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KINEMATICS OF RELATIVE MOTION OF CHARGED TEST
PARTICLES IN GENERAL RELATIVITY. I. THE FIRST
ELECTROMAGNETIC DEVIATION
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This is the first of two articles containing the definition and a detailed mathematical
analysis of the concept of electromagnetic deviation in pseudo-Riemannian geometry.
It presents a study of both the Lorentz equations of motion and the notion of the first electro-
magnetic deviation together with its equations of evolution, whereas the second article,
which will follow soon, will be dealing with the notion of the second electromagnetic devia-
tion. An interrelation of properties of the initial value problems for the Lorentz and the
deviation equations is investigated. The analysis makes use of a formalism that is repara-
metrisation covariant and invariant under gauges of deviations defined in the paper. It is:
shown that by specializations of gauges one can obtain particular kinds of deviation, some
of which were not discussed so far.,

PACS numbers: 04.20.Cv

Introduction

From a physical point of view, the equations of geodesic deviation along a given
geodesic world line I' represent a law of evolution of the information which enables the.
observer whose history is represented by I' to describe the geodesic world lines in the neigh-~
bourhood of I'. Depending on the size of this neighbourhood, this description requires
introducing the concept of geodesic deviations of higher orders. A general scheme of defining
such higher deviations, as well as their geometrical interpretation was formulated in [1]..

The present paper is a generalization of [1]. It consists of two parts published separat-
ely: Part I, appearing as this article, and Part II that will come out soon. The theoretical
scheme worked out for geodesic lines in [1]is now applied to a more general case of Lorentz~
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ian world lines representing motions of charged test particles in given electromagnetic
and gravitational fields of general relativity, as well as to their deviations called here the
electromagnetic (e.m.) deviations. ’

The main approach accepted here is based on a single Lorentzian world line I' defined
by an appropriate system of differential equations and on several laws of transport of e.m.
deviation vectors, of the first and the second order, along this line. In the case of geodesic
deviations that were discussed in [1], a method was formulated of how to defirie a one-to-one
correspondence between sets of deviation vectors and world lines from a neighbourhood
of I that are described by these sets. This method, besides its practical purpose, explains
the geometrical meaning of all the deviation vectors and reveals the necessity of dealing
with similar vectors of higher order. An interpretation analogous to that worked out in
[1] exists also for the e.m. deviations as its straightforward modification which is not
worthwhile to be repeated here. Its details could easily be worked out for the single line
approach just by imitating the geometrical interpretation of the geodesic deviation vectors
in terms of the covariant Taylor theorem (cf. [2]), similarly as it was done in [1].

Besides the main, single line, approach we discuss in the paper also an auxiliary
approach which makes use of one-parametric families of Lorentzian world lines. This,
called here the Z-approach, helps us to formulate the transport laws for deviation vectors
of several orders and to find the geometric interpretation of the constraints that exists in the
problem. '

The primary objective of our consideration is to reveal the logical and geometrical
structure behind the notion of e.m. deviation. In the paper this objective is realized explic-
itly for the e.m. deviations of the first and the second order, but the same scheme of reason-
ing applies evidently to deviations of any higher order. Since in relativity the physical mean-
ing of a timelike world line is attached to a curve that ought to be undérstood as a one-
-dimensional manifold and not to a parametrized curve, also a concept of deviation should
basically be treated from such a point of view. A notion of an e.m. deviation of this kind
is thus given by a multiplicity of solutions (forming an equivalence class) of an underde-
termined system of differential equations written along a given Lorentzian world line and
being reparametrization covariant. The procedure of solving the underdetermined system
requires introduction of arbitrary functions which label members of the family of sets
of differential equations such that for each fixed function the corresponding set of equations
has a unique solution which is just a single representative of the class of equivalence being
the e.m. deviation. Two special choices of the arbitrary functions are discussed in some
detail. In the case of the first e.m. deviation vector they lead to two types of e.m. deviation
équations, one of which has already been discussed in the literature (see [3, 4]), and the
other one is a special case of the general nongeodesic deviation equations (i.e. for world
lines with a general force law) that were formulated by Ehlers [5] and later used e.g. in [6-8].
From the analysis done in the paper it follows however that in order to obtain a geometri-
cally well defined law of transport of the e.m. deviation vectors along a Lorentzian world
line T, the traditional e.m. deviation equations, as well as many others which one could
obtain for other special choices of the arbitrary functions, must be supplemented by some
constraint conditions. In particular, these conditions reduce the number of independent
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degrees of freedom in the dynamics of e.m. deviations, which will be a subject of a sub-
sequent publication of the authors. In our opinion, the significance of the constraint condi-
tions supplementing the e.m. and the geodesic deviation equations was commonly not
taken into account in the literature so far, with the only exception of Ref. [1] which can
be considered as a particular case, for vanishing charges, of that discussed now.

The general scheme described in the foregoing paragraph is used in the paper on three
levels: in Sect. 1 on the level of a single Lorentzian world line, which could be treated as
being the e.m. deviation of the zeroth order, and then in Sects 2-5 in Part I and 6-9 in Part II
for the first and the second e.m. deviation vectors correspondingly. One can note that
several properties of the objects discussed here, which were emerging on a certain level,
have their consequences also on subsequent levels.- Besides of material being just a review,
every of the Sections contains results obtained recently by the authors. These results are
explicitly summarized in the last Section of Part II of the paper.

This is the first from a series of papers now in preparation. The forthcoming papers
will be dealing with some dynamical properties of e.m. deviations, their conservation laws,
‘and methods of solving the e.m. deviation equations in some spacetimes of general relatii/ity.

1. The Lorentz equations

Let ¥, be.a nidimensional pseudo-Riemanniah manifold endowed with a coordinate
system {x%}, a = {,' ..., n, admissible in a region 2 = V. In such a coordinate system
an arbitrary world line I' : R — V, parametrized by a scalar parameter € [a,b] = I < R
is described by a set of n functions £*: I — R, where £%(1) = x* o I'(r). We shall consider
Lorentzian curves which for n = 4 represent the world lines of charged test particles in
a gravitational field described by the metric tensor g,; of ¥, and in an electromagnetic
field defined by a given antisymmetric tensor field F,; on ¥,,. The general relativistic Lorentz
equations of motion in terms of an arbitrary parameter 7, as a result of an appropriate
variational principle (see [9]), take one of the two equivalent forms

D “u*
= (—‘i——> = oFu’ .1
dv \J/ju |

or

L[¢]:=

a

D .
where A ) := (), a2 denotes the absolute derivative along I', u*:= = is .a vector
7

&

tangent to I, u, = gt’, k% := 63—

i is a projection tensor, 6 =-g/uc” is a constant,
7!
and |u,u*| # 0 is assumed anywhere along I'. It is also assumed that the quantities g,p, I’ ",,

and F,, entering Eqs (1.1) are given. functions of 1.
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It may be simply checked that #,L[£°] = O is a strongidentity, i.e. is valid for any &*.
Hence, the n equations (1.1) are not independent and together with the initial conditions

dé
&(zo) = &5 Fn (To0) = up (1.2)
T
do not determine the n functions ¢* uniquely. This fact may be stated more precisely:

PROPOSITION 1.1. If a set of » functions £*: I — R is a solution of the Lorentz
equations (1.1), then

(i) the set of composite functions £* o f, for any C, function f: [a, b] — [4’, '] such
that f* # 0, is also a solution of Eqs (1.1); ’

(i) any solution & of Eqs (1.1), which satisfies the same initial conditions as. &%, can
be represented as & = &% o f, where fe C, is uniquely determined by &%, &

Proof. Part (i) follows from an immediate computation. The proof of part (ii) consists
in constructing a differential equation for f. This equation must, of course, be supplemented
by some initial conditions which can be taken in one of the two possible forms.

First, we may assume that &* and &* fulfil for t = 1, the same initial conditions (1.2).
The freedom of the choice of f is then reduced to C, functions such that

ft)) = 10, f(70) = 1. (13)
Second, we might require more generally that ¢* and & describe the same geometriéal
locus of points, i.e. for a certain %, (not necessarily equal to 7o)

5 de*
¢'(Fo) = &, EE; (%o) = kuo, (1.4

where k is a nonzero and otherwise arbitrary constant. In this second case we are left with
somewhat greater freedom of choice of f:

J@o) =10, f'(F) =k (1.5)

The proof of part (ii) requires yet the following lemma.

LEMMA' 1.1. Any solution of Egs (1.1) which satisfies (1.2) is completely specified
by a choice of a continuous function 1:7 - R.

Proof. A given solution & defines the function

d
AMt):= o ln\/

where in accordance with our assumption |u,u*] # 0. Inversely, if a function A:7— R
is given, £* is uniquely determined by the initial conditions (1.2) and the differential
equations (cf. 1.1))

ac a¢?

8ag E 7{; ) (1.6)

a

u —
i MU+ /{uu?| Fopuf. Q.n
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For such &* Eqs (1.6) are satisfied as a weak identity and therefore £° is also a solution of
Eqs (1.1). This completes the proof of the lemma.

COROLLARY 1.1. There exists a one-to-one map F of the set of all solutions of Eqs
(1.1), corresponding to some fixed initial data in (1.2), onto the set of all continuous func-
tions A: I— R.The map is defined by (1.6) as £*(z) + F(£°(z) = A(7) and its inverse is deter-
mined by the solution of the initial value problem (1.2) for the differential equations (1.7).

Now, if £° is solution of Eqgs (1.1) fulfilling the initial conditions (1.2), then & := £*of
is, in accordance with part (i) of Prop. 1.1, also a solution. Let F(¢®) = A, then F(&) =
is defined, as it follows from (1.6), to be

fll( )
= A .
A(z) 7@ +f @A) (1.8)

Thus, if £* and Z* are any two given solutions of Egs (1.1), fulfilling respectively (1.2) or
(1.9, i.e. F(¢)'= Aand F(&%) = dare given functions, then solving the differential equation
(1.8) together with (1.3) or (1.5) respectively, one finds a unique function f such that
& = ¢* o f. This ends the proof of part (i) and of the whole Prop. 1.1. '

We shall now discuss the question of how to formulate a system of differential equations
together with its initial value problem that would, firstly, be well-posed in the sense of
mathematical physics (i.e. would assure a one-to-one correspondence between solutions
and sets of initial conditions), and, secondly, be in a certain sense, which is precisely formu-
lated in what follows, equivalent to Egs (1.1) with the initial conditions (1.2). Havmg
this purpose in mind, let us recall the following definition from differential geometry.

DEFINITION 1.1. Two descriptions, by & and &, respectively, of a curve I' in a co-
ordinate system {x"} are equivalent iff there is such a C, function f: [a, ] — [4’, b'] that
() f'(z) # 0 in the whole domain Q c V,, (i) & = & f. '

Therefore, Prop. 1.1 states that Eqs (1.1) together with (1.2) uniquely determine an

equivalence class of descriptions of a Lorentzian world line I in a coordinate system {x"}.
Each member of this class is defined by Eqs (1.7) with a fixed function/A. In other words,
from an analytic point of view, we have on one side a system of » differential equations (1.1)
that is analytically underdetermined and admits a multiplicity of solution &%, and on the
other side a family of sets of »n differential equations (1.7) (each member of the family being
labelled by a function A) and every of these sets together with appropriate initial conditions
uniquely determines a solution &% but in general the solutions of two different sets (i.e. for
A4(t) # A,(r)) from the family (1.7) are analytically different from each other. From
a geometric point of view, however, in accordance with Prop. 1.1 and Def. 1.1, such two
solutions of two different sets of the family (1.7) are just two different descriptions of the
same curve I' (understood as a locus of points) which is uniquely determined by Eqgs (1.1)
and the initial conditions (1.2). For any practical purpose, one does not need the whole
multiplicity of representatives of the world line I', but just only one. Hence, to find a solu-
tion of Eqs (1.1) fulfilling (1.2) with some given initial data {£§, u5}, it is sufficient to solve
(1.7) with the possibly simplest choice of the function A. Such a choice consists, for instance,
in taking A = 0 for any tel
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With this choice, any set {£g, g} of initial data in (1.2) and the equations

(-2

dn

= o Vuu¥ Fpu? 1.9)

determine in a neighbourhood of initial point a unique Lorentzian world line I with a unique
parametrization by a “preferred” parameter n. This parametrization resembles the affine
parametrization of geodesics in that Eqs (1.9) are invariant under the transformation
% = An+B of the parameter, where 4 and B are constant.

From a geometric point of view the preferred parametrization is distinguished by the’
{]

d
properties of the law of transport of the tangent vector u* = ;— along I' defined by Egs
s

(1.9). To see the geometric meaning of this law, let us consider two points p = I'(x) and
q = I'(n+A4m) on the world line I which are so close to each other that the arc pg can be
considered as an arc of a geodesic line. Then up to an approximation by tertns of the order

U
(p) can be replaced by the differences quotient

(4n)-2 the derivative
drn

Dut o W@ =)

dx 4n (1.10)

where #|,(q) is the vector u*(g) parallelly transported to the point p. Substituting (1.10)
into (1.9) and performing a parallel transport of all the vectors from p to g along pg, we
obtain

u(q) = (& +0 v u @ (@)] AnF5 )] (p), (L.11)

where “ali'q(P) is the result of the parallel transport of ¥*(p) to t.he‘point g. Thus, the vector
tangent to I at ¢ is a result of superposition of the parallel transport of the tangent vector
from p to ¢ and of an infinitesimal Lorentz transformation determined by the electro-
magnetic field at g. In principle, this statement is a relativistic generalization. of Larmor’s
theorem (cf. [10]), since in the particular case of a purely magnetic field the infihitesimal
transformation in (1.11) reduces to an infinitesimal spatial rotation. Let us observe that due
to (1.9) the term N/ mzin in the infinitesimal part of the Lorentz transformation is param-
eter independent. Moreover, the transformation (1.11) is an infinitesimal isometry,
whereas in the general case of ar arbitrary parameter 7 an analogous transport based on
(1.7) would instead be a conformal transformation. It is just the appearance of isometry
that geometrically distinguishes the preferred parametrization both for o # 0 as well as
for o = 0,

The correspondence between the initial data and the classes of equivalence of solution
&* of (1.9) is, however, still not a one-to-one, because two different sets of initial data might
lead to equivalent solutions of (1.9), i.e. might render two different descriptions, character-
ized by two different preferred parametrizations, of the same Lorentzian world line I'. This
fact can be restated in the form of a proposition.
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PROPOSITION 1.2. Two sets of initial data, {&%, 45} for & = 7, and {&, u3} for
7 = iy, will lead to two equivalent solutions &* and &* = & o f (f' # 0) of Eqgs. (1.9) iff

a) uf = kuj, k = const # 0; b) f(n) = k(rn— 7o)+ 7. (1.12)

The proof is obvious because Eq. (1.8) is in accordance with Eqs (1.9) iff f'() = const.

Thus, Eqs (1.12a) for an arbitrary k # 0 define an equivalence relation between sets
of initial data. The freedom of choice of these data may be limited by putting on them
a constraint condition which selects only one member from each class of equivalence and
which should be added to the differential equations (1.9) in order to assure a one-to-one
correspondence between the Lorentzian world line I' parametrized by a preferred parameter
and the sets of initial data (1.2). For example, a universal choice of this kind is '

léaﬂugugi = la (1'13)

where 2,5 = £,5(¢"(mo)). If the quantity |g.guguf| > 0 in a set of initial data is not exactly
equal to one, i.e. does not satisfy (1.13), it always can be brought to a correct form by a trans-
formation of the type (1.12).
As a final observation, we remark that Eqs (1.9) satisfy the followmg property:
PROPOSITION 1.3. In an arbitrary pseudo-Riemannian manifold ¥,, Egs (1.9)
admit the first integral

g.pu"u’ = C, = const. (1.14)

The proof is obvious. Clearly, Eq. (1.14) is a weak identity.

The existence of the first integral (1.14) assures that the condition (1.13) is satisfied
not only for the initial value of the preferred parameter, but also for all the other values
from its admissible domain, In other words, condition (1.13) implies that

]gaﬂu“u”{ =1 (1.15)

anywhere along I'. The condition (1.13) is thus not only assuring a one-to-one corre-
spondence between initial data and the Lorentzian world lines I" being the solution of (1.9),
but also introducing a universal, natural parametrization along all such lines. In terms of the
natural parameter s, the Lorentz equations accept the customary form

Du*

o gu’. 1.16)

It should however be emphasized that for the reasons already discussed in this Section,
the differential equations (1.16) must be always considered in conjunction with the con-
straint relation (1.13) or, equivalently, with (1.15), since otherwise they would also admit
solutions parametrized by preferred parameters different from s. The natural parametriza-
tion in terms of s is obviously induced by the metric structure of the manifold. In general,
any condition of the type (1.14) fixes the unit of the preferred parameter scale. It stil
leaves, as is customary and convenient, the freedom of choice of the origin 7, of this scale.
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2. The general first e.m. deviation

Similarly like in the case of the geodesic deviation (cf. [1]), it is possible to formulate
two different approaches to the e.m. deviation.

(i) The Z-approach. Let us consider a one-parametric family X of Lorentzian curves
each of which satisfies Eqs (1.1) in the region Q = V,. Let each member I, of the.family
X be labelled by a value ce[¢,d] = J < R and the points on I, be parametrized by
7€ [a, b] = I = R. Thus, in a coordinate system {x"}, the coordinates of points belonging
to any Lorentzian curve of the family Z are defined as £%(t, €) := x* o I',(1). It is assumed
that these n functions &*: R? — R are at least of class C,.

The set of points

Ii={pe VIx(p) = {'(z,&); (r,e)eIxJ}
forms a two-cube in ¥,. To any péir (%, &) one assigns two vectors, u* and r*, from the tangent
space of V, at a point p:

X

a x
u(t, )= . (r,8), r(r,e):= T (z, €). 2.1

These vector valued functions 4 and r* will be called here vector fields on X parametrized
by (7, ¢). Since the Lorentzian world lines may intersect, they need not be a restriction
to 2 of any vector field in ¥,. There is obviously the following relation valid!

bu* Dr*
= . 2.2
¢ at 2.2)
As is known, any vector field * on X satisfies the Ricci identity
D** D**
— —— = R%.,t ru’. 2.3
deor  owoe T @3

u*
Let us choose 1" = ————_. Then, making use of Eqs (1.1), we get from (2.3) the identity

V|
D( i D 1 ' b’
— | ——=——= — ) + —— R%,uru’ = 6<F" : ubr' + F* —) , .49
dr (\/I“;.ull dr iu;.“ll ore o ‘e

1 This relation, equivalent to £,r* = 0, is of course a consequence of the holonomic definitions (2.1).
However, also the case of a nonholonomic vector field r* given on Z, for which £,* # 0, can easily be
reduced to the holonomic one as a result of an appropriate reparametrization T + 7(z, £) along every of
the Lorentzian world lines. Thus, within the approach based on arbitrary parametrization, we need not
distinguish between the holonomic and nonholonomic cases, contrary to that what is sometimes done
in the literature (cf. e.g. [7, 8D.
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which after setting o = 0 coincides with Eqs (2.5) quoted in [1]. Using the n-dimensional
Maxwell equations Fp,,,,; = 0, it can also be rewritten in the form

L [ a] D [ g Fu rﬂ
rii=— 7—== —— —0
! dt -\/Iuluzl dt g

+ ——._—1_——__—(12"t s+ ——k—o;-—-F ‘“ua) u?ru® =0
Vuu?| ” \/luzuzi o ’
where the positive sign of £ = +1 corresponds to timelike Lorentzian world lines.

Obviously, Egs (2.4) can, in principle, be written for a fixed value of ¢, say ¢ = 0,
e.g. along the Lorentzian world line I',. If we repeat the procedure analogous to that above,
but immersing how I'y in another one-parametric family 5 of Lorentzian world lines,
with another field 7°(t, £), we will still get the same Eqs (2.4) for r*(z, 0) along I'y. Therefore,
it is possible to formulate the following definition.

DEFINITION 2.1. Two one-parametric families ~ and ¥ of Lorentzian world lines
which contain the same curve I'y are equivalent iff r(z, 0) = r*(z, 0). The corresponding
class of equivalence is called the first e.m. deviation vector field along I',.

It is also possible to base the definition of the e.m. deviation directly on Egs (2.4)
without any immediate appeal to the family X of curves I'. This second possibility we shall
call the single line approach.

(ii) The single line approach. Let us assume that a single parametrized Lorentzian
world line I' is given. We define along I' a vector field 7 (determined at p(tr) € I' by r*(z))
as a solution of the differential equations (2.4) fulfilling the initial conditions

(19) = 1%, Br— (1) = 5. (2.5)
dt
It is assumed here that the quantities g,5, I'%,, R,s 4, F"5 and F%,, enter Eqs (2.4) being
evaluated at the point p(r) and therefore are given functions of 7.

DEFINITION 2.2. Any solution r*(r) of Eqs (2.4), with the initial conditions (2.5),
defined along a single Lorentzian world line I' is called the first e.m. deviation vector field
along I.

This second definition is, of course, more general than Def. 2.1,

It may be checked by a straightforward calculation that u,L,[r*] = 0 is a strong iden-
tity, i.e. is valid for any &* and r®. Therefore, the n equations (2.4) are not independent
and their solution'ac\imits the freedom of introducing an arbitrary function. This can be
restated as in the next two propositions.

PROPOSITION 2.1. If a set of » functions r*: I - R is a solution of Egs (2.4) taken
along a Lorentzian world line I, then r* o f, for any fe C, and f* # 0, are also a solution
of (2.4) along the same I', but now parametrized by f(7).

The proof follows from inspection. 4

The necessity of reparametrization of r* stated above is rather a consequence of the
properties of Eqs (1.1) and only indirectly of Eqs (2.4). The underdeterminacy of Egs



610

(2.4) for a fixed description of the basic world line I' is manifested instea dby another prop-
erty of the first e.m. deviation vector.

PROPOSITION 2.2. If a set of » functions r*: I —» R is a solution of Eqs (2.4) taken
along a Lorentzian world line I' described by functions &%, then

(i) the functions

= ()’ (2.6)

where x : I = Ris an arbitrary C, function, are also a solution of (2.4) along the same curve
I' with the same paramctrlzatlon,

(i) any solution 7* of Egs (2.4), which satisfies the same initial conditions (2.5) as
r, can be represented in the form (2.6), where x € C; is uniquely determined by these two
solutions 7%, r* and the conditions x(ze) = ¥'(70) = 0.

Proof. The proof of part (i) follows from inspection. The proof of part (ii) requires
the next lemma.

LEMMA 2.1. A solution of Egs (2.4) which satisfies (2.5) is completely specified by
a choice of a continuous function p:7 - R.

Proof. A given solution r* (with known ¢£%) defines the function

d ( u, Di*
uT):= ( 7 ) : 2.7
T

dt wu*

Inversely, for a given function u: I — R, the vector r* fulfilling (2.5) as initial conditions
is defined as the unique solution of the system of differential equations

D*r® , Dr*
_~d12 +R* Mau ru? ).(1:) — 4+ p(tu”
— Drf u, Dr
/ A 20 8.y -4 z . B ¥
+o v luut|| FP u’r?+Fp— +Fu" | — — )1, 2.8)
Vius l[ By e # (u,{u‘1 d‘t)] (2.8)

where the function A is given by (1.6). For such r*, Eq. (2.7) is satisfied as a weak identity
and therefore r* solves also (2.4), and this completes the proof of the lemma.

COROLLARY 2.1. There exists a one-to-one map G of the set of all solutions of Egs
(2.9), corresponding to some given initial data in (2.5), onto the set of all continuous func-
tions p: 71— R. The map is defined by (2.7) as r*(z) = G(*(z)) = u(7), and its inverse
is determined by the solution of the initial value problem (2.5) for the differential equa-
tions (2.8).

Let r* and 7* be two solutions of Eqs (2.4) such that G(*) = p and G(**) = f, then
k in (2.6) is defined (because of (2.7)) as the unique solution of the differential equation

B = )+ (fﬁ (z)+x<r>x(r>) 29)
T at .

with the initial data x(t,) = x'(1o) = 0. This ends the proof of Prop. 2.2.
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Remark 2.1, Prop. 2.1 states obviously that Eqs (2.4) are covariant under arbitrary
reparametrization of I' and of the field r*, whereas Prop. 2.2 can be understood as a state-
ment that Eqs (2.4) are invariant under arbitrary gauge transformations of r* which are
defined by Eqgs (2.6). :

Let us note that contrary to Eqs (2.4), Eqs (2.8) fora chosen function u can be uniquely
solved with respect to the derivatives of the highest order and admit therefore a well-posed
initial value problem. Thus for each choice of u, Egs (2.8) determine a law of transport
of r* along I.

The geometrical interpretation of the fact stated in Prop. 2.2 follows at once from
the Z-approach leading to the relation (2.4) considered as an identity. Because of the freedom
of reparametrization T - f(z, &), where f: R* - R is a C, function, a different (in general)
parametrization may be introduced on each Lorentzian world line I',. In particular, one
can require that the paramstrization along the basic curve I'g(¢ = 0) remains unchanged,
but changes on those with £ # 0 so that

[0 =7 (0 = o), @.10)

where x is given. Then, defining r*(z, ¢) as in (2.1) and r(z, ¢) as

- o&
(5, = = (0 ),9) @.11)

one easily derives that 7°(t, 0) and r*(z, 0), i.e. both on I'y, satisfy the relation (2.6). The
multiplicity of solutions of Eqs (2.4), described in Prop. 2.2, can therefore be interpreted
as a possibility of mtroducmg new paramstrization on nzighbouring Lorentzian world
lines, while keepmg fixed the paramestrization on the basic line I'y.

3. The natural first e.m. deviation

Let us return to the approach with a single Lorentzian world line I'. Sim ilarly like in
Sect. 1, we have again on-one side a system of differential equations (2.4) with a multiplicity
of solutions described by (2.6), and on the other, a family of systems of differential equations
(2.8), each member of which is labelled by a function u. If p is given?, Eqs (2.8) determine
a unique solution r® that satisfies the initial conditions (2.5). Such a-solution is simulta-
neously a solution of Eqs (2.4). All these solutions form an equivalence class of the relation
defined by (2.6). Every equivalence class is distinguished from the others by the values of
the initial data {r$, o5} in (2.5) and from a geomztric point of view it describes a Lorentzian
world line in the “first neighbourhood” of the basic line I'y. (A rigorous geom etric inter-

2 In Egs (2.8), like in all the other equations in Szcts 3-5 it is assumzd that 2 is fixed and imposed
by the accepted and fixed paramatrization along I" which is described by Egs (1.7) whose solution satisfies
the weak identity (1.6). In particular, all statements of Sects 3-5 can easily be rephrased for 4 = 0, i.e. for
the case when along I” we have a preferred or even, after adding the constraint condition (1.15), the natural
parametrization.
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pretation in terms of a covariant Taylor theorem [2] could be repeated here along similar
lines as it was done in [1].) For any practical purpose, we need only one first e.m. deviation
vector to describe the equivalence class to which it belongs, and it is reasonable to choose
a possibly simplest function p in Eqs (2.8). The first obvious choice consists in taking p = 0
for any 7 € 1. The corresponding Eqs (2.8) take then the form

D*r® Dr® —
e +R%,ufr'u’ = U(7) -t V| [FG‘ 5T
Drf u, Dr?
+F% — +Fuf 1. 3.1
b dr e (ulu" dr)] 3-1)

For each set of initial data in (2.5) Egs (3.1) have a unique solution. However two
different sets of initial data might still lead to equivalent solutions, as it follows from the
next proposition. :

PROPOSITION 3.1. Two sets, {r§, v5} and {r5, 7}, of initial data in (2.5) will render
two solutions r* and 7* of (3.1) equivalent in the sense of (2.6) iff

2) T = ri+ —o— 75 = 0§+ (b3 +ackul;
Vigguoul

—1—1 (b J NI d1:+a), (3.2)

b) k() = \/}u o
It

where a and b are arbitrary constants, g,; = £,4(67(70)), 15,,, = F,(&"(zo)) and ug are the
initial data for I' fulfilling (1.7).

The proof is straightforward and will be omitted.

Thus, Eqs (3.2a) establish an equivalence relafion of initial data for (3.1). A single
representative from each class of equivalence can be determined by choosing some definite
values of the constants a and b in (3.2). These conditions may be determined, for instance,
by means of the following proposition.

PROPOSITION 3.2. In an arbitrary pseudo-Riemannian manifold ¥, the system of
equations (1.7) and (3.1) admits the following first integral

u, Dr*

W ke C, = const. 3.3)

The proof is a result of contracting Eqs (3.1) with #,, making use of Eqgs (1.7) and of the
weak identity (1.6). Clearly, Eq. (3.3) is also a weak identity.

The requirement p = 0 on I'y has a simple geometric interpretation which can be
found by means of the Z-approach. Each of the Lorentzian world lines I', from the family
Z can be parametrized by a different parameter 7, specified by a regular function C(z, €)
in the form

gus4°(z, ©)UP(z, £) = Cy(1, 8). (3.4)
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Differentiating this with respect to ¢ and taking into account (2.2), one obtains

u, Dr* 0 —_—

iC.(5, ). 3.5

uut dr

Let us observe that in the X-approach Eq. (1.6) along a fixed line I', reads as
) -
Mz, &) = - (In Vg2, ', ).

Differentiating this with respect to &, due to Eq. (2.2) we obtain

( ) 17} Yy Dr* (%6 3.6
T, & — }.= u(z, &). .
at uut de Hee (3.6)
Assuming temporarily that u(z, &) = u(e), we can integrate the last equation in (3.6)
u, Dr*
o tu(e) + Cy(e), (3D

and obtain from here and from Egq. (3.5) a differential equation on C(z, €):

) S
5 (0 VIC((5, o)) = (&) +C402), (3.8)
whicﬁ gives
Cy(t, 8) = C,(1,0) exp {20j5 [su(e) + C,(e)]de}, (3.9)

where the function C,(t, 0) is determined by the choice of some parametrization along
the basic world line I'y. Thus, the requirement ¢ = p(¢) means that all the Lorentzian world
lines from the family Z are parametrized by different parameters 7, specified by the function
(3.9). Let us observe that the first integral (3.3) exists along I'y only for functions u(e)
such that p(0) = 0. Then C, in (3.3) is equal to C,(0) in (3.7). So, the requirement pr = 0
in the Z-approach can be interpreted as a restriction C,(0) = C, imposed on the arbitrary
function C,(¢) in (3.9).

Passing in Eq. (3.3) from a solution r* to r* given by (2.6), with x defined by (3.2a),
results in adding & to the constant C, in this equation. To fix b, it is therefore sufficient
to fix the value of C,. The simplest choice is to require that

Dr* _
o dT *

(3.10)

and because of Prop. 3.2 it is sufficient to impose this constraint on the initial data only.
As a consequence of (3.10), Egs. (3.1) take form

p** Dr* — . D
i 5 +R ,y,,u r’u" = A(T) E;— 40 \/iu‘u)'i (F“ﬂ;_fupr"_*.Faﬁ '711;_) , (311)
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and it is a simple task to prove that (3.3) is a first integral of the system of Egs. (1.7) and
(3.11), provided (1.6) is taken into account.

The condition (3.10), because of u(0) =0 and Eq. (3.7), is equivalent to C,(0)

= C; = 0. From p(0) = C,(0) =0 and Eq. (3.9) it follows that (aa—? (z, s)) =0,

8=0

which geometrically means that all the Lorentzian world lines from the “first neigh-
bourhood” of the basic line I'y are parametrized by the same parameter t, specified for
every ¢ by the function- Cy(z, £). In virtue of (1.8), even if the function 1 is kept fixed, i.e.
A= A which is equivalent to Ci(z, &) = C,(z, &), there still remains the freedom of repara-
metrization such that f'(7) = 1, which means that the freedom of choice of an initial value
of the parameter 7 along each of the world lines is still left at our disposal.

DEFINITION 3.1. A vector field r* which is a solution of Eqgs. (3.11) evaluated along
a-Lorentzian world line I' parametrized by an arbitrary parameter t and which satisfies
(3.10) as a constraint condition is called the natural first e.m. deviation vector:.

There remains still the freedom of choosing the value of the constant @ in (3.2). In the
case of the geodesic deviation it meant the freedom of fixing the scalar product of the
vectors #” and r*, which did not depend on the parameter 7 [1]. Now the situation is slightly
more involved. In virtue of (1.6), (1.7) and -(3.10), one can obtain

d ( u,r* ) F el
— =— | = oF 4"u
dr \/iui.“)'l ’

or

u,r’ i
=g J Fgr*ufdz +const. (3.12)

v uu?

o
‘Since the condition (3.10) requires that b = 0, therefore due to Prop. 3.1 Egs. (3.11) admit
still equivalent solutions of the form

@
-¢=r¢+

(3.13)

- .
v |“zul|

Hence, replacing r* by 7* results in adding the constant a to the right hand side of (3.12),
and the choice of a is therefore equivalent to specifying the value of the integration constant
in (3.12).

Remark 3.1. Let us note that Eq. (3.12) can also be represented as a first integral
of the system of equations (1.7) and (3.11) but only if an appropriate gauge condition for
the e.m. 4-potential A4, is accepted. This follows from the identity

d
Fa “uf = “£Aa—"—Aaa
st U u £ d‘r( r%)
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which can easily be checked. directly by miaking use of the definition F, wp o= Aga—Ayp
and of the definition of the Lie derivative. Accepting now the gauge condition

u*£A4,=0,

we obtain from (3.12) the relation

ua
Ty ( +aA°'> = const
IR

which is a first integral of Eqs. (1.7) and (3.11) under the conditions mentioned above.

4. The first separation vector

In the case of the geodesic deviation (i.e. for ¢ = 0) the constraint condition (3.10),
which is used to determine the natural deviation, implies at once wu,r* = const. In other
words, in that case the natural deviation, which can be interpreted as an infinitesimal,
parametrization preserving mapping of a geodesic line I', onto such another line from the
“first neighbourhood™ of 'y, satisfies the conservation condition u,r* = const. The inverse
implication is also true: any solution of the equations corresponding to (3.1) in the case
¢ = 0, which satisfies the constraint condition u,r" = const, must necessarily be a natural
geodesic deviation vector. In the general case, the natural first e.m. deviation vector, which
is still a parametrization preserving mapping onto neighbouring Lorentzian world lines,
changes during its evolution along the basic Lorentzian world line I'y its inclination u,r*
with I'y. The general equations (2.8) are however flexible enough and permit of such a trans-
formation of them, being the result of a suitable choice of the function p, after which they
uniquely determine an e.m. deviation 'vect(')r that preserves its inclination »,r* with the basic
line I'o. In certain applications, some of which will be discussed in another paper of ours,
now in preparation, it is just a first e.m. deviation vector of this second kind that is needed.
It is therefore worthwhile to study also this second case in some detail.

Let us observe that Prop. 3.2 is really a consequence of our choice ¢ = 0 in the weak
identlty (2.7) when passing from Egs. (2.8) to (3.1). Now the question is whether it is possible
to find such a function p that substituted into Eqs. (2.8) will give us the first e.m. deviation
equations preserving the product u,r* or a simple function of it. The answer follows from
an immediate transformation of Eq. (2.7) to the form

@ d [ k d ( U r* )] N d (kaFa,,u“r”)
WT) = — | 50— — ———x —_—l 1,
dt [ Viua?l dt\JVjugh/d - e\ yijuu?

where use was made of (1.7) and (1.6). Thus, if one accepts that

d (koFzur’
) @4.1)

e\
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then Egs. (2.8) transform into the form

D** Dr* d (koF
drz +R%,uPr'u’ —,l(t)—--%—u“ (apu )

\/‘“;,u |
y 4
6V |uut [F", 3,u r"+F"p—r_ﬂ +F",u ( S br )] 4.2)

uut dr

Now, the system of equations (1.7) and (4.2) admits the desired first integral.
PROPOSITION 4.1. In an arbitrary pseudo-Riemannian manifold ¥, any solution
of the system of equations (1.7) and (4.2), with 1 given by (1.6), satisfies the relation

1 d( u,r’ )
—— — | —==——} = C; = const. “4.3)
Viugh| - \Viugl)

For the same reason as before, for each set of initial data in (2.5), Eqs. (4.2) have
a unique solution. But two different sets of initial data may still lead to solutions equivalent
in the sense of (2.6), as Prop. 3.1 can be proved for the case of Eqgs. (4.2). Thus, Egs. (3.2a)
establish an equivalence relation of initial data for the differential equations (4.2). To select
a single representative from each class of equivalence, one has to choose some definite
values of the constants @ and b in (3.2). This can again be done by adding to Egs. (4.2)
a constraint condition on the initial data. Due to the existence of the conservation law,
one can impose (4.3) on the initial data and this requirement will be compatible with the
evolution governed by Egs. (1.7) and (4.2).

Let us investigate the result of the transformation (3.2a) on a constraint condition
of the form (4.3). The transformation (2.6) from a solution r* to 7* with x defined by (3.2b)
results in adding b to the constant C; in (4.3). Therefore to fix b, it is again sufficient to fix
the value of this constant. The simplest choice is to require that the constant in (4.3)
vanishes which results in

ur®

—',—.—"-—; = const. 4.4
Vijuuti

Because of Prop. 4.1 it is sufficient to impose this constraint on the initial data only. Since
the condition (4.4) requires that b = 0, due to Prop 3.1, Eqgs. (4.2) still admit equivalent
solutions of the form (3.13). Hence, replacing r* by r* results in adding a to the constant
in (4.4). The choice of the constant a is therefore equivalent to specifying the value of the
integration constant in (4.4). It is convenient to accept

us* =0. 4.5

This condition automatically implies (4.3), with the ‘constant being zero, and fixes both
a and b in (3.2). Let us however observe that Eq. (4.5) is compatible with the first integral
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4
satisfies the condition

D,
(4.3) iff the relative velocity d:

u, Dr*
\/lu,_u I dt

Such requirements have an obvious geometric interpretation and justify the introduction
of the following definition.

DEFINITION 4.1. A vector field r* which is a solution of Egs. (4.2) evaluated along
a Lorentzian world line I' parametrized by an arbitrary parameter © and which satisfies
(4.5) and (4.6) as constraint conditions is called the first e.m. separation vector.

It should be noted that the e.m. separation vector, like any deviation vector defined
by Egs. (2.8), is a mapping of the basic Lorentzian world line Iy, onto such another line
in its infinitesimal neighbourhood. This mapping does not however preserve the parametrl-
zation of the world line, as it follows from a discussion analogous to that preceding Eq. (3.9).
But in the special case of the geodesic deviation (i.e. for ¢ = 0), the two sets of equatinne
Eqgs. (3.11) and Egs. (4.2), are identical, and the two kinds of deviation vectors merge
a single concept of the natural geodesic deviation vector.

= oFqu’r’. 4.6)

5. Relationship between the two kinds of first e.m. deviation

The whole scheme developed in previous sections indicates that there must be a rela-
tion between the natural first e.m. deviation and the first e.m. separation vectors. As a corol-
lary of Prop. 2.2 it follows that if we have two members of the family of systems of differen-
tial equations (2.8), corresponding to two functions ji and u respectively, then their solu-
tions must satisfy the relation (2.6) in which the function x is uniquely determined by Eq.
(2.9) with appropriate initial conditions. Hence, taking i = 0 and g in the form (4.1),
by solving Eq. (2.9) we obtain that

x(t) = [ f(c— IM) exp (J l(r”)dt”) do' + d] exp (-‘- fﬂ(‘t')d‘t') ,
0 \/quull to L]

where ¢ and d are integration constants. If one now takes into account the weak identity
(1.6), the expression for k¥ can be rewritten as

k(1) =

\/I [ f(c Viuut - koF ,gu"r’)dr+ d] . 5.1)
ulu

The assumptions & = 0 and (4.1) mean that the formula (2.6) with x given by the expression
(5.1) transforms a vector r* which satisfies Eqs. (4.2) with a constraint condition (4.3)
into a vector r* being a solution of Eqs (3.1) and constrained by Eq. (3.3); the constants C,
and C; in the constraint conditions are arbitrary, but fixed for the solutions considered.
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Let us meanwhile assume that {rj, 73} are the data for r* in the initial value problem 2.5)
that are constrained by (3.3) and {rg, v5} are those for r® restricted by (4.3). Making use
of the Lorentz equations (1.1) in Egs. (4.3), we can eliminate the term oE agtt *rf from (5.1)
and write the relation (2.6) with x given by (5.1) in the form

T

- u® — k D
(o) =r(D+ \/ulu (T){ J [(c+k.Cs)x/lulu‘l-— \/lul:z = dr]d”d} (5.2)

Substituting here t = 1,, we obtain

o

~ dug
ro = ro+ T (5.3)
\/ lgpyuouol
and
kgap“o("ﬁ rﬁ)
‘/|g;.v“o“o!
The relation (5.3) then reads
hey(rh—rh) = o, (5.4)
where h% = h%4(&(z,)). Differentiating (5.2) and taking t = 7, gives
5 = h*oP +doF* b+ (c+ kCa)uj. (5.5)
From (5.5) and (3.3) it follows that
¢ = C,—kCs. (5.6)

Eqs. (5.3) and (5.5), with (5.6), define a transformation {r§, 03} + {r%, %} of initial data
that must accompany the transformation (2.6) with x given by (5.1). The transformation
of initial data contains one arbitrary parameter d, while C, and C, are fixed. Observing
that due to (2.6) F,,u“r" = Fa,,u";’, and making use of (4.3) and (4.6), one finds the inverse
transformation to (5.5):

57

Lol ufsy
vy = U5 —doF*ul+ul [(kC3—C2)+ M] .
\/iglvuéusl
The foregoing consideration can be summarized in a form of a proposition.
PROPOSITION 5.1. A solution r* of Eqs. (4.2) along a given Lorentzian world line
I, satisfying the constraint condition (5.3) with C, being fixed, can be transformed into
the vector

=1t

{ f [(C,—kCy) Vit luu? {—~koFgu r’]dz+d} (5.8)
\/I“;.“ |

being a solution of Egs. (3.1) along the same line and satisfying the constraint condition
(3.3) with a fixed value of C,; d in (5.8) is a constant. The inverse transformation 7* - r*
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can be obtained from replacing F,pu“r” in the integrand by F,,,u“;‘. The initial data for one
of the vectors determine the data for the other by means of Egs (5.3), (5.5) and (5.7).

COROLLARY 5.1. If 7 is a natural first e.m. deviation and r* a first e.m. separation
vector field along a given Lorentzian world line I', all the equations (5.1)«(5.8) remain
valid after substituting into them ¢ = C, = C; = r'y, = é,,,ugrg = 0. Since r* satisfies
two and r* only one constraint conditions, the transformations r* +7* and {r%, o3}
> {r5, 75} involve necessarily one free parameter d representing an additional degree of
freedom. In the inverse transformation r* +r° one ought to substitute d = kg, u3rs
x (|g,ubug])~*/%, and the transformation {rj, 53} + {r5, v3} does not contain any free
parameter, since from (5.4) in the case considered now one obtains ry = h%75,

Let us note that Eqs (2.4) are invariant under arbitrary reparametrization of the basic
world line I'o, whereas every one of the systems of Eqs (2.8) taken separately, labelled by
a fixed function y, does not enjoy such an invariance property. However the two systems
of equations, Eqs (3.11) and Eqgs (4.2) respectively, are again reparametrization invariant.
To see it, one ought to transform each of the two systems to a form, which is manifestly
invariant.

If one eliminates the function A from Eqgs (3.11) by means of (1.6), taking into account
the constraint condition (3.10) and the a-dimensional Maxwell equations Fropin = 0,
one obtains the differential equations for a vector field r; along an arbitrarily parametrized
Lorentzian world line I':

D ( 1 D ko

1
— | ——= —F —0oF" rf) S —— (R“ + == Fy u )u”r,‘iu" =0, (59
dt \/lu;.ull dt 4 \/|u,1ul| svs ‘/I“,zull By; %5

which must necessarily be considered in conjunction with the constraint condition
(3.10), i.e.

since,otherwise their solution might have not been a natural first e.m. deviation vector,
for Eqs (5.9) admit (3.3) and not (3.10) as their fifst integral. The manifest invariance
of Eqs (5.9) and of the constraint condition is evident. Besides, these equations are solvable
with respect to the highest derivatives and admit therefore a well-posed initial value problem.
All this means that along a given Lorentzian world line I', understood as a locus of points,
Egs (5.9) together with the constraint condition (3.10) and the initial value problem (2.5)
uniquely determine a natural first e.m. deviation vector field r§, which therefore has a para-
metrization independent, geometrical meaning. In particular, when I' is parametrized by
the natural parameter s, one must substitute into (5.9) the relation (1.15), which results
in the form of the first e.m. deviation equations given in [3] or in an equivalent form
D2rz

— +Raﬂ auﬁr,};ua =0 Faﬂ. uﬂrx'l‘Faﬂ Drg (5.10)
ds* ’ i ds

given in [4].
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A similar elimination by means of (1.6) of the function A from Eqs (4.2) shows that
the first e.m. separation vector r; satisfies the equations

D[ 1 Dr ( o uu ﬁ)F ]
— -0 r
dv | juu? dr & uut )P

1 ko
3 H . #.7,,0 —
+ Tz (R g9+ N Fy, u‘,),u ru’ =0 (5.11)

which must be supolemented by the two constraint conditions (4.5) and (4.6), i.c.

o
u, Dr;

\/ l u ;'u;'i dr
The initial value problem is here again a well-posed one and the first e.m. separation vector
field r; has a parametrization independent, geometrical meaning, although in general

it differs from the vector field 7% In particular, Eqs (5.11) and the constraint conditions
can be easily rewritten in the case when I" is parametrized by the natural parameter s, or in

the equivalent form
D% - ( prf
— + R P’ =0 1'7+F
ds? pro ds

ut =0, = oF,zu"rf.

D
+ = (ou’F gu’rl). (5.12)
S

From (5.8) and (4.5) it follows immediately that the first e.m. separation vector can
always be represented in the form r = h%rf = r%, where rlisa natural first e.m. deviation
vector. Therefore, Eqs (5.12) are a particular case (for the Lorentz force) of the general
nongeodesic deviation equations for r} formulated in [5] and later considered in [6-8].
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