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KINEMATICS OF RELATIVE MOTION OF CHARGED TEST
PARTICLES IN GENERAL RELATIVITY. II. THE SECOND
ELECTROMAGNETIC DEVIATION
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This is Part II of an article by the authors (Acta Phys. Pol. B18, 601 (1987)), on gener-
alization of the concept of geodesic deviation to the case in which an electromagnetic field
is present. Whereas in Part I the consideration was limited to the first electromagnetic (e.m.)
deviation, which as was indicated is an approximation, Part II extends the construction
introduced in Part I to the case of the second e.m. deviation being a successive approxi-

mation to the notion considered in the two parts. The last section contains a summary of
both Part I and II of the article.

PACS numbers: 04.20.Cv

6. The general second e.m. deviation

As in the case of geodesic deviation equations (cf. [1]), also a solution of Eqs (2.4)!
describes, in accordance with its interpretation, only approximately the behaviour of a Lo-
rentzian world line from a neighbourhood of a basic curve I', along which the equations
have been evaluated. To improve this approximation one should explore the possibility
of generalizing the concept of the first e.m. deviation to higher orders. Such a generalized
notion of a second e.m. deviation may be introduced in close analogy with the results for
the second geodesic deviation obtained in [1).

(i) The Z-approach. Let us consider again a one-parametric family ~ of Lorentzian
world lines defined by Eqgs (1.1), and let us additionally suppose that for each curve I', from
this family the first e.m. deviation equations (2.4) have been solved with some arbitrarily
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given initial conditions
-4
M0, ) = K@) — (0, 8) = c3(6)
T

continuously parametrized by . Now, if #* = r*(z, &) is any solution of this initial value
problem, such functions r* determine an additional to #* vector field on the two-cube

Z, namely
w(t, &)1 =

8. (6.1)

To obtain for the vector field w* equations analogous to (2.4) for r* let us substltute the

K, Drf
field * = el into the Ricci identity (2.3). After applying this identity once

\/ |uz dt

D :
again under the - -differentiation in the second term of so obtained equality and. taking
= !

into account Eqs (1.1), (2.1)-(2.4), (6.1) and the symmetry properties of R, we obtain
the identity
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which transforms to Eqs (3.2) from [1] after setting ¢ = 0. It can be also rewritten in the
form
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where the ‘positive sign of k = +1 corresponds to timelike world lines.

The set of Eqgs (1.1), (2.4) and (6.2) can, in particular, be written along a selected
Lorentzian world line I'y labelled by ¢ = 0 and for a selected solution r°(zr) of (2.4) for
& = 0. We can immerse I', in another family Z, extend r%(z) to a vector field 7%(z, &) of solu-
tions of (2.4) on the new Z in such a way that r(zr) = 7%(z, 0), and accept the following
definition.

DEFINITION 6.1. Two one-parametric families ~ and 5 of Lorentzian world lines
which contain the same curve I', are equivalent iff w*(z, 0) = w%(z, 0). The corresponding
class of equivalence is called the second e.m. deviation vector field along I',.

It is also possible to give another, more general definition of the second e.m. deviation
directly based on Eqs (6.2).

(ii) The single line approach. Let us suppose that a single parametrized Lorentzian
world line I is given, and that along this line Eqs (2.4) have been solved for the same initial
conditions (2.5); let this solution be denoted by r*(z) too. We can all the functions in (6.2)
like o, 1%, g,p, Fp, etc., evaluate along I' for this selected solution r*(r) and turn Egs 6.2)
into ordinary differential equations of the second order for w%(z) fulfilling the initial condi-
tions

Dw*
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DEFINITION 6.2. Any solution w*(t) of Egs (6.2), with initial conditions (6.3),
defined along a single Lorentzian world line I is called the second e.m. deviation vector
field along I.

It can simply be checked that #,L,[w*] = 0 is again a strong identity, i.e. is valid for
any £° and w®, Therefore, the n differential equations (6.2) are not independent and the next
two propositions take place.

PROPOSITION 6.1, If a set of n functions w*: I - R is a solution of Egs (6.2) taken
along a Lorentzian world line I', described in a coordinate system {x*} by functions
&:I— R, and for a solution of Eqs (2.4) described by functions 7*: I —» R, then

(i) the composite functions w* o f, for any C, function f such that f’ # 0, are also
a solution of (6.2) along the same Lorentzian world line I" described now by & = & f
and for a solution of (2.4) determined by 7* = r®o f;
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(ii) the functions
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for any C, function x:I — R, form also a solution of (6.2) along the same Lorentzian
world line I" described now by & and for a solution of (2.4) determined by 7* = r*+xu".

The proof follows from inspection.

Prop. 6.1 describes the consequences of reparametrizations of the basic line and of
changes of the transport law of r* along it. The intrinsic underdeterminacy of Egs (6.2)
for a fixed description of both I' and r* along I follows from another property of Eqgs (6.2).

PROPOSITION 6.2, If any set of functions w*: 7 — R is a solution of (6.2) taken
along a given Lorentzian world line I', described by the equations x* = £%(z), and for a given
solution of Eqs (2.4) determined as r* = r*(z), then

(i) the set of functions

w* = w*+ypu’, (6.5)

where y: 71— R is an arbitrary C, function, is also a solution of (6.2) along the same
curve I', with the same parametrization, and for the same r°%;

(if) any solution w® of (6.2) fulfilling the same initial conditions (6.3) as w* can be
represented in the form of (6.5), where y e C, is uniquely determined by these solutions
w%, w* and the conditions y(to) = ¥'(to) = 0.

Proof. The proof of part (i) follows from inspection. The proof of part (i) is based
on the following lemma.

LEMMA 6.1. A solution of Eqs. (6.2) which satisfies (6.3) as initial conditions
is completely specified by a choice of a continuous function v: 7 - R.

Proof. A given solution w* (with known &* and r®) defines the function
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Inversely, for a given function v: I — R, the vector w* fulfilling (6.3) as initial conditions
is defined as the unique solution of the system of differential equations
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where the functions 4 and p are given by (1.6) and (2.7). Such w* solves also (6.2), because
Eq. (6.6) is satisfied as a weak identity, and this completes the proof of the lemma.

COROLLARY 6.1. There exists a one-to-one map H of the set of all solutions of
Egs (6.2), corresponding to some given initial data in (6.3), onto the set of all continuous
functions v : I -» R. The map is defined by (6.6) as w*(t) - H(w%(r)) = v(r), and its inverse
is determined by the solution of the imitial value problem (6.3) for the differential
eq uations (6.7).

Let w* and w* be two solutions of (6.2) such that H(w") = v and H(w®) = v. Then
y in (6.5) is defined (because of (6.6)) as the unique solution of the differential equation

. d
) = v+ d—‘-i- (—"i (t)—i—l(‘r)w('t)) (6.8)
t\ dt

with the initial data ¢(15) = 9'(zo) = 0. This ends the proof of Prop. 6.2.

Remark 6.1. Prop. 6.1 (i) states obviously that Eqgs. (6.2) are covariant under arbi-
trary reparametrization of I' and of the fields r* and w", whereas Props. 6.1 (ii) and 6.2
can be understood as the statements that Eqs. (6.2) are also invariant under arbitrary gauge
transformations of r* and w* which are defined by Egs. (2.6), (6.4) and (6.5).

It may be noted that contrary to Eqs. (6.2), Eqgs. (6.7) can in general be uniquely solved
with respect to the derivatives of the highest order and adzmt therefore a well-posed initial
value problem. Thus Egs. (6.7) determine a law of transport of w* along I'.

The multiplicity of solutions of Eqs. (6.2), described in Prop. 6.1 (ii) and in Prop.
6.2, can again be interpreted geometrically as a possibility of introducing in the next,
i.e. now in the second approximation a new arbitrary parametrization on neighbouring
Lorentzian lines, keeping the parametrization on the basic line unchanged and, in the case
of Prop. 6.2, keeping also fixed the selected solution r*(r, £). To show this, we should
complete Eqgs. (2.10) by the condition

02
_éei: (% 0) = p(»

and (2.11) by
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7. The natural second e.m. deviation

Let us return to the single line é,pproach. Similarly like in Sects 1-2, we have again
on one side a system of differential equations (6.2) with a multiplicity of solutions described
by (6.5), an on the other, a family of systems of differential equations (6.7), each member
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of which is labelled by a function v. If v is given?, Eqs (6.7) determine a unique solution
w® that satisfies the initial conditions (6.3). Obviously, such a solution is simultaneously
a solution of equations (6.2). All these solutions form an equivalence class of the relation
defined by (6.5). Every equivalence class is distinguished from the others by the values of the
initial data {wj, 15} in (6.3) and from a geometrical point of view it describes a Lorentzian
world line in the “second neighbourhood™ of the basic line I', (see [1] for details). It is suffi-
cient to have only a single second e.m. deviation vector to describe the equivalence class
to which it belongs. Therefore, it is reasonable to choose again a possibly simplest function
v in Eqgs (6.7). Such a choice consists in taking v = O for any 7 € I. The corresponding Eqs
(6.7) take then the form
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For each set of initial data in (6.3) Eqs (7.1) have a unique solution. But two different
sets of initial data might still lead to equivalent solutions, as it follows from the next
proposition.

PROPOSITION 7.1. Two different sets, {w5, 15} and {w§, {5}, of initial data in (6.3)
will render two solutions w® and w* of (7.1) equivalent in the sense of (6.5) iff
eug . .

(a) W = Wit e, g = 15+ (f05+ecF)ub;
Vigpuoull

T

(®) w1) = L ( fj‘«/ luut| dr+e> , (1.2)
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2 In Eqs (6.7), like in all the other equations in Sects 7-9 it is assumed that A and u are fixed and
imposed by the accepted and fixed parametrization along I", which is described by Egs (1.7) whose solution
satisfies the weak identity (1.6), and by the accepted and fixed transport law of the vector r*along I, which
is defined by Eqs (2.8) whose solution satisfies the weak identity (2.7). In particular, all statements of Sects
7-9 can easily be rephrased for 4 = 0 (i.e. for preferred or natural parametrizations) and for constraints
of the type (3.3), (3.10) or (4.3), (4.5).
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where e and f are arbitrary constants, g,5 = £,,(6"(1o)), Fap = F,s(£"(z0)) and 3 are the
initial data for I' fulfilling (1.7).

The proof is straightforward and will be omitted.

Thus, Eqs (7.2a) establish an equivalence relation of initial data for (7.1). A single
representative from each class of equivalence can be determined by choosing some definite
values of e and f. These conditions may be determined, for instance, by means of the follow-
ing proposition.

PROPOSITION 7.2. In an arbitrary pseudo-Riemannian manifold ¥, the system
of equations (1.7), (2.8) and (7.1) admits the following first integral

1 Dr* Drf Dw‘_" 1 Dr*\? :
— +R — fu, — = C4 =gonst. (7.3)
u

h —
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The proof is a result of contracting Eqs (7.1) with u, and making use of Egs (1.7),
(2.8) and the weak identities (1.6), (2.7). Clearly, Eq. (7.3) is also a weak identity.

The requirement v = 0 on I, has a simple geometric interpretation which can be found
by means of the Z-approach. Let us first note that differentiating (3.6) once again with
respect to & we obtain

9 4, ) = %z, ), (1.4)
(914

where for v(t, &) we can write along I', an expression analogous to (6.6). Assuming temporar-
ily that v(z, &) = v(¢), we can integrate (7.4) and obtain

i, pro’ s, D1 (DY -
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The integration function C,(g) can easily be interpreted if we impose along each curve
I'; the condition (3.4), and differentiate (3.5) with respect to &, obtaining

1 Dr* Drﬁ by Dw* i Dr\2 &2 Jeo
u;{ hz:ﬁ dr d +Ra375u r'ru +u, — de - u_;'u-l uagg = 'a:z'ln !Cl(T, 8)! .

{1.6)
On the other hand, we can differentiate (3.8) with respect to ¢ once again and compare

dc.
the result with (7.5) and (7.6), coneluding that C,(e) = ~d—2 (¢). Because of (7.5) the first
£

dac
integral (7.3) exists along I'y iff v(0) = 0 and C, from (7.3) is equal to —dsj (0). Thus,

the requirement v = 0 imposes a restriction on the first derivative of the function C,(¢)
which determines by Eq. (3.9) the parametrization on the lines I', from the family Z.

Passing in Eq. (7.3) from a solution w" to w* given by (6.5), with » defined by (7.2b),
results in adding f'to the constant C, in this equation. To fix £ it is therefore sufficient to fix
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C4. The simplest choice is to require that

Dr* D Dw* 1 Dre\?
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and because of Prop. 7.2 it is sufficient to impose this constraint on initial data only. As
a consequence of (7.7), Eqs (7.1) take the more simple form
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and it is a straightforward exercise to prove that (7.3) is a first integral of (1.7), (2.8) and
(7.8).

dc,
The condition (7.7), due to (7.5) and v(0) = 0 lmphes —_ (0) = 0. Differentiating
Eq. (3.7) and taking into account that p(0) = v(0) = Cz(O) = C2(0) = 0, we obtain that
0%C .
also (_671 (z, s)) = 0, which geometrically means that all the Lorentzian world
€& e=0

lines from the “second neighbourhood” of the basic line I'; are parametrized by the same
parameter 7, specified by the function C,(z, &). Even if C,(1, £) is kept fixed, there remains
a possibility of reparametrization with f”(z) = 1 in (1.8), i.e. there is still left at our disposal
the freedom of choice of the initial value 1, of the parameter along each of the world lines.

This result justifies the following definition.

DEFINITION 7.1. A vector field w* which is a so]ution of Eqs (7.8) evaluated along
a Lorentzian world line I' parametrized by an arbitrary  and which satisfies (7. 7) as a con-
straint condition is called the natural second e.m. deviation. vector.

There remains still the freedom of choosing the value of the constant e in (7.2). In
virtue of (1.7) and (7.7) one can obtain that

i( o )_ __ [h Dr* prf
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Since the condition (7.7) requires that f = 0, due to Prop. 7.1. Egs (7.8) admit still equiv-
alent solutions of the form

eu’®

* e (7.10)
v |“;.uli

E
Il
£

Hence, replacing w* by w* results in adding e to the right hand side of (7.9), and the choice
of the constant e is therefore equivalent to specifying the value of the integration constant
in (7.9).

8. The second e.m. separation vector

Similarly like in the case of the natural first e.m. deviation (cf. Sect. 3), the natural
second e.m. deviation can be interpreted as an infinitesimal, parametrization preserving
mapping of the Lorentzian world line I'y onto such another line from the “second neigh-
bourhood” of I'y. However, even in the case of the natural second geodesic deviation
(i.e. for o = 0), the second deviation vector which corresponds to (7.7) during its evolution
along the basic world line I'; changes its inclination u,w” with I’g. But the general equations
(6.7) are flexible enough and permit for such a transformation of them, being the result
of a suitable choice of the function v, after which they will uniquely determine a second
e.m. deviation vector that preserves its inclination u,w* with the basic Lorentzian world
line I',. We shall now study this case in some detail.

Let us observe that in analogy to a remark made in Sect. 4 Prop. 7.2 is also a con-
sequence of our choice v = 0in the weak identity (6.6) when passing from Eqs (6.7) to (7.1).
Now, a similar question arises whether is it possible to find such a function v that substi-
tuted into Eqs (6.7) will give us the second e.m. deviation equations preserving the product
u,w", or a simple function of it. The answer follows from an immediate transformation
of Eq. (6.6) to the form

1 Dr* Drf 1 Dr*\?
= — R g urPru’— —
v dr {ulu [h,, dr de et e uu ( dt)]

N kaFqgu w’} d [ k i( u,w* )]
\/quul dt Vit 4t \Vjuu| ’
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where use was made of (1.7) and (1.6). Thus, if one accepts that
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then Eqs (6.7) transform to the form
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The system of equations (1.7), (2.8) and (8.2) admits already the desired first integral.

PROPOSITION 8.1. In an arbitrary pseudo-Riemannian manifold ¥, any solution
of the system of equations (1.7), (2.8) and (8.2), with A and u given by (1.6) and (2.7) cor-
respondingly, satisfies the relation

1 d( U ) c ¢ (8.3)
— — — | == = const. .
Jiugh @t \Jiughid

For the same reason as before, for each set of initial data in (6.3), Eqs (8.2) have
a unique solution. But two different sets of initial data may still lead to solutions equivalent
in the sense of (6.5), as Prop. 7.1 can also be proved for the case of Eqs (8.2). Hence, Eqs
{7.2a) establish an equivalence relation of initial data for (8.2). To select a single repre-
sentative from each class of equivalence, one has to choose some definite values of the
constants e and f'in (7.2). This can again be done by adding to Eqs (8.2) a constraint condi-
tion which can be imposed in the form of the conservation law (8.3) and this requirement
will be compatible with the evolution governed by Egs (1.7), (2.8) and (8.2).
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The transformation (6.5) from a solution w* to w* with y defined by (7.2b) results
in adding f to the constant Cj in (8.3). Therefore to fix £, it is sufficient to fix the value of Cs.
The simplest choice is to 1equire that

u W

\/Iu,_ui'l

and because of Prop. 8.1, it is sufficient to impose this constraint on the initial data only.
Since the condition (8.4) requires that f = 0, due to Prop. 7.1 Eqs (8.2) admit still equivalent
solutions of the form (7.10). Hence, replacing w* by w* results in adding e to the constant
in (8.4). It is convenient to accept

= const, 8.4)

u W =0 8.5

as a constraint specifying the value of the constants in (8.4) and (7.2). Let us however
&x

, D
observe that Eq. (8.5) is compatible with the first integral (8.3) iff 7’1 satisfies the condi-
T
tion
u, Dw*

2 —— = oF,u'w. (8.6)
Jiwa# a7

Such requirements have an obvious geometric interpretation and-justify the introduction
of the following definition.

DEFINITION 8.1. A vector field w* which is'a solution of Egs (8.2) evaluated along
a Lorentzian world. line I" parametrized by an arbitrary parameter 7 and which satisfies
(8.5) and (8.6) as constraint conditions is called the second e.m. separation vector.

It should be noted that the second e.m. separation vector, like any second-e.m. devia-
tion vector defined by Eqgs (6.7), is a mapping of the basic Lorentzian world line I'y onto-
such another line in its infinitesimal neighbourhood. This mapping does not however pre~
serve the parametrization of the world line, as it follows from a discussion analogous to that
preceding Eq. (7.6). Moreover, contrary to the case of the first e.m. deviation, even in the
case of the second geodesic deviation (i.e. for ¢ = 0) the two sets of differential equations,
Eqs (7.1) and Eqgs (8.2), are not identical, and the two kinds of the second e.m. deviation
vector do not merge into a single concept of the natural second geodesic deviation vector.

9. Relationship between the two kinds of second e.m. deviation

The whole scheme developed in Sects 6-8 indicates that there must be also a relation
between the natural second e.m. deviation and the second e.m. separation vectors. As
a corollary of Prop. 6.2 it follows that if we have two members of the family of systems
of differential equations (6.7), corresponding to the two functions v and v respectively,
then their solutions must satisfy the relation (6.5) in which the function v is uniquely deter-
mined by Eq. (6.8) with an appropriate initial conditions. Hence, taking v = 0 and vin'the
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form (8.1), by solving Eq. (6.8) we obtain that

: 1 pr* pr* .
w0 ={[[ 5 o (1 o +Ramae)

To

I'd

( 4. Dr*y\* koF, '
+( . Z —r) —-—0 o~ w] eXp< J /l(z”)dr”) dw'v+j}
\u,u” dr \/Iu;uAI K '

%o

x exp (— f /l(t')dt'),
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where g and j are integration constants. If one now takes into account the weak identity
(1.6), the expression for p can be rewritten as

T

® = —— U[ Vi - e (h o oo
PO T UL i\ &

—_— . DrY\? ‘
+Ra,,,u“r"r7u") ++/ Iu,_uﬂ( 2 5 r) —kaF,,,,u’w”] dt+ ]} .1

u,u” dt

The assumptions v = 0 and (8.1) mean that the formula (6.5) with v given by (9.1) trans-
forms a vector w* which satisfies Egs (8.2) with a constraint condition (8.3) into a vector
w* being a solution of Eqs (7.1) and constrained by Eq. (7.3); the constants C, and Cs
in the constraint conditions are arbitrary, but fixed for the solutions considered.

Let us meanwhile assume that {w}, £3} are the data for w® in the initial value problem
(6.3) that are constrained by (7.3), and {w§, 13} are those for w* restricted by (8.3). Making
use of the Lorentz equations in (8.3), we can eliminate the term aF,,u“w" from (9.1) and
write -the relation (6.5) with v given by (9.1) in the form

T

(r) { j [(g+ kCs) v Juzu|
\/ ulu

to0.

k Drf Dr ' D
- ",—————(h 'L‘prgzuﬂryr u +u _"v—)

Wwi(7) = wiT)+

Vit dr dt
Va2 %,;)2] i} ©2)
Substituting here 7 = 1,, we obtain |
e whg I 9.3)

Te—
12s,u5ul|
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and
kg,puo(w” Wo)
ViZubutl
The relation (9.3) then reads

Ry (W5 —wh) = 0. (9.4)
Differentiating (9.2) and putting t = 1, gives

- . . 1
ty = h“,,tg + jaF“puﬁ +uf {(g+ kCgs)— u_u*
ul

y pr’ Dr? Y 1 Drf\? 95
u__— - .
Y ar dr e TT ‘uut “s G =10 ©3)

From (9.5) and (7.3) it follows that

X

g = C,—kCs. (9.6)

Egs (9.3) and (9.5), with (9.6), define a transformation {w§, 13} — {w3, 1%} of initial data
that must accompany the transformation (6.5) with y given by (9.1). The transformation
of initial data contains one arbitrary parameter j, while C, and Cs are fixed. Observing
that due to (6.5) F,,,u"w" F,,u‘w” and making use of (7.3) and (8.6), one finds the inverse
transformdtion to (9.5):

- . koF 3 ulw?
15 = 15— joF™gub + uj {(kc,— Co+ ~r—
\/lgzv“o!‘ol

i Dr* Dr? 1 Dr*
i | hgy—— —— +Ryppatt®r'ru’— — .
*gl,uéur,["”’dr de T Remarru’ uu( dr)] } 61

The foregoing considerations can be summarized in a form of a proposition.
PROPOSITION 9.1. A solution w* of Eqs (8.2) along a given Lorentzian world line

I, satisfying the. constraint condition (8.3) with Cs being fixed, can be transformed into
the vector

T

- u® _ k Drf Dr?
W= w4 (C —kC)\/]uu"l-——-——( —_—
Tt (e i o (o 0
: Dr* »
+R,,,,u"r"r"u‘) +Vu lull( “s y ) ko'F,,u'w’] d‘t+j} (9.8)
wut dt

being a solution of Eqs (7.1) along the same line I" and satisfying the constraint condition
(7.3) with a fixed value of C,; j in (9.8) is a constant. The inverse transformation
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w* — w* can be pbtained from replacing F,ﬂu"w” in the integrand by FufwP. The initial
data for one of the vectors determine these for the other by means of Eqs (9.3), (9.5) and
.7).

COROLLARY 9.1. If w* is a natural second e.m. deviation vector and w* a second
e.m. separation vector all the equations (9.1)-(9.8) remain’ valid after substltutmg into
them g = C, = Cs = yw* = g,,,uowg = 0. Since w* satisfies two and w* only one con-
straint conditions, the transformations w* — w* and {w, 12} — {w, 73} involve necessarily
one free parameter j representing an additional degree of freedom. In the inverse transfor-
mation w* - w" one ought to substitute j = kg, uiwh(|g,,ubuyl) /2, and the transfor-
mation {w3, 13} — {w}, £} does not contain any free parameter, since from (9.4) in the
case considered now we obtain wi = i° W

Let us also note that Eqs (6.2) are invariant under arbitrary reparametrization
of the basic world line I'y, whereas every one of the systems of Eqgs (6.7), labelled by a fixed
furiction v, taken separately does not enjoy such an invariance property. However the two
sysfémsf of equations, Eqs (7.8) and Eqs (8.2) respectively, are again reparametrization
invariant. To see it, one onght to transform each of the two systems to a form which is mani-
festly invariant.

If one eliminates the functions 2 and u from Eqs (7.8) by means of (1.6) and (2.7),
taking into account the constraint condition (7.7) and the symmetry properties of F,; and
R, pys> ONeE obtains the following differential equations for a vector field w; along an arbitrary
parametrized Lorentzian world line I" and for an arbitrary e.m. deviation vector r* along

this line:
D { 1 [Dw;',‘ it o ( u, Dr u* u, Dr8\?
dt N/I“A“.ll dt - P odr \u* de ‘\/lulu | uut dt
2 ( .
‘/ lu,_ul'l »
42 _F, ) iy —— ( :
——Fg..; uPriu’r
Via) ™ Vi U
' 27ed 2 Dr?
———F,"u )(u“w}+2—r’) = ——R* [r’————
\/ luau h ’ dt vV !“1.“‘] - dt

. Drf ., Dr’
+ufr (17 ——)] w—g (F,,-" —d% +R“,,,,,F‘,,u’r") o ©9.9)

R, 70"’ — o(F*wi + F*., r’)}

\/l“z

which must necessarily be considered in conjunction with the constraint condition (7.7), i.e.

@ gz dr T+ Rant "I

pr* DA Dw:~ 1 ( Dr")z
u =0,

“dv uut
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since otherwise it might have happened that their solution had not been a natural second
e.m. deviation vector, for Eqs (9.9) admit (7.3) and not (7.7) as their first integral. The mani-
fest invariance of Eqs (9.9) and of the constraint condition is evident. Besidgs, these equa-
tions are solvable with respect to the highest derivatives and admit therefore a well-posed
initial value problem. All this means that along a given Lorentzian world line r, under-~
stood as a locus of points, and for a given field r* Eqs (9.9) together with the constramt
condition (7.7) and the initial value problem (6.3) uniquely determine a natural second e. m
deviation vector field wj, which therefore has a parametrization independent, geometnml
meaning, In particular, when I' is parametrized by the natural parameter sand riisa natural
first e.m. deviation vector, one must substitute into (9.9) the relations (1.15) and (3.10),
which result in a simplified version of (9.9) or in the following form of the second e.m.
deviation equations:

D*w® .
dszn +Raﬂ76upwzué = (Raﬁyé;a —{-R“gy,,;ﬂ)uﬁu?r:r "
prt , Dt
+4Raﬂrﬁ — u"rﬁ-i— o F“p;y‘,u"r;’rﬁ +F¢ﬂ;v u'w] r
dS ’ ’ ds /
prt ,
+(F*R? 5, — R® 3gF® )ririu + F*, "&f] (9.10)

which after setting o = 0 coincide with Eqs (3.10) quoted in {1].
A similar elimination by means of (1.6) and (2.7) of the functions 4 and u from Eqs
(8.2) shows that the second e.m. separation vector w? satisfies the equations

D (1 [Dw; e DP (8 D\ w (D D
* \/'u‘u dr P an \ugdt de)  wgt\ M dn
uuf

+ Ry 5 r'ru )] ———R° rﬁu"r's—a[(g“ﬂ,.;_‘ )F w2

Py \/Iu)_u | Byd ulu »

1 ko
+F"ﬁ; r r"]} e (Reﬁ S Fﬁ_ ;e;“ya) B
7 g\ Vg
- = ke s D .
* g (ot Fo) (w2 )
FUE "

2 R® ’ﬁ Dr? iy U, Dr :I s
= —— +ubr u
Viuzut| o u,u* dr

H 4 Dry 3 g , 7.0 {
G\ Fg)" —— + RO\ Fgu'r P 9.11)

dt
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which must be supplemented by two constraint conditions (8.5) and (8.6), i.e.

U, . Dwj
\/IuA“AI dr

The initial value problem is here again a well-posed one and the second e.m. separation
vector field wg has a parametrization independent, geometrical meaning, although in general
it differs from the vector field wy. In particular, Eqs (9.11) and the constraint conditions
can be easily written in the case when I" is parametrized by the natural parameter s and
ré is a first e.m. separation vector, or in the equivalent form

uws =0, = oF zu'wt.

D*wt .
i +R Byolt Pwlhi® = (R p).,,,+R°‘,y,,;p)upu7r3r§
brf bre d Drf Dr
+4R* urt4d oF, uPry+u* —| h 2
B gs T ds ( BHrs) ds| " ds ds

+ Ryt rirou’ + oF g uwl —(oF pu” rZ)z] +0 {F “gastt" 131

Drt
+F, [u w) +,2 r7+2u ri(cFs.u r’)]
[ Dw v
+ (Fapproz - RayaﬂFﬁz)rzr:ua + de [ ds ‘gsﬁ‘ (O'F.’aurrg)

P Dr! Dr? pde s -
+u’| hys o ds + R et rirsu’ + 0 F 5" W,y . 9.12)

Eqgs (9.12) after setting 6 = 0 and taking into account (8.6) coincide with Eqgs (4.2) quoted
in [1].

As a final observation let us remark that from (9.8) and (8.5) it follows immediately
that the second e.m. separation vector can always be represented in the form
wi=p" ,w" = wi, where w, is a natural second e.m. dev1atxon vector.

10." Summary

Concluding this paper, we would like to supplement the general characteristic of the
subject which was partly presented already in the introduction by a retrospection of some
of the results obtained here.

Perhaps the largest difference between the approach accepted in this paper and some
other approaches that can be'found in the literature is in the assumption of a general para-
metrization along all the world lines. This kind of approach is motivated by our conviction
that in relativity it is the world line understood as sets of points and not as a parametrized
curve which is of physical significance.
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True enough, in Sect. 1 among others, the concept of the affine parameter along
a geodesic is generalized to the case of a Lorentzian world line. This generalization is related
to-the possibility of expressing in a specific form the law of transport of the tangent vector
to a Lorentzian world line. This specific law of transport is a relativistic generalization
of the classical Larmor’s theorem, and is of course of some physical significance.

However, we start the study of first and second e.m. deviations, not from this preferred
parametrization, but from a general one. An additional reason for doing this is not only
an attempt to obtain a more general formalism, which very often has also a practical signifi-
cance'as e.g. in the case of the Kerr solution, where one usually considers the parametriza-
tion along the infalling geodesics in terms of the coordinate r and not of the affine parame-
ter, but it is mainly due to a larger flexibility of the concept of deviation based on such
an approach. The general, reparametrization covariant .e.m. deviation, determined by Eqs
(2.4) in the case of the first and by Eqgs (6.2) for the second e.m. deviation, admits the freedom
of certain gauge transformations (cf. Prop. 2.2 and Props. 6.1 (ii), 6.2, respectively).
Choosing appropriately the gauges, by fixing the function u in Eqs (2.8) or v in Egs (6.7)
respectively, one can obtain several different e.m. deviation fields both for the case of the
first and of the second order.

One of the results connected with this approach is the identification of two types of e.m.
deviation vector fields, of the natural e.m. deviation vector and of the e.m. separation vector,
as well as the formulation of their laws of evolution and of the constraint conditions by
which these laws must be supplemented. In the limiting case of geodesics, the concepts
of the natural first geodesic deviation r; and of the first geodesic separation vector rg are
nearly identical (the only difference follows from the constraint conditions u,r, = const
and w,r; = 0, respectively), but they still differ in the case of the second geodesic deviation,
as it was already noted in {[1].

Another result, related to that mentioned above is.the determination of corresponding
gauges, which in the limiting cases of the first geodesic deviation and the natural second
geodesic deviation reduce to known results, but in the case of the second e.m. separation
vector are new in the limiting case as well.

In Sects. 3, 4 and 7, 8, we give the geometric interpretation of the two types of e.m.
deviations and in a future papers of ours [11] and [12] some important examples of the
two types will be considered. Therefore, it is interesting to know the explicit gauge transfor-
mations which map the two types on each other. Such transformations have been found
in Sects. 5 and 9, respectively. The separation vector seems to be well suited to the defini-
tion of conjugated points along a Lorentzian world line as well as to a study of singularities
of spacetime, since in the Iimiﬁng case of geodesics it is just this vector field which plays
an important role in the proofs of the singularity theerems (cf. [6]).

In principle, the whole scheme discussed here applies to both spacelike as well as time-
like Lorentzian world lines. The sign differences between the time- and spacelike character
have been taken care of by the operation of the absolute value and by appropriately chosen
indicator k. The null case is left as a challenge for the future.

Another possibility of a generalization of the approach discussed here-is connected
with a tacit assumption made in this paper that the charge-to-mass ratio is-always the same,
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along all the world lines adjacent to the basic one. In a discussion of some more realistic
physical models, one would rather expect that the charge-to-massratio changes as one passes
from one of the world lines to the others.
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