented with a decoupling algorithm and appropriate rate equations, the calcula-
tion of measurable quantities like hadron spectra, dilepton rates etc. [3-5].

The main motivation in studying very energetic nuclear collisions is the possibility
of producing strongly interacting matter at so high energy densities, that it may appear
as quark-gluon plasma [6-8]. Theoretical support for the existence of this state of matter
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of deconfined quarks and gluons comes from the lattice QCD calculations [9], which
show a rapid increase in energy and entropy density as a function of temperature. In the
pure SU(3) gauge theory the transition from hadron gas phase to gluon matter appears
to be of first order [9] but with dynamic fermions the studies are still on a preliminary
stage and the nature of the transition is not yet clear [10-12].

In the plane of temperature T and the baryon number chemical potential uy, the
expected phase diagram of hadronic matter is shown in Fig. 1. For a first order transition,
the two phases are separated by the curve p (7, up) = py(T, pp) on which they can coexist
in equilibrium. Regions relevant for different phenomena are indicated in the figure,
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Fig. 1. Phase diagram of strongly interacting matter

perhaps with some degree of optimism in the case of nuclear collisions. At zero chemical
potential the transition temperature 7T, is estimated to be around 200 MeV both from
lattice results and from common sense arguments (e.g. considering the temperature of
pion gas at densities where pions start to overlap and fill all the space). I will come to the
other parameters when discussing the equation of state.

At first instants of collision copious production of quanta takes place. The production
mechanism of matter is badly known and it is of great importance and interest to learn
even the gross features of particle production from the coming experiments at CERN
and BNL. There are several models for the particle production either based on the phenom-
enology of hadron-hadron and hadron-nucleus collisions [13, 14] or ideas drawn from
QCD [15-19]. They all have the common feature that the colliding nuclei will not stop
and turn all their kinetic energy into matter and heat but, instead, will keep on going with
a large part of the original baryon number at a rapidity which is a couple of units less than
the original rapidity. These remains of the nuclei constitute the fragmentation regions.
Between them, in the central region (CR), the production of matter takes place in a proper
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time interval 7o, which may depend on the amount of production [16-19]. If the production
is abundant, the produced quanta are quarks, anti-quarks, and gluons which will reach
(approximate) thermal equilibrium in time 7;. The total time for formation and thermaliza-
tion of matter is expected to be of the order of 1 fm or less in the CR [20-22]. The period
of thermalization between 7, and t; can be studied in terms of kinetic theory [22, 23]
but will not be considered here, because from the point of view of the flow it can be included
in the initial conditions. From time t; on (if ever), hydrodynamics is applicable until the
expansion dilutes the matter so much that collisions cease at time 74, and the particles
decouple.

We will see later that the decoupling times are typically few tens of fm. It is clear
that due to this rather long period of final state interactions the measured distributions
do not directly represent the properties of production dynamics. Even more important,
the outcome depends on the properties of the matter during the expansion. As will be shown
later, this dependence may lead to correlations between different measurable quantities
and so offer a possibility to study the properties of the produced matter in a way which
assumes very little knowledge of the production dynamics.

At the moment we are not able to deal with the whole phase space of the produced
particles nor with arbitrary collisions. We have assumed central collisions (cylindrical
symmetry) of equal size nuclei. We also assume, that at high energies the production in
the CR is independent of rapidity. Different observers moving along the collision axis
(z-axis) with rapidities confined to CR rapidity interval, will observe identical matter
distribution. This invariance in longitudinal Lorentz boosts constraints the form of the
solutions severely [24] and makes the hydrodynamic treatment of this part of the phase
space a relatively easy task even for matter undergoing a phase transition. Formally our
calculations correspond to the limit of infinite collision energy [25].

1 will start the more detailed presentation by briefly discussing the equation of state.
The hydrodynamics with cylindrical symmetry in the transverse and Lorentz boost invari-
ance in the longitudinal direction is then presented with a few comments on the numerical
method [26, 27]. T will then describe the decoupling algorithm for the computation of ob-
servable quantities, like particle spectra, from the hydrodynamic variables. The purely
thermal densities and distributions are presented as a reference for exhibiting the effects of
collective flow. They are also useful in estimating how large errors are caused through the
use of massless particle approximation. Before giving the results on observable quantities
1 shall describe the general features of the flow and its dependence on the initial condi-
tions. Of observables, pr-distributions and the average values of transverse momenta,
{pry, are presented first with special emphasis on how the equation of state affects the
correlation between multiplicity and {py). 1 will also compare the numerical results of
{pry with the experimental cosmic ray results of the JACEE [28] group and discuss the
implications of this comparison. The dilepton spectra are shown to give information on the
flow and (possibly and hopefully) on the initial temperature. The last results show how
the strangeness might be processed during the evolution and what is its likely outcome in
the central region.

Essentially the same scenario has been explored for the p;—distributions by Blaizot
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and Ollitrault [29] using a different numerical method. It is described in the lecture notes of
Blaizot [30). Those results which are common with our calculations and can be compared,
agree within the expected numerical accuracy.

2. Equation of state

The assumption that hydrodynamics can be applied, means (as a minimum require-
ment) that thermodynamic concepts can be used to describe the matter. The dynamical
properties of the matter are given by the equation of state, which expresses the pressure
p in terms of the energy density ¢ and the conserved quantum number densities like ng, the
net baryon number density. In principle this can be derived from the basic dynamical
properties of the quanta of the matter by calculating the partition function. For the strongly
interacting matter this can be done presently only in certain limits or numerically in the
lattice approximation [9]. Even in the case of purely gluonic matter, when the numerical
results indicate rather conclusively a first order transition, the values of the parameters
like critical temperature, are not very precisely known, because of uncertainties in connect-
ing the lattice parameters to the physical parameters.

From the point of view of hydrodynamics, even a reliable determination of the equation
of state in the thermodynamic limit would not be enough, because it would not tell how
the phase transition kinetics works in a rapidly evolving system. If, e.g. the transition is
of first order, we would still not know if there is supercooling and associated with it, shock
phenomena in the matter, or if the matter evolves through the mixed phase staying all the
time close to the thermodynamic equilibrium.

In our scenario we, first of all, assume that in the central region the baryon number
density is so small that it can be neglected. The equation of state is then a relation between
the pressure p and the energy density . The essential feature of all lattice results is the large
increase in the energy and entropy densities, possibly at fixed temperature or in a narrow
temperature range, the pressure at the same time either staying constant or changing
much more slowly. This behaviour is a signal of large increase in the number of degrees
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Fig. 2. Pressure and energy density for the bag model equation of state
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of freedom in the matter; a feature which one expects if the quark-gluon structure
of hadrons is assumed. The next assumption, which cannot be justified, is that the timescales
in the phase transition kinetics are short compared to the expansion time scale. If this is
true, the precise nature of the phase transition is not likely to be very important for the
hydrodynamic evolution of the system. In particular, a second order phase transition with
steep increase of ¢ would differ from a first order transition with comparable jump in ¢ only
in such a way that a space-time region of constant temperature and pressure of the latter
would be replaced with a region of slow variation.

Our actual calculations are performed assuming a first order phase transition which
we describe with the bag mode! equation of state treating both phases separately as ideal
fluid of noninteracting quanta. Since the parameters must be specified for the numerical
calculations and results, the equation of state is exhibited graphically in Fig. 2 with relevant
formulae to fix the notation. As basic parameters, we use the number of degrees of freedom

g in hadron phase
g, =28+ngg-2-2-3 in quark — gluon phase, 2.1

(ng is the number of flavours) and the bag constant B, which describes the whole com-
plicated dynamics responsible for the phase transition. The critical temperature T, is
determined by the condition p, = p, and is related to these parameters through

B = (a,~a,)T5, @2

with a; = g;n?/90. Other quantities which will be refered to later, are the critical entropy
and energy densities

SH = Sh(Tc) SQ = Sq(Tc)
gh(Tc) &q = £q(Tc) ’

and the ratio ry; = g./gy. In the formulae of Fig. 2, massless quanta in both phases are
assumed. The numerical results are for g, = g, = 3 and ny = 2.5 to roughly account
for the mass suppression of strange quarks. This gives ry,; = 14.1. (In cosmological applica-
tion, also the leptons must be included. This reduces the value of ry).

It is clear, that this constitutes a very rough representation of the equation of state.
However, from the point of view of the reliability of the hydrodynamic results, the assump-
tion on the phase transition kinetics (fast nucleation) is as crucial as the approximations in
the equation of state. If the assumption of homogeneous mixed phase holds even roughly
we should have a fair amount of hope of getting results which qualitatively and in some
cases even semi-quantitatively agree with the true results.

(2.3)

€y

3. Hydrodynamics and the numerical method

The hydrodynamic equations express the conservation of energy and momentum in
the fluid by stating that the divergences of the energy and momentum currents vanish [31]:

9,T* =0, 3.0
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where
" = (e+pu’+pg" 3.2)

is the stress-energy tensor for the ideal fluid. The energy density in the comoving frame
is &, p is the pressure and u, the four velocity of the flow satisfying #*> = —1. In the flow
of an ideal fluid, the total entropy is conserved. This follows from Eqs (3.1) and (3.2) and
can be written in the form

st =0, (3.3)
with
s = su", s =(e+p)T,
the entropy current and density. For nonzero baryon number density we would also have
0,j8 = 0, 3.4)

expressing the baryon number conservation. In this case the pressure would depend both
on ¢ and ng (or T and uy).

Let us next consider the constraints on the form of the solutions. With cylindrical
symmetry there is no dependence on the azimuthal angle ¢, and we assume that the trans-
verse flow is radial (see, however Ref. [32]). Longitudinal boost invariance means that
the whole description of the flow must appear the same in frames boosted in the longitu-
dinal direction (within the CR plateau). In particular, the initial state of the matter can
then be specified by going into the longitudinal rest frame of any slice of matter and giving,
the transverse dependence of the temperature distribution (and other densities if necessary)
and the transverse velocity in that slice at the time of thermalization. From the point
of view of hydrodynamics the time of thermalization is the initial time and the state of the
matter constitutes the initial conditions for the hydrodynamic equations. Since the solu-
tions will satisfy the combined symmetry of the equations and the initial conditions,
they will be boost invariant, too.

The appropriate variables in this situation are the longitudinal proper time

=22 (3.52)
the space-time rapidity
{4
v = L log (ﬁ) , (3.5b)
t—2z

and the transverse distance from the collision axis, r. We also use ¢ = log 7. Since 7 and
r do not change in longitudinal boosts, scalar quantities like temperature or energy density
can depend on them but not on #,

In order for the equations to stay form invariant in the longitudinal boosts, the time
and longitudinal components of the four velocity of the fluid must be proportional to ¢ and
z (with the same factor of proportionality, which can depend on 7 and r) and the radial
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component can depend on T and r, alone. This allows us to write ¥* as

t z
uu = ‘}’,(T, F) (_ s U,(T, r), 09 —> . (36)
T T
The condition ¥? = —1 gives y, = 1V1 ~1}. The longitudinal component of the velocity
is z/t and the transverse component (z/t)r (7, r) (at z = 0, v, (¢, r)). Defining the transverse
rapidity yr as
. 1+z,
yr = 7 log ; 3.7
1-v,
u* can be written as
u* = cosh yr(cosh #, tanh yr, 0, sinh n). (3.8)

In the case of general, cylindrically symmetric flow, «* can be written in this form with
n replaced by 0, the longitudinal rapidity of the flow. Now, however, both y; and § depend
on all variables 1, n and r. This is always the situation in the fragmentation regions.

From the above discussion we see that the boost invariance fixes the longitudinal
dependence of all quantities and reduces the problem effectively to a 1+1 dimensional
one, for which the equations are easily written down [, 24]. Once the solution is known
at z = 0 (or equivalently at # = 0), it can be boosted to arbitrary z (). Physically the flow
is, of course, 3-dimensional and the coupling of longitudinal flow to the transverse flow
has a profound effect on the transverse distributions as will be seen from the results.

Without phase transition, e.g. the method of characteristics [33] can be applied to
solve the problem numerically {24]. With phase transition the numerical problem becomes
more involved. The velocity of sound is zero in the mixed phase making the characteristics
to merge and rendering the method of characteristic inapplicable. Also other methods tend
to develop instabilities when pressure gradients vanish in some region as we experienced
in the connection of numerical calculations of longitudinal expansion [34).

The numerical method which we have employed to integrate the hydrodynamic equa-
tions, is a relativistic extension of the so called flux corrected transport (FCT) algorithm
invented by Boris and Book [26, 27]. Its special merit is the ability to handle discontinuities
in the flow. In our problem, the discontinuities appear as rarefaction shocks [35] at the
interphase of hadron gas and quark matter [36-38] or hadron gas and the mixed phase
[2] when the matter transversely expands into vacuum. In the smooth scenario which we
assume, the surface deflagration from quark phase to hadron gas can occur only for a very
brief period before the longitudinal cooling dilutes the matter into the mixed phase.

Conventionally, good accuracy in the numerical integration of differential equations
is achieved by using a high order expansion of the equation in terms of finite differences.
In the case of steep gradients such an expansion fails. The higher order terms become large
and cause extra ripples to the quantities and may finally lead to a blow up of the solution.
Low order methods do not suffer as much from the oscillations but they produce extensive
numerical diffusion, which tends to smooth out any structure of the solutions. The FCT
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algorithm combines a low order algorithm with a high order one in such a way as to keep
the best features of both. Basically this is done by using a high order algorithm as much as
possible without producing dispersive ripples. Whenever these arise, the step is replaced
by a low order algorithm to the extend which is necessary for avoiding the ripples. As
a result the algorithm is of no definite order. The general features of the method can be
found in Ref. [27] and the practical details for the present problem in Ref. [1].

4. Decoupling algorithm

Decoupling (or freeze out) is the transition of matter from the state of thermodynamic
equilibrium with finite pressure to a state of freely streaming particles without pressure.
As the matter expands, the densities decrease and the mean free paths increase until they
reach the size of the system and become even larger. After this time most particles are
not expected to scatter and it should be a good approximation to treat the matter as
consisting of free particles. In order to get from the collective flow quantities, like particle
density n(z, r) and flow velocity #*(z, r), known from thekhydrodynamic calculation, to
quantities which describe the distributions of the final particles, like transverse momentum
distribution dN/dp%, some element of kinetic theory is needed. A simple solution for this
link has been proposed by Cooper and Fry [39]. The basic assumption is that up to a certain
point the matter evolves as an ideal fluid and from that point on as free particles. Since
we know the momentum distribution of particles in the rest frame of any ideal fluid ele-
ment, we can boost these distributions with the flow velocity and add them up (with proper
care because different elements reach the decoupling point at different times) to get the
total particle distribution.

In order to understand the insensitivity of this procedure on the precise time of de-
coupling, consider first a spherically symmetric situation. In this case the average p; (with
respect to any fixed direction) is, as a consequence of the symmetry of the flow and con-
servation of total energy and particle number (entropy), independent of the time of the
decoupling, indicating a balance between the flow velocity and the thermal motion,
This can be looked at also in terms of the work, which is done by the pressure during
the expansion and which turns the random thermal motion into the collective motion. In
spherical case the collective motion gains energy with the same rate in all directions, which
leads to the constancy of {pr>.

The situation is quite different with the strong asymmetry of the initial collective mo-
tion for the boost invariant flow considered here. During the early part of the expansion,
the flow, and consequently the increase in volume, is almost entirely in the longitudinal
direction. Thus, at this stage the thermal energy goes mainly into the longitudinal col-
lective motion [40] resulting in fast decrease of (pr) of the particles. If this would be the
situation also at the time of decoupling, the results would be very sensitive to the details
of the decoupling. This, however, is not the case as will be argued next.

To determine where the decoupling takes place, one should estimate the mean free
paths of quanta and compare them with the size of the system. At T = 200 MecV the mean
free path in the pion gas with pion cross section of 20 mb is about 1.5 fm and at 100 MeV
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about 15 fm. This indicates that the decoupling takes place at fairly low temperatures
when a strong flow (for most initial conditions) has been build up also in the transverse
direction. In further expansion the situation now resembles that in the spherical case and
also the transverse direction gains in collective energy. In our actual calculations a fluid
element decouples, when its temperature reaches a specified value, Ty... When T, is
changed from 140 MeV (which has been used to obtain the results below) to 100 MeV,
the change of {p;) is less than 2% for ¢; > 1 GeV/fm3. Clearly other uncertainties, like
mass effects, are more important. The effect of the initial asymmetry is clearly seen in
the case with ¢; = ¢y = 0.2 GeV/fm>. In this case the transverse flow is still quite weak
during the time when 7 drops from 140 MeV to 100 MeV. Longitudinal cooling is then
more important and {p;» drops by 10%.

It should be noted, that even in the spherical situation the shape of the momentum
distribution does not stay the same. Also, since the hadron gas contains particles with
different masses, {p;» would not be conserved separately for each particle species. As will
be seen below, the mass of the particles causes a strong correlation between the flow and
the p,-distribution [20, 41}, leading to a possibility of experimental observation of the
flow.

There are of course other uncertainties connected with decoupling, which need further
study. First of all, decoupling is not an instantaneous event but takes place gradualily.
During this stage a non trivial amount of entropy production may take place [42], which
can change appreciably the final distributions. To study this, a more involved kinetic
treatment covering a finite time interval at the decoupling is necessary [43].

Next we will consider the explicit form of the decoupling integrals. The decoupling
condition T(r,r) = T, determines a three dimensional space-time surface o, whose
surface elements are four vectors denoted by do,. Consider first a current jg, which describes
the flow of some density like that of the baryon numbér or strangeness. Then the amount
of this quantity passing through the surface element do, is

dQ = jpdo, 4.1)

and the total amount which emerges from the collision is obtained by integrating (4.1)
over the whole decoupling surface ¢. If the decoupling takes place simultaneously in a given
spatial region, then do* = (d3Xx, 0, 0, 0) (since dt = 0) and dQ = jgd-‘}. In this case the
integral-of (4.1) simply gives the amount of Q in that region at time 7. More generally do*
is of the form
do" = (d°%, d1ds). (4.2)
The resulting form
jbdo, = jod*x—dtj o - dS (4.3)

can be interpreted (e.g.) as follows: At times ¢ and r+dr the decoupling condition
T(t, x) = Ty, determines two spatial surfaces, parts of which are illustrated in Fig. 3. The
volume part jgd3§ counts the number of particles at fixed instant of time in the layer
between the surfaces. However, there is a time difference dt between counting the particles
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y

Fig. 3. The spatial decoupling surface at times ¢ and z+ds. The surface is defined by the condition
T(t, X) = Tyec with fixed ¢

of two adjacent layers. During this time interval particles pass from one layer to the other
due to the flow, and depending on the direction of flow with respect to the motion of the
decoupling surface, they either are not counted at all or are counted twice by the volume
term. This effect of flow, when the decoupling is not simultaneous in different regions,
is accounted for by the flux term — dth - ds.

Particle distributions are obtained by folding the flow with the thermal motion which
is described by the Wigner distribution function f(x, p). We can interpret

"

7% P52 (4.4)

0

as the current of particles with momenta in d3p. Then

u
dN = J f(x, s L do, (4.5)
Po
is the total number of particles with momenta in d3p. For matter with flow 4-velocity
u"(x), the ideal gas distribution function in the fixed frame where #" is measured, is

g 1

f(xa p) = (27[)3 e""’/T—T-l s

where g counts the number of degrees of freedom and — (+4) sign refers to bosons (fer-
mions). The complete form of the invariant momentum distribution is then

dN _ dN I
d°plE ~ dyd*pr (27

3 jf (x, pyp“do,. (4.6)
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With our decoupling condition T = T,,. = constant. For a more general situation, as in
the fragmentation region, the baryon number chemical potential must be included in the
distribution function and the decoupling condition will depend both on temperature and
chemical potential which will vary along the decoupling surface.

With cylindrical symmetry the decoupling surface element can be written as

= (rdgdrdz, e,rdpdzdt, 0, e,rdpdrds), (4.7)

and the flow velocity in the form (3.8) with the space-time rapidity # replaced by the lon-
gitudinal flow rapidity 6 (see the text after Eq. (3.8)). We can use p; to fix the direction
of x-axis in the transverse plane. Then

pu* = myp cosh yr cosh (80— y)— py sinh y; cos ¢ (4.8)
and
p'de, = rd¢dn(myt cosh (n— y)dr + my sinh (n— y)dt — prt cos ¢dr), 4.9)

where m; = \/ m? 4 p2 is the transverse mass and y the rapidity of a particle with momen-
tum p*..For the boost invariant flow 8 = 5, and the second term of (4.9) drops out from
expression (4.6) in the integration over 7, leading to

dN g " my cosh (n— y)dr — py cos ¢dr
dydz-é'r = (21{)3 Jtr J‘ d¢ J d}] e(mr cosh yt cosh (4 —y)— pr sinh y1 cos ¢)]T¥1 * (410)
]

Since y is present in the combination #— y only, the result is independent of y as it should
for the boost invariant situation. Integration over 7 and r is along the curve y defined by
the decoupling condition 7(r, 1) = Ty... The integrations over # and ¢ can be carried out
if we expand the distribution function in geometric series. The result is

n Pr
aydsz = j E (£t {mTIO (n - sinh yT> K, (n C cosh y-l-> dr

m
—pyl, (n i;— sinh yT) K, (n —T—T cosh yT_) dr} , (4.11)

where I's and K’s are Bessel functions. The remaining integral is easily done numerically.
The result shows explicitly, that the knowledge of transverse flow at z = 0 is all what
is needed for the calculation of particle spectra in the boost invariant case.

In the fragmentation regions, where boost invariance does not hold, the ¢-integration
can still be done. The remaining 2-dimensional integration will not be the most tedious
part of a calculation, which treats simultaneously the transverse and the longitudinal flow
in the fragmentation regions.
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5. Thermal distributions

As an exercise let us apply the decoupling integral (4.11) to the case of no transverse
flow, yr = 0. This gives us the p;-distributions for purely thermal motion and we can
use the results later as a reference for the full results.

Since I,(0) = 1 and I,(0) = 0, the decoupling integral simplifies into the form

dN m
d + 1" 'mK, T
P '"Z( ) < > G-

For constant T the sum with Bessel functions is independent of the integration and the
remaining integral gives the volume per unit rapidity of the matter at decoupling (z gives
the length per unit rapidity at y = 0):

av
—_ = 2n | drtr. 5.2)
dy dec
0

The final form of the distribution is

dN _(dV z ik s
prrad g W= (D™ K ' -3)
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which is the “official” [44] thermal distribution. The thermal particle density » is obtained
by integrating over pp and dividing out the volume. The average value of p; is

o Z 3/2(+1)"“Ix5,2(n )

. T =
o= (5:4)

2
R s
n o z T

n=1

For massless particles these simplify to

3n L( )
{py = —= T ~ 2127, bosons
¢(3)
3 4
=T ’—1—(—) T ~247T, fermions (5.9
4 n(3)

"

where { is the Riemann zeta function and 75(n) = (1—-2'"")(n).

The mass effect in the thermal distributions is shown in terms of {py)> in Fig. 4, where
the thermal (p;) of pions, kaons and nucleons is drawn as a function of temperature.
We will see below, that the flow leads to much more profound mass dependence of the
py—distributions.

The expressions of the pressure, energy density and entropy density for massive parti-
cles in the ideal gas approximation are well known and need not be written down here. As
a useful reference for rough estimation of mass effects, the pressure to energy density and
entropy to number density ratios (with uy = O for nucleons), which are constant in the
massless limit are depicted in Fig. 5 for pions, kaons, and nucleons. The ratio of pressure
and entropy with physical mass to the same quantity for massless particles is shown in Fig. 6.

6. Initial conditions and their effect on flow

The initial conditions at z = 0 are given by specifying T(z;, r) and v,(z,, r), the tempera-
ture and radial velocity at t; which is the time when (approximate) thermal equilibrium
is reached. To determine the initial conditions one would need a reliable model of produc-
tion, followed by a kinetic treatment of thermalization. A summary of what is presently
known about 1, and T, like their scaling with mass number A, is presented in Ref. [30].
I note here only that, e.g. on the basis of the colour flux-type models of production [15],
it seems plausible that 7; and 7 are inversely proportional [16-19];

T = (6.1)

This follows from production time being proportional to l/\/EO, where E|, is the strength
of the colour field, and from the argument [17, 19] that the distribution of the produced
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particles is close to the thermal distribution and thus the thermalization time is essentially
the production time. Since the production rate per unit volume ~ E3, the initial density
of the produced quanta (~T;> in terms of temperature) will be n ~ 7,E3 ~ E3/%. Putting
together these results, gives the relation (6.1). From uncertainty arguments C >1 for the
hydrodynamics to make sense. We have used C = 250 fm MeV in our actual calculations.
This is not important from the point of view of the flow itself as I will explain below, but
it will limit, for a given multiplicity, the earliest possible time and maximum 7; and this
may have consequences for the dilepton emission.

In the main part of the numerical calculations we have taken 7(r;, r) = T, within the
nuclear radius R4 and zero outside. The radial velocity is taken to be zero initially. We
have checked the sensitivity of the results on these assumptions by considering smooth tem-
perature distributions and non zero radial velocitiés. Both effects increase the transverse
flow but do not change the results qualitatively. (For details see Refs [3] and [4].)

It turns out that the final flow depends only weakly on 7; and T; separately. The
essential quantity is the product 7,T?, which (together with R ) gives the total initial entropy
of the collision. This can be understood by recalling, that in the longitudinal expansion
without transverse flow, T3 remains a constant [25). Starting with different 7; and 7, but
the same value of 7,77 means that the transverse flow is neglected during ét;, the difference
of the two choices of the initial time. However, as long as ét; is small compared to the time-
scale of the buildup of the transverse flow, R,/v; ~ 10 fm, this will not be important.

In the ideal fluid approximation entropy is conserved and 7,7} can be expressed in
terms of the multiplicity of the collision as

R TR (62)
c

with ¢ ~ 3.6. This is nice because it allows us to relate the badly known initial conditions
to a directly measurable quantity dN/dy. Since the hydrodynamic calculation together
with the decoupling algorithm correlates the initial conditions with the final particle dis-
tributions, we end up of having correlations between quantities, which can be measured.
Large fluctuations in the multiplicity distribution would be very helpful. By sampling the
events according to their multiplicity, it would be possible to study how the flow evolves
as the initial densities increase. Without such sampling events with different flow patterns
will be superimposed and the information on flow is lost.

For signals which depend on the whole history of the matter, like dilepton and photon
emission, the time interval d7; in the above discussion can be extremely important. The
reason is, that the emission rates depend very strongly on temperature. Consequently, the
emission during dr; can (especially for large masses) dominate the signal. This may offer
a possibility to get rather direct experimental information on T;.

Let us first have a qualitative survey of the characteristic features of the flow. Fig. 7a
shows a snapshot of the collision at time 6 fm after the nuclei met in terms of z and r.
(See the lecture notes by Blaizot, Ref. [30], for the various regimes of the collision in terms
of z and ¢.) The figure corresponds to actual numerical results with initial temperature
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Fig. 7. A snapshot of the flow at r = 6 fm in uranium-uranium collision

T; = 500 MeV at time 7; = 0.5 fm. As the matter is diluted both by the longitudinal and
the transverse expansion, several coaxial cylindrical shells with distinct physical features
will form. These are illustrated at z = 0 in Fig. 7b. For high enough initial energy density,
the innermost region consists of plasma, transversally at rest. A rarefaction wave (dashed
line) propagates with velocity of sound, v, = l/\/§, into the plasma which is cooled to
critical temperature. Further rarefaction leads to the formation of mixed phase region
(M). The assumption that the system is able to evolve through equilibrium mixed phase
has important implications for the transverse flow. In the mixed phase pressure stays
constant, the velocity of sound vanishes, and the ordinary rarefaction wave cannot pro-
pagate. Instead, at the interface of the mixed phase and the hadron gas, a shock front
develeps [2]. The fact that the entropy density of the mixed phase is well above the entropy
density of the hadron gas for the main part of the evolution and that the entropy current
cannot decrease has two consequences: the velocity of the shock front v, will be small
as compared to the velocity of the ordinary rarefaction wave and there is a sharp jump
in the velocity of the matter as the hadron gas must flow out from the shock front with
high velocity in order to be able to transport away the entropy of the mixed phase. The
velocity of the hadrons relative to the mixed pilase, vy, and vy, are shown for 1-dimensional
flow in Fig. 8 as a function of the hadron fraction 4 defined by

s = (l—h)SQ+hSH. (6.3)

The fast increase of the transverse velocity leads to a rapid drop in the density of the hadron
gas and the hadrons decouple quite soon after the shock (the outermost line in Fig. 7).

As is seen from Fig. 7 the longitudinal expansion has cooled also the inner part of the
matter at z = 0 almost down to the critical temperature T,. Without transverse flow this

happens [25] at
T. 3
=1 —]. 6.4
o ’(T) ©

If 1o < v,R,, the ordinary rarefaction wave has little effect and the transverse cooling
is due to the slowly propagating rarefaction shock. As a result the life time of the inner
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Fig. 8. Velocity of rarefaction shock front, vsh, propagating into the mixed phase with hadron gas fraction 4.
The curve marked with v, shows the velocity of the outcoming hadron gas relative to the mixed phase

part of the matter is essentially fixed by the longitudinal cooling and is

Th = Tq-2 = ragT (6.5)
Su
for the mixed phase. After this, all the matter is in the form of hadron gas, which ffeezes
out quite rapidly because the expansion is now three dimensional.

Next I will describe how the flow evolves as the initial temperature T; or equivalently
the multiplicity is increased. The flow figures 9 and 10 are for uranium-uranium collisions
with R, = 6.8 fm. The critical temperature has the value T, = 200 MeV, giving for B,
&y, and &g the values 0.9, 0.2, and 3.7 GeV/fm3, respectively.

Below the phase transition with & <C &y (for uranium (dN/dy)/A < 0.3) the flow
can be solved analytically; exactly in one dimension and approximately in the case of
cylindrical symmetry and boost invariance [24, 2]. The solution, the Riemannian simple
wave, proceeds into the matter with the velocity of sound, which for the ideal fluid is
v, = 1//3. The resulting timescale of transverse cooling is = V3R, ~ 10 fm for large
nuclei. For Ty, = 140 MeV, the decoupling condition is always reached, due to the longi-
tudinal expansion, at a time which is short compared to this transverse time scale. This
means that the transverse flow is weak and {p;) of hadrons is almost independent of T; or
‘equivalently of multiplicity.

When &y > &; > &, corresponding to the multiplicity interval 0.3 < (dN/dy)/4 < 4
for uranium, the matter starts in the mixed phase. As mentioned above, the rarefaction
proceeds into the mixed phase as a discontinuity which becomes stronger as &; grows
towards . The time for the shock front to propagate into the matter increases, too,
leading to an overall growth of the transverse flow. There is a small amount (maximum
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~7.5%) .of entropy production at the discontinuity. The complete history of the flow is
shown in Fig. 9 for ¢; = ¢4 as contour plots of ¢ and v, in the rt-plane. All the main
features of the flow can be easily seen. The boundary between the mixed and hadron phases
is the thick line with ¢ = 0.2 GeV/fm?. Inside it matter is at rest and the energy density
drops due to the longitudinal cooling with a rate which is independent of r. In the beginning
when the density is high, the shock front, which coincides with the ¢ = 0.2 GeV/fm?® line
and is more clearly seen as a jump in velocity, propagates slowly, but as the longitudinal
expansion dilutes the density, the shock gets faster (the bending of ¢ = 0.2 GeV/fm? line)
as is seen from Fig. 8. The shock does not reach the collision axis before ¢+ ~ 17.5 fm,
when the mixed phase is transformed into hadrons by the longitudinal motion alone. The
decoupling temperature 140 MeV corresponds to an energy density ¢ = 0.05 GeV/fm3,
and it is seen that decoupling takes place very soon after the hadrons emerge from the
shock.

Further increase in ¢ leads to a situation where the ordinary rarefaction moves into
the quark matter. As long as 7, is short compared to /3R, this is not very important
because at that time the temperature drops to T, the propagation of the rarefaction wave
stops, and the situation becomes similar to that with &; = . In this range of initial condi-
tions (which in terms of (dN/dy)/4 is not negligible) the strength of the transverse flow grows
very slowly. ,

When 7, becomes clearly longer than 1 fm the strength of the transverse flow starts
to grow again, the rarefaction wave now being the mechanism of the growth. Fig. 10 shows
the flow for (dNjdy)/A = 13.5, corresponding to T; = 350 MeV at t; = 0.7fm and
Tq =~ 4 fm. The new feature compared to Fig. 9, is the ordinary rarefaction wave which
is very clearly seen in Fig. 10b to propagate until time 7y Part of the mixed phase will
now be moving transversally. From here on the transverse flow increases rapidly with
multiplicity. All the above features of the flow are reflected in a transparent way in the
pr-distributions of hadrons,

7. Transverse momenta of final hadrons

Transverse momentum distributions for pions (massless) are shown in Fig.” 11 as
a function of multiplicity for uranium-uranium collisions together with thermal distribu-
tions (dashed lines). Temperature and normalization of thermal distributions is chosen to
give the same {p;> and multiplicity as obtained from the actual calculation with flow. The
distributions do not exhibit any dramatic features. For massive particles the situation
is different, however [20, 41], because they will gain more momentum from the collective
motion thdn the light pions.

To see the coupling of the mass to the collective flow quantitatively, we have used
also for kaons and nucleons the decoupling integral (4.11). Strictly speaking this is not
consistent because kaons and nucleons have not been included in the equation of state,
For the hydrodynamics the effect in the central region is probably not important. First of
all the hadron phase is only a small part of the whole hydrodynamic stage. Second, the
density of nucleons and antinucleons is very small (see Fig. 6) and they do not contribute
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Fig. 11. Transverse momentum distributions of massless pions for different multiplicities. The dashed
lines are thermal distributions with temperature fixed to give the corresponding <{pt)
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Fig. 12. Transverse momentum distributions of pions (massless), kaons and nucleons showing the effect
of mass on the shape of the distributions
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much to the energy density or pressure. The amount of kaons can be ~30% (see Fig. 6)
and their pressure to energy density ratio deviates from the massless value ~30% (Fig.
5). This would mean ~10% effect to the equation of state. One would not then expect
large changes to the flow due to inclusion of kaons and nucleons. The absolute values of
separate results should not be taken too seriously; what is more important is the qualitative
difference of shapes of p—distributions and of the average p,—values of different particles.
Fig. 12 exhibits how the shape depends on the mass of the particle, showing clearly how
the flow boosts the heavy particles to high momenta. In terms of (p,> the effect is shown
in Fig. 13. The particle mass has an effect on the purely thermal distributions, too, but as

2000 N
15004
3 K
[
=
1000
~
& T
N
500 /
0 ¥ T
01 1 10 100 1000
1 dN
A dy

Fig. 13. Average transverse momientum of pions (massless), kaons and nucleons as function of multiplicity

seen in Fig. 4, the differences of (p;) are relatively small compared to the situation with
flow. Comparison of Figs 4 and 13 shows explicitly of flow as advocated by McLerran
[20] and Shuryak [41]. The experimental observation of large differences in {py)» of pions,
kaons and nucleons, growing with multiplicity, would be a strong indication of the existence
of the flow.

In the case of heavy particles also the shapes of the spectra clearly differ from the
thermal shapes. This is shown for nucleons in Fig. 14 for different initial conditions. For
small values of (dN/dy)/A the flow is weak and the distribution is essentially the thermal
one. As the flow builds up, the small transverse momentum region is depleted. Observation
of these changes of shape would again lend strong support for the existence of collective
motion. '

All the results above refer to calculations with the bag model equation of state and
the phase transition proceeding through equilibrium mixed phase. To see the effect of the
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equation of state on the particle distributions, we performed calculations assuming that
the matter is always in the form of massless pions. The difference of the two cases is illustrat-
ed in Fig. 15-where the average transverse momenta of the pions are plotted as a function
of multiplicity. The difference in {p;)> comes from the fact that in order to obtain the
same muitiplicity with pions as with plasma, the initial temperature must be raised by
a factor of 3/rgs ~ 2.4.
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Fig. 14. As Fig. 11, but for nucleons

Earlier 1 emphasized that the flow depends essentially on 7,77 only. This holds for
a fixed nuclear radius R,. We can define a dimensionless initial parameter as [29, 30]
(t;/R ) (T/T.)*, which is easily shown to be proportional to (dN/dy)/A. In Fig. 16, (p;>
is plotted for different nuclei showing a rough scaling of the results.

Let me next comment on the shape of the {p;)> as a function. of initial conditions.
Usually the existence of the first order phase transition is argued to show up in the de-
pendence of {p;> on initial conditions in such a way that it reflects rather directly the
initial temperature of the matter. Thus, in hadron phase, {p;> presumably grows until
the transition temperature is reached, it then stays constant as the initial energy density
increases across the mixed phase region with constant temperature, and finally starts to
increase again when initial energy densities are high enough for the plasma formation. If
hydrodynamic expansion really takes place, these arguments have to be refined and in the
present picture the behaviour which is described above may be weakened so much, that it
cannot be observed. The reason is simply the longitudinal cooling. For matter initially
in the hadron phase, T; <. T, the transverse flow will be weak and the measured (p;>
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is given just by the decoupling temperature T,., and is roughly constant. In Fig. 15 the
initial matter is in the hadron gas phase between the first two points, which correspond to
T, = Ty = 140 MeV and T, = T, = 200 MeV, respectively. Between the points, which
are indicated by ¢y and ¢ the initial matter is in the mixed phase and T; = T, = 200 MeV
throughout. Contrary to the naive expectations, (pr> grows in this region. One way to
understand this is in terms of the transverse flow, which now has more and more time to
evolve before the hydrodynamic expansion dilutes the matter to freeze out. Basically the
growth is fed by tlre vacuum energy expressed by the bag constant B; in plasma at T, -
the energy per degree of freedom is roughly 4/3 times the energy per degree of freedom in -
hadron gas at T,. As the initial energy density increases, the fraction of plasma increases
and so does the overall average energy per degree of freedom. This growth is reflected as
a growth of final (p;) via the buildup of the transverse flow.

The flattening of {p;)> around e, may look surprising at first. The reason is actually
the same as below ¢,. As long as the initial state is such that 7, < v,R,, the longitudinal
cooling drops the matter to critical temperature before the ordinary rarefaction wave
becomes significant and then the transverse flow evolves as in the case ¢; = g, (except
for a small difference due to the increase of timescale in longitudinal expansion of mixed
phase). When 1, becomes comparable with v R,, the ordinary rarefaction wave leads
to a strong transverse flow already during the plasma and the final {p;) starts to grow.
However, the region of growth corresponds to very large multiplicities (note the logarithmic
scale) or initial energy densities as I will point out next by considering the results together
with the JACEE data.

8. Thermal origin of large {pr)’s and the JACEE data

The data on average transverse momenta in nuclear collisions as measured by the
JACEE group in a cosmic ray experiment [28] is shown in Fig. 17 together with the results
from the hydrodynamic calculation. The abscissa, ¢;, is a measure of the initial energy
density at time 7 = 1 fm and is calculated from the formula [28]

———— 3 dN 1

~ 2 2 ch

= +mi- — —, 8.1
& \/pT 2dy v (8.1)

with V = 2nA4?/3, the initial volume per unit rapidity at r = 1 fm. Only those data points
are included, where both colliding systems are nuclei. The curves are constructed from
the hydrodynamical results using the same formula. The dashed curve corresponds to
pure pion gas and the continuous curves to the bag model equation of state. The mass
value of the colliding nuclei is taken to be 56 (R, = 4.2 fm) in the calculations. This is larger
than the average 4 of the smaller nucleus in the JACEE data, but in the calculation the
dependence on A is weak.

It is clear that the calculation with bag equation of state does not reproduce, what is
usually interpreted as a break in the data. However, one should be careful in interpreting
the shape of the data. If the two highest points are removed, the break more or less disap-
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Fig. 17. JACEE cosmic ray data and the numerical results: (a) massless pion gas, (b) bag equation of state
with m,; = 140 MeV at decoupling and (¢) bag equation with massless pions

pears and the (p;> appears to increase rather smoothly. Still the calculation with the
phase transition is not steep enough for this increase. In plasma the number of degrees of
freedom is large leading to a large heat capacity and slow increase of initial temperature.

There are several effects which tend to increase the calculated (py)>. The curves (b)
and (¢) in Fig. 17 show the effect of mass on {py). Also some initial transverse motion
may be present. Especially for smaller nuclei, the decoupling is probably more complicated
and there might be appreciable surface emission of pions at early hot stage of the collision.
In addition to the overall increase of (pr), some of these effects may steepen the curve,
but none of them seems to lead to a situation where a sharp break appears. Neither does
the present data show compelling evidence for such a break. It may well be that it is not
possible to distinguish between different equations of state on a basis of qualitative features
of data but instead a careful quantitative analysis is called for.

I would next like to discuss the possibility of thermal origin of the highest values of
{pr> (Kpr> > 1 GeV) present in the data. For massless bosons in thermal equilibrium,
{pry = 212 T and (E) = 2.70 T. (For plasma at critical temperature these values are,
due to the contribution from vacuum energy, increased roughly by a factor of 4/3. Above
T, the thermal energy soon dominates.) Disregarding the mass effects, the number of parti-
cles (in any comoving volume) cannot decrease during the expansion becaus eentropy cannot
decrease. In the case of a spherical system, if the entropy production in the expansion
is not large, the final value of (E) (and {p;)) equals roughly the initial value and gives
directly the initial temperature.

In the boost invariant case the relevant comoving volume corresponds to a fixed
rapidity interval, and this volume will lose some of its energy into the longitudinal expan-
sion. At early stage of the expansion, when the transverse motion is weak, this leads not
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only to smaller values of {E) but also of {p;>. Consequently the final (pr) is smaller than
the thermal {pry corresponding to the initial temperature T;. (At T; ~ T, the vacuum
energy contribution leads to values of {p;> > 2.1 T,. Here we are concerned with large
{pry’s and T;’s and the vacuum energy contribution can be disregarded.) This would
also hold for the Landau type initial conditions because then due to the smaller dimension
of the system in the longitudinal direction, the longitudinal motion will build up faster
and gain more of the energy than the transverse motion. We thus arrive to a lower bound
for the initial temperature in terms of the measured {p;)> of the pions:

T><p_._T_>

i = ’ 8.2
21 (8-2)

where equality holds approximately for spherical case and T; is well above the bound for
boost invariant and Landau initial conditions.

If the JACEE data is interpreted to originate from a state where matter at early stage
of the collision is in approximate thermal equilibrium, the above bound .indicates that
initial temperatures

T; > 500 MeV 8.3)

are reached in the events with highest values of {p;>. As an example let us consider the
Ar + Pb event at E = 1.0 TeV/n with {py) = 1.2+0.2 and dN/dy = 134+8 [28]. This
certainly should be enough for the formation of plasma. However, such a high initial tem-
perature of plasma implies very high values of initial energy and particle densities,
g; = 100 GeV/fm® and n; > 60 fm~3, which do not seem to be compatible with the data.
With the boost invariant initial conditions, dN/dy oc 7;T? and can in principle be made
arbitrarily small by taking a small enough 7,. For the multiplicity to be compatible with
the high initial densities, all the matter per unit rapidity should originate from a volume
which is less than 3 fm? at ;. Together with the transverse area ~40 fm? for the Ar nucleus
this leads to a very small value for 7;. However, since the temperature drops very fast at the
early stage due to the longitudinal cooling, it is not 7; but 7T at ¢ > 1 fm which is relevant
for the final value of (pry. With Landau initial conditions. the thickness of the original
pancake would be < 0.2-0.3 fm for the total multiplicity not to exceed the experimental
value. With such a large asymmetry in the initial conditions one would again expect the
final (py) to be well below 27T,.

One possibility is that the initial state consists of separate hot spherical fluctuations.
From uncertainty relation one would expect that the temperature and the radius of these
fluctuations satisfy

r=—, x~1 (8.4)

For plasma with 7; clearly above T, the average number of quanta in such a fluctuation
is then

4 4
Ny = ?n o *4a T =~ 4ax® ~ 20 (8.5)
¢



579

(independent of T,). In the above JACEE event this would mean that on the average
~ 10 fluctuations per unit rapidity with T, ~ 500 MeV and radius ~0.4 fm would take
place and produce the main part of the particles, because the measured {py) refers to all
particles in an extended rapidity interval. Such a picture where particles are produced
from independent well separated hot spots, even though possible, does not sound as the
‘most probable.

To summarize this Section, if the high values of (p), observed by the JACEE group,
are assumed to have a thermal origin, they indicate initial temperatures, T; ~ 500 MeV
or even higher. According to the standard interpretation, these are high enough for the
production of QCD-plasma. This interpretation, however, may not be compatible with
the observed multiplicities, because the large number of degrees of freedom in the plasma
indicates much higher multiplicities (by a factor ~ 10 in our cailculation) than the measured
ones. Otherwise a rather peculiar concentration of the production into initial well separated
hot spots is needed.

9. Effects of flow on dilepton spectra

Once the thermal space-time history of the collision is known, the amount of dilepton
emission from the collision can be calculated by folding the thermal emission rates from
different phases with the flow. In the mixed phase, the system is assumed to emit inde-
pendently both from the plasma and the hadron phase, the relative amounts being fixed
by the entropy ratio. The main difference of the dilepton signal as compared to the p,-
distributions of hadrons is, that the signal now depends on the whole space-time volume
of the event. Among other things this means that 7; and T; are important separately, because
emission is strongly temperature dependent.

The emission rate from plasma is simply (for qq — 1¥1-)

dN a? s -
T L3 i, R T N /T. .
d*xdM?&HE 87 Z %® ©-)

The calculation of the emission rate from the hadron gas is more complicated [45]. Since
we assume the hadron gas to be dominated by the pions, we include only the process
ntr~ — I1-. The emission rate is then

dN o? 2m} 4mi\ F(M) _p;
g, =1+ =5 1———-—-5— —_—e s 9.2)
d*xdM*d°p/E  8n M 12

where F?(M) is the pion form factor. This could be taken from pion production data in
ete~ annihilations, but in principle finite temperature effects [46, 47] may cause modifica-
tions. We are mainly interested in the qualitative differences between the emission spectra
from plasma and hadron phases and in seeing how the flow can change them. For matter
at rest, not only the high mass but also the high py pairs are dominated by the high temper-
ature plasma, whereas the low mass pairs may exhibit clear resonance structure coming



580

from the hadron gas. For simplicity we include in F*(M) only the rho pole:

m4~

F*(M) = 2
(m2—M*? +mlI?

s (9.3)

with m, = 0.77 and I', = 0.155 GeV. The change of the parameters of the rho meson in
the hadron gas [46] is an interesting problem which might be observed in the experimental
dilepton spectra. It would not, however, change qualitatively the effect of flow, which I will
describe here. For small mass pairs, M < 2m,, the bremsstrahlung will certainly give an
important contribution.
Writing
d*x = tdvdyrdrde 9.4)

in the convolution integrals over the flow, the n and the ¢ integrals can be done (see the
decoupling integrals) leading to the form

AN 2 M
———— = va—3 ‘Cd‘[rdr[o Vels 'g’"r‘ KO Ve —T
dM2dyd*p,  27°, T T

«1) 2o+ [8_8” Z ey foT G(M):| (M) + G(M)@QH)}, ©9.5)
4 €o—¢&x gq—Ex

where the @-functions give the regions of different phases and

1 2 4mi
G(M) =tz F*(M) | 1— ek
This result can still be integrated analytically over the transverse momentum of the emitted
dilepton pairs giving the mass distribution of the pairs:

dN o? M
m}} = ? ‘rd‘crdrMTKl —'I'— {} (9.6)

If we neglect tne radial flow, the integration over » becomes trivial leading to simple single
integrals for the spectra which I will not write down here [4]. With the flow the remaining
double integrals must be performed numerically.

The resulting p—distributions at (almost) the rho peak, M = 0.8 GeV, are shown
separately for each phase in Fig. 18 as a function of the transverse mass both with (solid
lines) and without (dashed lines) the transverse flow for T, = 500 MeV at t; = 0.5 fm.
Note, that the quark phase contribution does not depend separately on mass ‘M and

transverse mass My = N, p34+M? and that the mixed and hadron phase contributions
have their largest values at the rho peak. Even at T; = 500 MeV the flow of the quark
phase is weak and the two cases do not differ much for the quark phase. For the mixed
phase and especially for the hadron phase the effect of the flow is very large. As indicated
in the figure, the exponential slope for the latter changes from —6 to —2. With flow, the
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production of high M pairs (at this mass value) is as effective from the mixed and hadron
phase as from the quark phase. For the latter it happens because of the high temperature,
and it does not matter if the pairs have small mass and high py or large mass but small
pr- For the former the production of large mass pairs is suppressed, since the temperature
is relatively low, but small mass pairs can acquire large My form of the transverse flow.
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Fig. 18. Dilepton distributions as function of transverse mass for M = 0.8 GeV. Contributions from plasma
(Q), mixed phase (M) and hadron gas (H) are shown separately both with (solid lines) and without (dashed
lines) transverse flow

In Fig. 19 the distributions are plotted for different fixed values of M as a function of
M. Without flow the low temperature phases (M and H) cannot produce high transverse
masses. The result would be the extinction of the rho peak [48] as shown in Fig. 19a, when
the mass spectrum is plotted for larger and larger M;. With flow, the p peak may
even increase in relative strength. Its observation at large M would be direct evidence of
the existence of collective motion of the hadronic matter produced in high energy nuclear
collisions.

I will next discuss the effect of the initial temperature on the dilepton spectra. As
was argued above, changing 7; and 7; does not change much the flow as long as 7,T? stays
constant. In Fig. 20 the mass spectra of dileptons from the quark phase are shown for three
different T} but same value of 7,T;. The mixed and hadron phase contributions are shown
only for 7; = 500 MeV, since the two other cases are almost identical. As is expected, the
high mass part of the spectrum depends quite sensitively on the initial temperature (or
equivalently time). It is this part of the spectrum, which can offer the possibility to diag-
nose the plasma. However, one should be cautious, tecause the nonthermal background
is badly known and may eventually hide this effect. A rough estimate of the Drell-Yan
part of the background is indicated in Fig. 20. It seems to fall safely below the thermal
rates, but one should note that the Drell-Yan production is independent of multiplicity
whereas the thermal production depends strongly on it [4] and that high enough multiplic-
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Fig. 19. Dilepton spectra as a function of the invariant mass of the pairs for different fixed values of transverse
mass (a) without and (b) with transverse flow
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Fig. 20. The effect of initial temperature (and time) on dilepton spectra for fixed hadronic multiplicity.
Low temperature phases (M and H) are essentially independent of T; but the change of the high mass part
of the plasma component (Q) is appreciable
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ities may not occur in actual collisions. Dileptons may also be emitted during: the pre-
-equilibrium stage between the primary collision and the thermalization time and in a specific
model [49] this emission has been shown to be quite abundant for the high mass pairs.
A better understanding of the dilepton backgrounds is really crucial for firmer conclusions
on the plasma diagnostics through the dileptons of high invariant mass.

10. Processing of strangeness during hydrodynamic evolution

Strangeness is often considered as one of the favorite signals for quark matter [7]. In
order to draw any conclusions on strangeness, it is necessary to follow the evolution of the
strangeness abundance through the evolution of the produced matter. Depending on the
timescales of the strangeness equilibration, it may also be necessary to know how abundant
is the strangeness production. For the evolution we will adopt the following very simple
procedure: We assume that the hydrodynamics is not affected by strangeness but can be
calculated first using the bag equation of state as described earlier. (See the arguments in
the connection of py-distributions of kaons and nucleons). In the plasma phase, we
have included the strangeness by half weight as compared to the light quarks and the
effect of any realistic deviation from this on the bag equation of state cannot be large.

As for the initial conditions in the CR with (almost) zero baryon number, it seems
natural to assume that n, ~ »9, the equilibrium density. For T;> m, this must clearly
be the case and then all quarks have roughly the same abundance. (In [50] n, is taken
to be zero, initially). A good measure of the strangeness abundance is the ratio to the
entropy, since the approximately conserved total entropy can be determined by measuring
the multiplicity, dN/dy ~ (dS/dy)/3.6. In equilibrium plasma nJ/n, ~ 109 using the
ideal gas formulas. This is not very large because a large part of the entropy is in the form
of the gluons. However, the expansion and the phase transition change the system in such
a way that the initial amount of strangeness will not correspond to the equilibrium abun-
dance at the later times. The final signal then depends on how the strangeness changing
reactions will process the strangeness abundance from 7; to the decoupling.

The kinetic equation, which describes this processing, is

0 (nu") = u*o,n+nd u"

(10.1)
= Rgain—Rloss’

where R’s are the appropriate rate terms for strangeness changing processes, ss — qq, g

in quark matter and KK <> nn, ... in.the hadron gas. The total strangeness density is

n = (L—h)n,+ hng, (10.2)

with ng = ny- +nge and A, the fraction of hadron gas which is zero in the quark phase,
one in the hadron phase and given by (6.3) in mixed phase. The term #"d,n in (10.1)
expresses the change of # in the comoving frame and nd " gives the effect of the increase
of volume in the expansion. '

The collision terms have been estimated by several authors [50-52] and there is some
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discrepancy in the results [51]. The form of the rate terms which we have used is that of
Ref. [50] (somewhat simplified) but we have varied the strength. I will not describe them
here [4], because they are not very crucial for the conclusions. Instead, let me note that
due to the finite mass of the strange quarks and the kaons, the strangeness density tends
to grow relative to the equilibrium density when the matter expands. In the quark phase
mg < T (we have taken the strange quark mass to be 150 MeV) and the effect is not large.
E.g. if T, = 500 MeV and n, starts from the equilibrium value initially, it will be only
~109% above the equilibrium value at T, = 200 MeV even if the rate terms are neglected.
In Ref. [51] the strangeness equilibration time is estimated to be <4 fm for 7" > 300 MeV.
Other estimates are even shorter. For high multiplicities the plasma life time 7 is longer,
allowing the strangeness to reach approximate equilibrium density at 7, regardless of the
initial abundance. One can then conclude that the strangeness density in the central region
will very likely be close to its equilibrium value when the quark phase has cooled to T,

Even with rate terms given, Eq. (10.2) does not yet specify completely the strangeness
evolution in our model with phase transition. In the phase transition the quark-gluon de-
grees of freedom are bound to pions and kaons. In the smooth scenario which we use, this
happens so that the volume of the matter increases by the factor ry = g,/g,. Conse-
quently, the strangeness density » is reduced by the same factor ry ~ 14 if the phase
transition itself does not create or destroy strangeness. This ratio should be compared to
the ratio of equilibrium densities, r., = nH(T)/m(T,), which is 6.5 at T, = 200 MeV
and 8.1 if T, = 160 MeV. It follows from these numbers, that the hadron phase comes
out from the phase transition with z below the equilibrium value by roughly a factor of two,
if strangeness is not produced in. the transition.

The above conclusion seems at first somewhat surprising because it indicates that
the less massive s—quarks are less abundant than the heavier K-mesons [53, 50]. The
reason to this is that the expansion is determined by the entropy of the system and due to
this fact the strangeness to entropy ratio, n/s and not n as such, is the essential measure
of the strangeness. (Remember definition (10.2).) In hadron phase, even with the large kaon
mass, the four kaon states take a relatively large part of the total entropy, which they have
to share only with the three pion states. In quark matter on the other hand, s—quarks have
to share the entropy, in addition to the two light quark species, also with gluons. Since for
a given total entropy the volume is inversely proportional to the entropy density, the total
number of strange particles is proportional to #/s and at the same temperature kaons win.

In mixed phase we have two densities n, and ng and so far only one equation, (10.1).
In our scenario the expansion in the mixed phase is completely due to the increase of the
low entropy-density hadron fraction as the matter is converted from plasma to hadrons.
In a volume element of plasma with no conversion, there is no expansion. This means,
if we assume that there is no strangeness transfer between the two phases other than through
the phase conversion, that the density of strange quarks, n,, satisfies Eq. (10.1) without
the volume expansion term nd,4". Since 4 is given by the hydrodynamics, we now have
a closed system of equations also in the mixed phase.

As 1 explained above, under the assumptions which we have done, sy is roughly half
of its equilibrium value as the matter is converted to hadrons. How much closer to #g?
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it gets in the mixed phase depends on the size of the rate terms which determine the relaxa-
tion time. An example of the numerical results with T; = 500 MeV at 7; = 0.5 fm is given
in Fig. 21, where the space-time dependence of strangeness is shown as contour curves
of the ratio n/n°%, The thick lines are the borders of the mixed phase and the dashed-dotted
curve gives the decoupling surface which we used for hadron distributions. The most
dramatic feature in this figure is the sudden rise of the ratio in the hadron phase. This
is the consequence of the transverse flow which in the hadron phase is strong enough to
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Fig. 21. Ratio of the calculated strangeness density to the equilibrium density. Thick lines are the borders
of mixed phase and the dashed-dotted line is the decoupling boundary

fead to the freeze out of the strangeness changing reactions. Consequently, the final strange-
ness abundance is fixed in the mixed phase at T,. This is actually a nice feature because
the decoupling temperature is not a very precisely defined quantity. If the strangeness
abundance could stay close to the equilibrium value in the hadron phase, it would be much
more difficult to estimate the final amount of kaons.

If the same calculation is repeated with the hadron rate term reduced by a factor of
10, the ratio drops around 0.6 at the end of the mixed phase. This is a factor of 1.5 less
than the result of the first calculation and is the source of the main uncertainty in this
scheme. In the latter case the abundance would be very close to the equilibrium density
at Ty, = 140 MeV.

Since different parts of the system decouple at different times, the strangeness density
will vary along the decoupling curve. This can in principle change the shapes of the kaon
pr-distributions from those calculated in Sect. 7, where chemical equilibrium was assumed
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to hold for kaons at decoupling. Actually the change of shape is not significant as is shown
in Fig. 22 with distributions calculated both ways. This can be anticipated from Fig. 2!
which shows that for a large part of the decoupling curve, n remains constant.

The conclusion on the strangeness signal in the CR is that it will not exhibit any
clear-cut features connected with the possible plasma formation. On the contrary, in the
present scenario it is most likely rather insensitive on the initial temperature if the plasma
is formed in the collision, and approaches some limiting value if plotted e.g. against the

o) t
L e
* ~ 1. D -
* i
& B [
S swrvlL 600 F )
- = A KINETIC 260
- 5: A JHERMAL 266 T _
o
(:}gl L.:l':" rlj.;
* ©3 LS
= - £ -
.- o
g 8- "8
PO Py
-y =1
NCE 08
Z < £ 2
3 . [
A K
] o
9
8 3
trfyTYLVTYY Ty1rirvrryryYy TITITT YTV F LR N BN B B St §
] T T T el
=0 1000 2000 3000 sood?
PT (MEV)

Fig. 22. Transverse momentum distribution of kaons with strangeness processing included (solid line)
~and assuming equilibrium density at decoupling (dashed line)

total multiplicity. This value is clearly larger than in the high energy hadron-hadron
collisions and is a measure of the critical temperature 7,. How accurately the critical
temperature can be determined, depends at least partly on the knowledge of the rates of
strangeness changing processes in the hadron phase. Both in our case and that of Ref. [51]
it is assumed that strangeness is not created in the phase transition itself. Since the number
of final hadrons equals roughly (neglecting mass effects and boson-fermion differences)
the combined number of quarks, antiquarks and gluons, plenty of qq-pairs must be
created when plasma converts to hadrons. There is actually no reason to assume that no
ss-pairs would be among them and even with large suppression, they would bring the
strangeness closer to the equilibrium density at the end of the mixed phase making the
determination of 7, even more plausible. Anyway, a better knowledge of the strangeness
changing processes, especially in the hadron phase would be desirable.
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11. Summary and outlook

1 have presented a scenario for the calculation of several experimentally measurable
quantities in the CR of ultrarelativistic nuclear collisions. It is based on the assumptions
that the produced matter is sufficiently dense and smooth and the system is sufficiently
large for the application of thermodynamics and hydrodynamics to the description of the
major part of the multiple interactions among the produced quanta and their effects on
the observable quantities. For the calculation of observables a minimum amount of kinetic
considerations is used in constructing a decoupling algorithm and to obtain the rates for
dilepton emission and strangeness processing. If our hopes to see the plasma are realistic,
these assumptions should be reasonable ingredients in the description of nuclear collisions.
In addition, several specific assumptions concerning e.g. the equation of state and the
phase transition kinetics which may or may not be true, must be done. We think that
our results are somewhat more general than these specific assumptions and give the gross
features of the collision if the evolution of the matter proceeds smoothly. E.g. strong
supercooling is excluded but we would not expect the results for a sharp second order
phase transition or for the Van Hove scenario [38], where the matter breaks to plasma
droplets at critical temperature, to deviate essentially from the results presented here.

Another crucial assumption is that the initial spatial fluctuations are not dominant
or will dissipate out soon in the course of the collision. Equally well it may happen that
they tend to lead to instabilities of the flow which destroy the cylindrical symmetry. Such
behaviour may lead to interesting signals but, like phenomena connected with supercooling
of plasma, they cannot be treated with the methods presented here.

Even with all these reservations we feel that the results are encouraging. They show
interesting correlations among measurable quantities, like the multiplicity and transverse
momentum, which reflect the properties of the strongly jnteracting matter at various stages
of the collision. Observation of collective flow, which should show up independent of the
phase transition scenarios, if high initial densities are reached, should be possible through
the measurement of transverse momenta of hadrons of different mass as well as of dilepton
pairs in the rho mass region. It might be possible to obtain information on temperatures
at different stages of the collision from the properties of the dilepton spectra and the final
strangeness abundance.

There are several points which can be pursued further. A more realistic equation
of state is on the easier side and obtaining solid information on the transition kinetics
on the more difficuit side. Hydrodynamics may work for a large part of the evolution
but at both ends of the hydrodynamic era kinetic considerations are essential. For high
mass dileptons, which seem to be the most direct link to the very early stages of the collision,
this is absolutely crucial. A better treatment of the decoupling stage would give more
confidence on the hadron spectra. Finally, a truly 1+ 3-dimensional (with cylindrical
symmetry) calculation is necessary for estimating the fragmentation regions. It would
also, most probably, reveal interesting couplings between the transverse and longitudinal
collective motions.

As a final comment I should like to notice the great importance of the coming ex-
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periments at CERN and BNL. They may not be at high enough energy or with heavy
enough nuclei for the production of sufficiently dense matter for plasma formation, but
they will certainly be very valuable in getting a better hold on preduction phencmenology
and, more generally, in helping to assess which of the present ideas are worth of being
pursued further and which are the ones to be disregarded.

I should like to thank the organizers for the warm hospitality during the school. It has
been a great pleasure and much fun to work with my collaborators.
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