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Attempts to explain the A7 = 1/2 rule in K — mr decays are discussed. The standard
effective Hamiltonian' approach to non-leptonic decays is shortly reviewed. Recent long
distance approaches, some of which give encouraging results, are described. It is concluded
that long distance approaches to the penguin diagram improves the understanding of the:
Al = 142 rule.
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1. Introduction

In spite of the general success of the standard model, a satisfactory explanation
of the well established A1 = 1/2 rule for K — nn decays still seems to be lacking, Experi-
mentally, this rule can be expressed as

IKS->n"n")
—— " =~ 450,
I(K* - n*n°% (0

The basic non-leptonic strangeness changing interaction, which is diagrammatically
shown in Fig. 1, may at the free quark level be written as a product of two left-handed
currents:

HE’ ~ Ggsin ¢ cos 0" (su) ™ (ud)*, (2a)
where Gy is Fermi’s coupling constant and 8. the Cabibbo angle.
J
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Fig. 1. The basic non-leptonic interaction at quark level
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Msu), = ayy,s = ay,Ls; [y =Ly, L =3(1-75)] (2b)

is the left-handed quark current. During the last decade, non-leptonic decays have mostly
been analysed [1-3] in terms of an effective weak Hamiltonian consisting of local four
quark operators multiplied with coefficients determined by the renormalization group
equations (RGE). Eq. (2) is the “bare” (i.e. free quark) version of this Hamiltonian Hy,.
‘Theoretically, the AT = 1/2 rule states that the matrix elements of Hy(47 = 1/2) dominates
over Hy(41 = 3/2). However, the bare basic interaction (2) involves 47 = 1/2 and 41 = 3/2
parts of comparable magnitude. Typical quark diagrams for K — nr are given in Fig, 2.
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Fig. 2. Typical quark diagrams for K — nw (gluon interactions are not shown): a) The quark decay
mechanism thought to be dominant. b) The exchange mechanism. ¢) The annihilation mechanism. B) and
¢) are related through a Fierz transformation)

1t is often convenient to use “pion reduction” (current algebra and soft pion limit) to relate
the physical K — ntrx amplitudes and the off-shell K — = transition. These relations can
be written in terms of two dimensionless quantities D(A7 = 1/2) and D(4I = 3/2) para-
metrizing AI = 1/2 and 47 = 3/2 amplitudes respectively:

i

AKS > ¥ ) ggmry = ok Gf(mE—~mAD(AI = 1)2), (3a)
AK™ > 11005 =2 :-/'— &fumi ~m2D(AI = 32), (3b)
AK™ = ) ar=yp2,32 = — 3 Gfifipk - DI = 1/2,3[2), (30

where G = \/5 G sin ¢ cos 8. It should be emphasized [4] that the K — = transition
must be proportional to the product of the (off-shell) K and # momenta. This property
follows from chiral Lagrangians [4, 5]and within the so-called vacuum insertion approxima-
tion, where

F¥suy ~ fxpk,  jM(uay* ~ f,ph, 4
‘for the K — = transition. Our task is then to calculate the ratio

_ D(AI = 1]2)
"= bur=3p° )
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From the bare interaction (2) one obtains r = 5/4 in the vacuum insertion approxima-
tlon, while the experimental value obtained from (1) is [4]

P lexp = 32. , ©

This big number has been a great challenge to theorists. In 1974, perturbative QCD
corrections (see Fig. 3) to the effective weak A4S = 1 Hamiltonian was performed. The
calculations gave qualitatively an enhancement of Al = 1/2 amplitudes, but the result
was numerically only a partial success [1]. Later, Shifman, Vainshtein and Zakharov (SVZ)
f2] proposed that the so-called penguin diagram (see Fig. 4) could explain the 41 = 1/2

WS G

Fig. 3. QCD corrections of order «; to the “bare” interaction in Fig. 1

Fig. 4. The “penguin” diagram

rule. This diagram corresponds to a pure 47 = 1/2 transition and introduces operators
of “left-right” type (i.e. involving a product of a left-handed and a right-handed current)
in addition to the pure “left-left” operators occurring in the eﬁ'ectlve Hamiltonian of Ref.
[1]. It was argued [2] that even if the Wilson coefficients of the new left-right operators are
small compared to those of the left-left operators, their matrix elements for K — m might
be big enough to give an explanation of the A7 = 1/2 rule. This has recently been question-
ed by several authors. Moreover, to obtain a short distance behaviour of the penguin
diagram, the charmed quark mass is formally considered to be big compared to the typical
hadronic mass scale, which is also questionable. Certainly the penguin diagram generates.
a pure AI = 1/2 interaction, but the question is how to handle it and how important it is.
In general, there seems to be a growmg feeling among physicists workmg in the field
that the long distance aspects of K - nin decays are important [6-10]. To be more specific,
recent lattice calculations [9] considering so-called ““eight graphs” (basically corresponding
to left-left interactions of Ref. [1]) and “eye-graphs” (basically corresponding to the penguin
diagram) show a dominance of “‘eye-graphs”, which indicates an explanation of the A7 = 1/2
rule. On the other hand, a recent analysis [10] in terms of QCD sum rules and chiral La~
grangians fails to explain the A7 = 1/2 rule- In Section 3 some recent lpng distance
approaches are shortly reviewed. In some recent papers I have proposed that the penguin
diagram should (mainly) be treated as a long distance effect [6-8]. That is, the dominating



642

contribution to the pgmguin diagram is due to low loop momenta where confinement
effects are importan.. This low momentum approach to the penguin diagram is presented
in Section 4. Discussion and conclusion are given in Section 5.

2. The effective Hamiltonian approach

a) Perturbative QCD corrections

Formally, non-leptonic AS = 1 interactions can be described by the time ordered
product of two weak current operators J; :

Hy(x) ~ [ dyT{T/ ) (MIDR(x - ), (M

where Dy is the W-boson propagator. In the limit where the W-boson is considered as
heavy, the weak Hamiltonian (density) Hy can be written as a short distance expansion
[1-3]

Hy =G Y, C(WQ(w), ®)

where G is given below Eq. (3) (we restrict ourselves to four flavours because we do
not consider CP-violating effects). The Q,’s are four quark operators and the correspond-
ing coefficients C; are determined by RGE. These depend on the renormalization point u.
The matrix elements of Hy between hadronic states — i.e. the physical amplitudes — must
of course be independent of u. The first calculation of the weak Hamiltonian of the form
(8) — taking into account QCD corrections to first order in the strong fine structure constant
ag — was performed by Gaillard and Lee [la] and by Altarelli and Maiani [1b]. Their
Hy, involved two quark operators Q. :

Hy = G[C.Q,+C.Q.], (9a)

Qs = Q4105 (9b)
Q4 = dy*Luiiy,Ls—(u - o), (9¢)
Qp = #y*Ludy,Ls—(u — c). (9d)

The operator Q, corresponds to the free quark diagram in Fig: 1 (see also Fig, 5a),
while Qp is induced by the QCD diagram in Fig. 3 (see also Fig. 5b). The explanation

u L d u" L u
c b

Fig. 5."Diagrammatic repreSentations of the operators Q4 and Qp (for W considered as *heavy”}
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for this is easy when remembering that exchange of a gluon involves the colour matrix
product

tita = [5 O — — 5:,51:1] > (10)

where i, j, k, I are colour indices for the quarks, and N, = 3 the number of colours. Using
in addition the Fierz transformation

D7, Lvs By Lyp = P47, Lyp ey Ly, (11)

it is easily seen that the first term on the right hand side of (10) gives the operator Qp.
From a RGE-analysis one obtains. the coefficients [1]

[ wsEHY: as(y1?)  (MI\T*
con- (L [ o

where b = 11—2Ng/3 (N being the number of flavours) and the quantities y, are deter-
mined by the anomalous dimensions of the operators Q.. For ¢ $ 1 GeV and ag(p?) ~ 1,
one obtains numerically

C, =07, C_=~25, (12b)

while the bare values are C® = 1. Using the effective Hamiltonian in (9), one obtains
the K — = transition amplitudes (see Eq. (3))

DMVl = 1/2) = [C_Z_+3C4Z,], -(13a)
D(LL)(AI = 3/2) == % C,Z,, (13b)

where Z, are factors to correct for the vacuum insertion approximation descnbed below
Eq. (3). (The superscript LL indicates that the left-left structure Hamiltonian of Ref. [1]
is used.) It is shown [11] that Z, < 1. More specific, Z, are probably bigger than 1/2.
Experimentally, to fit the 47 = 3/2 amplitude from (13b), Z, =~ 0.6 [4]. This is also in
agreement with a recent QCD sum rule calculation of the A7 = 3/2 'amplitude [12}. For
the ratio defined in (4) one obtains from (13)

3C.Z
=111 ——|~3 to 4. 14
r 2[+2C+Z+] to (14)

Qualitatively, this ratio goes in the right direction compared to the bare result 5/4, but
is numerically still far below the experimental value in (6).

b) The penguin diagram
It was noted in 1975 by Shifman, Vainstein and Zakharov (SVZ) [2] that the so-called
penguin diagram (see Fig. 4) was of the same order of magnitude as the QCD corrected
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diagram (Fig. 3) of Ref. [1]— and that this diagram induced a pure 47 = 1/2 interaction.
Considering W as heavy, and using a Fierz transformation, the penguin diagram is drawn
as in Fig. 6. Due to the GIM— mechanism [13], the high loop momenta in the u- and c-quark
loops will approximately cancel, and the result is in the leading logarithmic approxima-
tion (for m? > |k?| > m?) proportional to ‘

1 kzm(mi) (15)
i VK

s-—b———i———.—d
uc
y
- G -
Q z q

Fig. 6. Fierz-transformed version of the penguin diagram (for W considered as “heavy’’)

where k is the gluon momentum. The expression in brackets is the result of the loop inte-
gration. It should be emphasized that the factor k2 from the loop calculation is cancelled
by the propagator factor 1/k? and thus the penguin diagram induces (when only dominant
terms are kept) a local interaction

HE® = GCpelp, (162)
where
p=dy.Ls Y vRq, (16b)
q=u,d,s
2 2
Con ~ 2801y ( i ) ~107%, (160)
4 )

u is the renormalization point for quark and gluon momenta, i.e. [k?| ~ u*. The smaliness
of Cypy reflects the GIM-mechanism [13]. (Strictly speaking, there are two penguin opera-
tors. But using colour symmetry, their effect can be described in terms of one operator and
one coefficient.) One should note that the vector quark current at the lower vertex in the
penguin diagram can be divided in a left- and a right-handed part, while the weak interac-
tion is purely left-handed. Thus the penguin diagram can be divided in a left-left (LL)
and a left-right (LR) part. The LL part is small compared to the LL interaction in (9).
The point of SVZ was that Qp is of left-right type. And because of this new chiral structure,
HG® might have bigger matrix elements than the operators Q4 of (9):

m,z(mf Crr
[mu + md] [ml + mn]

AK™ > 1) ~ Gfif, an



645

This is due to the current quark masses in the denominator obtained by combining a Fierz
transformation with PCAC:

P40 LysPcy" Ryp = —29 RypPcLlys, (18a)
au}ﬁ ~ [mu"*'ms,d]u_)u'}’Sws,d ~ (mK,n)2¢l(,m (18b)

where v is a quark field and ¢ a meson field.

Depending on the values of u jt has been argued that the expression (17) has some
chance to explain the A7 = 1/2 rule. However, as pointed out by Dupont and Pham [4], the
amplitude (17) does not satisfy the chiral qdnst_raint (3c). The solution to this problem
was found by Donoghue and Gavela et al. [14]. By taking into account additional tadpole
diagrams (see Fig. 8b) corresponding to so-called anomalous commutator terms [3, 14, 15]

S\L/d
X
q/v/l?‘\‘\q:u,d,s

Fig. 7. Diagrammatic representation of -the penguin diagram induced left-right operator Qp

ds
'""\r’”" s ? —d
T i 1]
a b

Fig. 8. Quark diagrams for K — = due to Qp

it was shown that the right hand side of (17) has to be multiplied by an extra factor p - p,/ 43,
where A ~ 1 GeV. Thus the chiral constraint (3c) is restored, but A“®) is now suppressed
by a mass factor A~2, and according to the corrected version [14] of (17), the penguin
diagram seems to be unable to explain the 47 = 1/2 rule [14a, 16]. It should however
be emphasized that it is the standard short distance approach of the penguin diagram [2]
combined with the use of (18) which ceases to explain the 47 = 1/2 rule. The value of
C, is somewhat uncertain (for a further discussion, see subsection c) below). In a rather
phenomenological approach one could thercfore take Cyy as a free parameter [2b, 3, 17].
However, fitting Cyy to explain the A7 = 1/2 rule, one may come in conflict with the upper
limit on the process Q — y= [18]. This process depends on the penguin diagram (where
a photon can be emitted from one of the external legs of Fig. 4) but not on the ordinary
left-left interactions (i.e. the diagrams in Fig. 1 and 3).

¢) pu~(in-)ydependence

Weak non-leptonic processes are given by matrix elements of the weak Hamiltonian
Hy, between hadronic states [4) and [A'):

W |Hyihy = G 3 C(w) <2, (192)
@y = CHIQW) h). (19b)
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Qur problem is now that the calculation of the matrix elements {(Q;> is a non-per-
turbative question. Even if lattice calculations seem to be promising [9], one should at
the moment still consider various model dependent  calculations of the matrix elements.
Such calculations have extensively been given in the literature, for instance in terms of the
vacuum insertion approximation [2, 3, 17], the bag model [3, 17, 19], the harmonic oscillator
-model [17, 20], and the Skyrme model [21]. Bounds on matrix elements from QCD sum
rules have been given in Refs [11] and [15]. Performing model dependent calculations of the
matrix elements we encounter a problem: The renormalization scale u is. not a parameter
in the model dependent calculations. Thus the u-dependence of the {Q,>’s is lost,
and performing practical calculations, one has to argue for a “reasonable” choice of the
value of x to be used in the coefficients C;. One may of course argue that u is of the same
order of magnitude as some typical mass parameter in the model. However, the model
result of {Q,> need not coincide with the true value for any u. This kind of arbitrariness
is of course unsatisfactory. These problems have been discussed by Buras and
Stominski [22].

The ambiguity due to the “choice of p” is numerically not a problem for the leading
log corrections ~In [M%/u?] of Ref. [1]. However, the leading log expression (16c) for
Cig is for m, ~ 1.4 GeV and p ~ 1 GeV very sensitive for the specific value used for p.
Moreover, for such values of m_ and p, In(m?/u?) is hardly any leading log. It should be
noted, that the expression for Cp g in (16¢) is only valid in the leading log approximation.
Using the exact expression for the penguin loop calculation, the (naive) value obtained
for Cp is nonzero for u = m, [18, 23]. It should be emphasized that when/if a model
dependent calculation scheme for hadronic matrix elements is chosen, the choice of x4 must
be consistent with that model. (That is, if it is reasonable that a model calculation of a matrix
element corresponds to g =~ Agcp, sy, it is inconsistent to use 4 = 1 GeV in the C;’s.)
This means that for the diagrams in Figs 3 and 4, contributions from low loop momenta
P < p must be regarded as part of the wave function and/or the quark propagators and
vertices must be modified due to confinement for loop momenta p < p. Only in this way
we can count all contributions and avoid double counting [8]. Such low momentum loop
contributions will be considered in Section 4.

3. Recent approaches to K —» nn

a) Lattice calculations

As emphasized previously, the calculation of the matrix elements of the weak operators
is a non-perturbative question, and one may hope to calculate these by means of lattlce‘\
gauge theory [24]. Recent lattice calculations of weak operators by Bernard et al. [9]
seem to be promising. These authors use pion reduction and consider the matrix element
of the operators Q. between m and K states. (There is at present a controversy [25, 26]
whether also the K — vacuum transition amplitude plays a role.) Then these states are
replaced by their quark field content (i.e. [n~) = iiysd|0)), and the authors consider Greens
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functions like
0}d(2)ysu(2)Q +(x)iE(y)yss(y) 10> (20)

on the lattice. Wick contractions lead to the so-called “eight-graph” (Fig. 9a) and “eye-
-graph” (Fig. 9b). It should be noted that the u-quark (c-quark) loop in Fig. 9b is not
.a pure QCD-loop because of the weak interaction at point x, and this loop should therefore
not be removed in the so-called quenched approximation used in lattice QCD. Basically
Fig. 9a corresponds to amplitudes obtained from the left-left interactions ‘considered in
Ref, [1] (see the diagrams in Fig. 1 and 3) while the ““eye-graph” corresponds basically to
the penguin diagram (see Fig. 6). The calculations use an ultraviolet cut-off nfa ~ 3 GeV,
where a is the lattice spacing. For further details see Ref. [9]. It is found that the “eye-
-graphs” dominate significantly, and the ratio in Eq. (4) is found to be ~20. However,
these calculations are still in an early stage.

b) QCD sum rules

Recently, Guberina, Pich and de Rafael have calculated K — nn amplitudes using QCD
sum rules [10, 12, 27]. These authors consider the effective Hamiltonian in Eq. (8) and its
counterpart within chiral Lagrangian theory [4, 5]

ZL(4S = 1) = g(AI = 1)L + (Al = 3/2)C!, (21a)

where Z/® and #®/? represent the AI = 1/2, and the AI = 3/2 part of the interaction,
respectively. The % s in (21a) are written in terms of the chiral fields, for instance

LYD& Tr (3%,Ut0*U}; U = exp {i £ ; } (21b)

where A? and n%;a = 1, ..., 8; are the SU(3) flavour matrices and octet mesons, respectively'
(/x = f = f in the SU(3) limit). The authors study the two point functions

OIT{HPOHE0)} 0, (22a)
<O T {£®x)2™(0)} 0), @2b)

where R refers to a part of Hy, or #(4S = 1) corresponding to a given representation of
SU(3) flavour. (22a) contains quark and gluon condensates, and the imaginary part of
(22b) involves

> KoLE®Iry2,
r

where the sum runs over mesonic intermediate states I' = Kn, Knn, — —. By means
of finite energy sum rules one may make contact between the functions in (22), and the
couplings g(41 = 1/2) and g(4I = 3/2) in (21a) can be determined. While the obtai_ne&
value for g(41 = 3/2) is in good agreement with experiment [12], the obtained value for
g(4I = 1/2) is an order of magnitude too small [10]. That is, the method fails to explain
the AT = 1/2 rule. One may possibly find this surprising because the applied method is rather
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close to a “first principle calculation”. The same method gave the value 0.33 for the B-param-
eter in K°—K° mixing [27]. A slightly different method is used for K°—K° mixing by
Decker [28], who considers a three point function involving Hy’ and two axial currents
with the flavour content of the two involved mesons. The obtained value for the B-param-
eter is =~ 0.55.

c) Instanton effects

Konishi and Ranfone [29] have pointed out that instanton effecis induce new 45 = 1

operators (see Fig. 10) not included by the authors of Refs [1] and [2]. As a typical example,
consider

H{;‘ISL = éclnst.anst.) (238.)

i
)
a

i
M

{—RSLaRuL—% ﬁkanvsLaRG’”uL'l‘ ...}. (23b)

s %X d
s d
pr n K n
en
u u
1]
®

Fig. 9. Diagrams considered in the lattice approach of Ref. [9] a) The “cight-graph™. b) The “eye-graph”

Fig. 10. Diagram for the instanton induced dperator HMst, The shaded region represents the instanton,
which may flip the quark helicities

Note that this is (like the penguin operators) an operator of left-right type. In a modified
RGE treatment it is found that |Cp, | 2 |Cyigl- That is, (23) is at least as important as
the penguin left-right part of the effective Hamiltonian in Eq. (16). (Ci,,. includes the effect
instanton size ¢ < 1/u, while contributions due to ¢ > 1/u is regarded to be part of the
matrix element). As we have seen in Section 2b, this is probably not enough to explain
the 4 = 1/2 rule — but to draw a conclusion one has to wait for a further study of this
mechanism (including ¢ > 1/u effects). Anyway, instanton effects might at least provide
a part of the observed 47 = 1/2 enhancement.

d) 1/N expansion

An analysis of K — nn decays by means of the 1/N expansion has recently been per-
formed by Buras and Gerard [30]. The analysis can be visualized by quark diagrams related
to the vacuum insertion approximation. The method makes use of relations like

1
Oliy"Ls;| K> = 5 6:;<0liy"Ls|K> 29

c
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and the colour matrix relation (10). Keeping only the leading order in 1/N, it is found
that the theoretical value of the ratio r in Eq. (4) is improved. (An improvement of theoreti-
cal estimates of charmed decay processes is also obtained [31]). Depending on the values
of Cy a theoretical value for r of order 20 is obtained. In the real world we know that
the number of colours is 3, which is not a very big number, and the 1/N expansion method
applied to non-leptonic decays has recently been questioned by other authors [32]. However,
in a very recent paper [33], the authors of Refs [30, 31] maintain their original conclusion.

€) Other approaches to K — nn

Some other approaches to K — nw decays, which I will not talk about in detail, also
exist in the literature. Pham and Sutherland [34] argue that intermediate D-meson
states in the K — = transition may explain the A7 = 1/2 rule. Gali¢ has given a “microscopic
framework™ involving non-local meson-quark vertices [35]. Approaches in terms of Regge
poles and dispersion relations have also been given [36, 37].

4. Low momentum penguin contributions
a) A new philosophy

In this Section I will still consider the penguin diagram as the possible explanation
of the 47 = 1/2 rule. But it will be assumed that the penguin diagram is not short distancé
dominated. In other words, In (m2/u?) is not a leading log, Cyg is too small at the scalé
1~ 1GeV, and the quarks in the penguin loop feels confinement for loop momenta below
some scale A < m,. We make the following idealization: The loop momentum region
is divided in a “high momentum” (HMR) and a “low momentum” (LMR) region at
a scale A ~' 1 GeV < m,. In the HMR ordinary perturbative QCD is valid, while in the
LMR confinement effects have to be taken into account in some way. For the c-quark
loop, m, acts essentially as an effective infrared cut-off (just as the W-mass acts as an ultra-
violet cut-off). Thus the c-quark loop belongs entirely to the HMR, while the u-quark
loop gets contributions from both regions. In the HMR, the u- and c-quark loops approxi-
mately cancel, vizualized in the leading log approximation:

Cir ~ In (M3%/A%)—In (M%/m?) = In (m2/A?%). (25

As pointed out previously, this is a dubious expression, but we assume that C;p is small
at 4 = A. Thus we are mainly left with u-quark contributions for loop momenta below
A. In this region (LMR) we have to use a model which can take into account such low loop
momenta. In some recent papers [6-8] applications of the philosophy described above
are performed in terms of the MIT-bag model [38] and a chiral model with a mixed quark-
-meson phase [39]. This will be described in the next subsections.

b) The “bagged penguin”

~ The philosophy described in the preceding subsection was used in Ref. [6] by applying
the MIT-bag model in the LMR. This-was done by replacing the free quark propagators
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by confined propagators written in terms of MIT-bag wave functions:

S(x,y) = —i % {0(x0 = yo)wn(x)pn(y) — 0(yo— X)W (X) (3}, (26)

where the sum runs over different modes N, and the superscript C means charge conjuga-
tion for the anti-quark modes. The amplitude for the penguin diagram (Fig. 6) may then
be written

Ap ~ asG[C, +C_] ﬁ d*xd*yJi(x; s > DI™(x, )AYy; ), @7

where I1°* is a vacuum polarization like tensor:

I*(x, y) = Tr {S(x, y)y°S(y, x)y"L}, (28)

Jis > d)isa left-handed coloured current for the s — d transition, and 4%(g) is the colour
electric potential which can be deduced from the coloured quark current [38, 40). S(x, y)
is a sum over quark modes. Thus II”*(x, y) is a double sum over bag model quark modes
for the left and right part of the quark loop in Fig. 6. To obtain the contribution from the
LMR, this double sum should run over modes corresponding to energy-momenta below
A. For A ~ m,, one has to include (N, N') and (N', N) = (1S, 1P), (1S, 2P) and (2§, 1P)
with j = 1/2 and 3/2 for the P-states (Note that one needs one S- and one P-quark to get
a contribution. Thus the quark-antiquark pair in the loop has positive parity.) It is found
that the low momentum contributions calculated from (27) are in fact more important
than the standard short distance contribution given by Cg. Even if (27) represents a long
distance effect, the result can be parametrized in terms of an effective penguin coefficient
for the K — n transition

Cix = Cp (Bag) =~ (30 5)x Cpg. (29

It should be noted that according to our philosophy, low momentum contributions to the
loop diagram in Fig. 3 should also be calculated. Such effects may be parametrized as modifi-
cations of the coefficients C, of Ref. {1] (probably of order 109;). While these (and more
general the C;’s of Eq. (8)) are process independent, the low momentum loop contributions
are in general process dependent. For instance, Cp(Bag) is smaller for the weak baryonic
transition Q — E* to be used in the process Q — yE, mainly due to bigger bag radii for
the baryons. Thus an increase of the (low momentum) penguin effect in the case of K — nr
does not violate the upper Imit of the process Q@ — YE [18).

The result in (29) is of course welcome. However, in bag model calculations one
cannot control the chiral constraint in Eq. (3c) because the bag model is static (i.e. the
three momenta of the mesons are zero). Moreover, the bag model has trouble with chiral
invariance, and one may wonder if the amplitude obtained from (27) should — as in the
case of Eq. (17) — be modified [14] and suppressed by some mass factor. To answer this
question, one needs a model with chiral invariance, and which can account for the mo-
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mentum dependence of the amplitude (see Eq. (3c)). Moreover, the model should include
quarks in order to have a penguin diagram. Calculations within such a model [39] will be
considered in the next subsection.

¢) The “chiral penguin”

Georgi and Manohar [39] have introduced an effective chiral field theory which fits
nicely into the philosophy of subsection a). This model has three phases. The chiral sym-
metry breaking scale 4, is assumed to be separated from the confinement scale Aqycp.
More explicitly, one uses A, ~ 1 GeV. Above the scale 4, (i.e. in the HMR) we have
the standard perturbative QCD phase with gluons and current quarks. For loop momenta
below A, down to ~ Aqcp there is a mixed phase with gluons, constituent quarks and
Goldstone octet mesons (m, K, ). Below the scale ~ Aqcp gluons and quarks are integrated
out, and we are left with chiral interactions among mesons of the well known form

&£ ~ Tr {o,Ute*U} (30)

with U given by Eq. (21b). In the mixed phase, there are QCD interactions and chiral
interactions of the form (30). In addition there are meson quark interactions ~{g,/f)p * 7¥s,
where p is the meson momentum. In the mixed phase, the total axial vector current is

j:,u = gA‘I_"}’u)’s -;— A'aw_fauna~ (31)

where y is the SU(3) flavour triplet field and g, is the axial vector coupling at quark level.
Thefirst term in (31) givesrise to a quark loop contribution to f; at one loop level as a quark-
-antiquark loop for n~ — du — W-. Such a loop diagram needs a counterterm to keep
the physical f, at p> = m2. The mixed phase effective theory is non-renormalizable, but
A, is regarded as a physical ultraviolet cut-off for the theory (loop diagrams will typically
generate new higher dimensional operators suppressed by powers of A, ). The model
contains a direct K — n transition from Eq. (21) (this term corresponds to the vacuum
insertion approximation, Eq. (13) with Z, = 1), and K — r transitions through quark
loops.

Using the quark meson coupling described above, the low loop momentum penguin
diagram- corresponding to a K — & transition is represented by the ‘‘chiral penguin”
diagram in Fig. 11. The effective Hamiltonian of Ref. 1] renormalized at 4 = A4, is acting

Fig. 11. The *“chiral penguin” diagram

at point x (at the upper vertex of the diagram). For simplicity, we neglect penguin left-
-right operators (i.e. Ci g =~ 0) at u = A,. The “chiral penguin” diagram in Fig. 11 may
look nasty, but handled with care, it is-possible to extract the dominating parts.. In the



692

following some details from the calculation will be given: The s » dG loop is proportional
to a coloured current for s - d

[dy,Lts] - Fp(k®)k*[g" — k*k’[k*], (32)

k being the gluon (G) momentum. The factor k? is cancelled by the gluon propagator
(k?)~! (because of the tensor [g*’—k"k"/k?] in (32), the gauge dependent part of the gluon
propagator drops out, and the result is gauge invariant with respect to QCD). The loop
factor Fp(k?) has the dominant behavior ~In (Ai). Using (32) we are essentially left with
a'two loop calculation over a 'quark momentum (p) and the gluon momentum (k). The
term ~ g*" in (32) gives the local four-quark penguin operators within the standard approach
{2, 3]. The term ~k"k"” gives non-local penguin gperators which cannot be neglected when
the quarks are far off-shell, which is the case when the one loop result (32) is inserted in
a higher loop diagram {7, 8, 41]. For the “local part” ~g"* one may use a Fierz transforma-
tion to obtain an expression which is essentially the product of two one-loop expressions.
For the non-local contribution, which turn out to be —1/4 of the “local”, the calculation
is; however, more cumbersome. The gluon vector current at the lower vertex (point z in
Fig. 11) can be divided into a left (L) and a right (R)-handed part, while the upper vertex
(pojnt x) is pure left handed. Thus the amplitude due to the “chiral penguin” diagram can,
as described below (16), be divided into LL and LR parts. It is then found that the LR
“local” part is suppressed by at least A, 4 compared to the LL “local” part, and is numeri-
cally unimportant. Doing. the integral over the quark momentum (p) first, the result
is ~In(A2) and then the integration {d*k over gluon momentum (k) gives a factor ~ 4.
Further details are given .in Ref, [8].

Collecting factors, the formally dominating behaviour of the ‘““chiral penguin” dia-
gram is [7, 8]

A% 1n (A2
~[(8aif)?bx - Pl [%? In (Ai)] : [_—”(—4[;)(—42] (33a)
— [1 (ADTf P * Po (33b)

In (33a), the first factor is due to the product of K-su and n~du vertices. The two other
factors are due to the loop integration as described above. Going from (33a) to (33b),
the relation

A, >~ 4nf, (34

is used. It is shown in Ref. [39] that this relation has to be valid in order to get meaningful
loop calculations in the mixed phase. The result (33) is formally highly divergent if the
cut-off A, increases. One reason for this is that the result (32) for the s —» dG one loop
is proportlonal to k2 which is later to be integrated over. Also in other contexts the penguin
diagram may give bigger results than naively expected when inserted i in higher loops [41].
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It should be noted that (33) satisfies the chiral constraint in Eq (3c). The result of the
“chiral penguin” can be written in terms of an amplitude D as in Eq. (3):
a
D4l = 12) = — gi[C. +C_TF, (35)

where C; are the coefficients in (9a) and (12) for 4 = A,, and the factor F ~ 8 contains
the result of the loop calculation. A good analytical approximation for F is

F ~|l1 4; 1)1 4 4
|GG ) o

where m is the constituent quark mass (that is, 4,/m ~ 3). We observe that the formally
non-leading terms in (34), which are obtained from a detailed analysis [8] of the loop
diagram in Fig. 11, are numerically important. From (35) and (13) we obtain the following
ratio between 47 = 1/2 and 47 = 3/2 amplitudes

D(4I = 1/2 3C-Z_ A -
p = DAL= 12)rq =%[1+ ¢ ]+E§- S [1+£—]F, (37N

© DI = 3)2) 2C.Z., n 9Z, C.

which includes the old result (14) due to the effective Hamiltonian in Eq. (9).

Now, a problem is that we do not know the numerical values for ag and g, below
A,. It should be emphasized that og in the Eqgs (33, 35, 37) is not the ag of ordinary QCD.
The quark-gluon coupling in the mixed phase will in fact also (in addition to quark-gluon
interactions) be renormalized by meson-quark interactions, as indicated in Fig. 12. It seems

Fig. 12. Loop correction to the quark-gluon coupling in the mixed phase. The dashed line represents
octet mesons

that the perturbative quark gluon coupling in the mixed phase will decrease with decreasing
loop momentum-opposite to ordinary QCD. It is fundamentally nothing wrong with this
because strong interactions due to soft gluons are thought to be mimicked by the .chiral
interactions in (30). In Ref. [39], g ~ 0.3 and g, =~ 0.75 are used to fit the observed baryon
mass splittings and the axial vector coupling at baryon level, respectively. We will however
argue that these are the values to be used at very low momenta (~Agcp andfor ~my,),
while the values to be used just below A, are higher. The momentum dependence of ag and
ga for momenta between ~ Aycp and A, should in principle be calculable in a coupled
RGE calculation. However, this is a somewhat cumbersome task to be postponed to future
work. In our case the loop integrals are dominated by momenta just below A, and it seems
to be reasonable to use effective values g =~ 0.5 to 0.7 and g, ~ 0.9 for our mixed phase
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calculations. Using in addition Z, ~ 0.6 to 0.8, we will typically obtain
r~ 10 to 20 (38)

which is roughly half the needed enhancement. To obtain the experimental value r =~ 32,
one has to put og =~ g, ~ 1 and Z, ~ 0.5, which is probably unrealistic. But still the result
is encouraging and points towards a better understanding of the 47 = 1/2 rule.

5. Conclusion and discussion

I have given a short presentation of the standard short distance approach [1-3} to non-
-leptonic decays and tried to explain why it does not provide a satisfactory explanation
of the 41 = 1/2 rule in K — nn decays. Further, I have described and advocated some
long distance approaches to the A7 = 1/2 problem. Especially, I have considered the low
loop momentum penguin approach [6-8] which seems to give promising results. I will
give some comments on this approach below:

(i) In the *“‘chiral penguin” approach the enhancement of the 47 = 1 /2 amplitude is obtained
in terms of the chiral symmetry breaking scale 4,, which I find nice and interesting.

(i) The low momentum penguin approach (both “bagged™ and ‘“‘chiral”’) make no use
of the left-right (LR) penguin operators of SVZ [2]. This is done for simplicity and because
their coefficients are probably small. However, as pointed out in previous papers [18, 23],
Cyg is not zero even at u = m,. That is, the GIM-cancellation is only effective in the leading
log approximation (16c). In a very recent pagper [33]it is announced that a careful treatment
shows that Cyy is roughly twice as big as given in previous papers [2, 3]. This is due to
incomplete GIM-cancellation for loop momenta above u = m_. This effect could increase
the effect of the penguin diagram somewhat more than found in (37).

(iii) The original idea [2] was that the new LR operators induced by the penguin diagram
was responsible for the AI = 1/2 rule. Later it was found that the amplitude due to penguin
operators were suppressed compared to the original expression (17), due to chiral symmetry
[4, 14]. As pointed out above (see Section 4c), left-right contributions from the “chiral
penguin” diagram are also suppressed (and negligible). The amplitude in (37) is completely
due to the left-left part of the “chiral penguin” diagram. As was done in the “bagged
penguin” approach, the result-(37) could be parametrized in terms of an “effective chiral
penguin coefficient” to be compared to Cy;. But this is rather unnatural when the *“chiral
penguin” LR amplitude turns out to be unimportant.

(iv) It should be emphasized that even if the result (37) is encouraging, all effects to a given
order inagand g, have not been considered. However, as pointed out in the previous Section,
when the penguin (one-) loop diagram is embedded in a higher loop diagram, one often gets
an enhancement. Therefore other effects to the same order are not expected to be as im-
portant as the result (37). Such effects are for instance loop effects to correct for the vacuum
insertion approximation, which in this paper is taken care of by means of the phenomeno-
logical constants Z,.

(v) Instead of relying on soft-pion limits and pion reduction, one should rather consider
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the K — nn amplitude directly, which is possible within the model of Ref. [39]. Before
having calculated all loop effects to a'given order, one cannot draw a final conclusion
concerning K — nn amplitudes within the mixed phase model [39]. However, there are
at least two problems to face in performing such a program. First, recent loop calcula-
tions [42] within ordinary chiral theory give large corrections. This may signalize a break-
down of chiral perturbative theory. But the situation could be different with the theory
including a cut-off and a mixed phase (which implies additional diagrams including quark
loops). Second, performing a systematic analysis of the weak Hamiltonian in the different
phases, one may have trouble with the matching conditions of the weak operators at the
phase transition scales Aqcp and 4,

(vi) It has often been claimed that if the penguin diagram is responsible for the 47 = 1/2
rule, then the theoretical value obtained within the standard model for the CP-violating
quantity &'/e might be too big compared to the experimental value. However, sticking to the
philosophy of Section 4, the explanation of ¢ and the 47 = 1/2 rule are now decoupled
because the CP-violating penguin contribution ~ In (m?2/m?) still belongs to the perturba-
tive QCD regime.

(vii) Lattice calculations seem to indicate that confinement and chiral symmetry breaking
takes place at roughly the same temperature, which should indicate that Aycp and A4, are
of the same order of magnitude. To assume a chiral symmetry breaking scale 4, ~ 1 GeV
may therefore seem radical. However, a recent analysis of K — 21 and K — 3 decays
indicates that there is an intrinsic scale ~ 1 GeV in the data of these processes [44]. Anyway,
the model of Ref. [39] may therefore still have phenomenological interest.

(viii) 1 have not considered to what extent the long distance approaches presented above
are equivalent or not. But some of them are obviously based on similar ideas. For instance
the lattice approach {9], where the u (or c)-quark loop is bathing in a gluon field, and the
low momentum penguin approach [6-8] seem to be qualitatively close. Moreover, the inclu-
sion of additional mesonic low momentum effects in the penguin coefficient C;g made
in Ref. [33] seems to be based on similar ideas — whether one sticks to the 1/N-expansion
method {30, 31] or not.

To conclude, even if it is too early to claim that the A = 1/2 rule is now understood
theoretically, some recent calculations show encouraging results. These indicate that
a better understanding of the A7 = 1/2 rule might be obtained in terms of long distance
effects. Especially, the penguin diagram seems to be enhanced by low loop momenta. Thus
the original proposal [2] that the penguin diagram is responsible for the A7 = 1/2 rule
still seems to be relevant-but now in the long distance regime. Anyway, more work has still
to be done on this longstanding problem.

It is a pleasure to thank the organisers for warm hospitality.
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