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HYDRODYNAMICS OF QUARK-GLUON PLASMAS*
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This paper reviews some aspects of the hydrodynamics of quark-gluon plasmas. Various
stages of ultra-relativistic heavy ion collisions are described. Several estimates of the maximum
energy density expected to be achieved in these collisions are compared. Discontinuities
which may be induced in the hydrodynamic flow by a phase transition are described and
a convenient numerical method designed to deal with such discontinuous flows is briefly
presented. Finally, the correlations between particle transverse momenta and multiplicities
are analyzed and one discusses to which extent these correlations could signal the occurrence
of a phase transition in heavy ion collisions.

PACS numbers: 12.38.Mh

1. Introduction

One of the main goals of the study of ultra-relativistic heavy ion collisions is to under-
stand the behavicur of extended hadronic systems under extreme conditions of temperature
or baryon density. In particular one hopes, if the energy densities achieved in the collisions
are high enough, to induce the so-called deconfinement transition leading to the formation
of a quark—gluon plasma (for a general review of the field see [1]).

But what is a quark-gluon plasma?... One must recognize that our theoretical knowl-
edge of this new state of matter predicted by quantum chromodynamics is still very primi-
tive. The qualitative picture which emerges from lattice gauge calculations is summarized
in Fig. 1 which displays the energy density of baryonless matter as a function of the tempera-
ture. The energy density (in units of T#) exhibits 4 characteristic increase within a narrow
temperature interval centered around 7, and quickly reaches a saturating value above T,
In all calculations done so far, it appears that the value of thee nergy density at high temper-
ature is compatible with the Stefan-Boltzmann law for a gas of non interacting quarks
and gluons [2]. This could be naively expected on the basis of asymptotic freedom and
it provides the simplest picture one may have of a quark-giuon plasma, namely that of a gas
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Fig. 1. Schematic representation of the energy density of baryonless hadronic matter as a function of the
temperature

of weakly interacting particles. However, it is worth keeping in mind that this simple picture
may turn out to be too naive and that the elementary modes of excitations of the plasma
may be more complicated objects than free quarks and gluons (recent calculations seem
to indicate that the high temperature phase of QCD may contain chromomagnetic mono-
poles [3]). Furthermore ambiguities remain regarding the physical significance of the rapid
variation of the energy derisity at T,. For pure SU(3) gauge theories, it has been established
that this phenomenon is to be associated with a first order deconfinement transition [4].
When dynamical quarks are taken into account, the calculations become much more compli-
cated and correspondingly the conclusions are less definite. This is even more so at finite
baryon density [5]. Is there a phase transition at T = T.7If yes, is this transition first or
second order? Is the restoration of chiral symmetry closely related to the deconfinement
transition, as suggested by some calculations?... Answers to these questions, among many
others, do require more theoretical work. But in spite of all those question-marks, it is now
commonly accepted that a quark-gluon plasma may be produced whenever the energy
density exceeds a critical value of the order of a few GeV per fm? (the precise value of this
number is still uncertain, as is the value of the transition temperature, T, believed to be of
the order of 200 MeV).

The only laboratory systems in which one can possibly produce such high energy
densities are colliding heavy ions. We shall see explicitly that the energy density achieved
in ultra-relativistic nucleus-nucleus collisions is indeed expected to grow significantly
with the size of the nuclei involved. Unfortunately, colliding heavy ions are rather compli-
cated dynamical systems. They are at low energies and extra complications come in at
ultra-relativistic energies: particle production mechanisms are still poorly understood.
Furthermore, not only are we interested in producing hadronic systems with a large energy
density, but we want those systems to live long enough to exhibit interesting and recogniz-
able physical properties. Ideally, we would like to produce the plasma at rest and study
its thermodynamical properties. Clearly, this ideal situation can hardly be achieved in
nucleus—nucleus collisions which are rather transient phenomena.

In this context, the task of finding unambiguous signatures of the effects of the
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plasma — or rather of what we think a plasma is — on an a-priori complicated dynamics
may appear at first as an hopeless task. However, the importance of the issue is certainly
worth some efforts. Besides, the situation is not quite as dark as these introductory lines
may tend to suggest. There has been considerable progress over the last few years in our
understanding of the physics which may be expected in ultra-relativistic nucleus-nucleus
collisions. Furthermore, the forthcoming experiments at CERN and BNL will soon provide
invaluable information and transform what has been up to now perhaps a rather specula-
tive domain into a more sound field of physics.

These lecture notes are devoted to the description of a fairly idealized situation, that
of a perfectly central collision at an extremely high energy. Such a model study may be
somewhat unrealistic as far as comparison with experiment is concerned. Its main virtue
is to help developing our intuition and to provide a rather clear conceptual framework
within which many interesting physical questions may be formulated.

Much of the results presented here were obtained in collaboration with J. Y. Ollitrault
[22, 19). Very similar investigations were carried out independently by V. Ruuskanen
and his collaborators. There will be therefore some overlap between this and Ruuskanen’s
lecture [20], and also to a less extent with that of Friman [28].

2. Space-time description of collisions and hydrodynamics

In order to make progress in the description of nucleus—nucleus collisions simplifying
assumptions concerning the dynamics are necessary. Also, it is helpful to simplify as much
as possible the geometry of the systems one wishes to study. An obvious simplification
occurs if one restricts oneself to cential collisions of identical nuclei, since then one may
take advantage of the cylindrical symmetry. At high energies, one expects nuclei
to go through each other leaving between them a “central region” which contains very
few baryons (Fig. 2). The evolution of this central region is simpler to analyze than the
fragmentation regions which contain all the baryons. A further simplification comes from
assuming that the particle production process in the central region is invariant under
Lorentz boosts along the longitudinal direction, as predicted by most particle production
models. Cylindrical symmetry and longitudinal boost invariance reduce our problem
effectively to a 1+1 dimensional problem.

target projectile
fragmentation fragmentation
region region
o —
4
2=0
- Central rapidity region —

/7NN

Fig. 2. Representation of an idealized central collision between two identical nuclei. The baryons populate
the Lorentz contracted fragmentation regions. The central rapidity region is baryon free
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A further major step in arriving at a simple picture is to assume that the quarks and
the gluons produced in the initial stages of the collision quickly thermalize. If this is so, the
evolution of the quark—giuon plasma, once formed, may be described by hydrodynamics.
There are two basic ingredients in hydrodynamics. One is a statement of local conserva-
tion of energy and momentum, which can be expressed in the form:

8,T" = 0. 2.1)

This equation is much more general, of course, than hydrodynamics. Any local field theory
would lead to Eq. (2.1). Specific aspects of hydrodynamics enter in the prescription of the
form of the energy-momentum tensor T%°. If one ignores dissipative processes as is done
in most. calculations, one finds [6]:

T" = (¢+P)u*u’—Pg", 2.2)

where g*" is the metric tensor, #* the fluid four-velocity, ¢ the energy density and P the pres-
sure. The pressure and the energy density are related by an equation of state:

P = P(e). (2.3)

The equations (2.1-2.3) certainly constitute the simplest set of dynamical equation3
capable of describing the evolution of the baryonless plasma. Also, they directly incorporate
our available microscopic information about plasma properties through the equation
of state. Finally, since they deal mostly with basic conservation laws, they should provide
reasonable orientation for average properties.

~ The most important assumption done in writing the equations (2.2-3) concerns the

thermalization. Whether this thermalization does occur, and over a sufficiently short
period of time for the whole picture to make sense is still an unproved conjecture. One
can give however some plausibility arguments based on mean free path estimates. The
mean free path is given by:

A = 1fon, (24

where o is the quark or gluon cross-section in the plasma and » the number density of the
plasma. If ones assumes thermalization at a temperature 7T, one can calculate the number
of quanta to be:

n= %? (vg+2vp) T3, 2.5)

awhere vy and v are the numbers of boson and fermion species in the plasma, respectively.
1In a baryonless plasma made of u and d quarks, in addition to gluons, one findsn ~ 4.14 T 3,
The average cross-section for a gluon propagating through the plasma may be estimated
t0 be of the order of 14 mb. This is obtained as follows. The additive quark model gives
the quark-hadron cross-section as about a third of the hadron-hadron cross-section,
typically of the order of 40 mb. The quark-quark cross-section is itself a third of the quark-
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-hadron cross-section, that is about 4.5 mb. The color algebra implies the following ratios
between gluon—gluon, gluon-quark and quark—quark cross-sections:

Oy = 7 Tgg = (3)"00q. (2.6)

Averaging over the various species present in the plasma using the equation (2.5) one finally
gets the estimate mentioned above. For a plasma of u and d quarks at a temperature
T ~ 200 MeV one finds n ~ 4 fm~3, 1 ~ 0.2 fm. Thus the mean free path is small compared
to a typical size of the system, e.g. 2R ~ 15 fm for big nuclei.

It is convenient to describe the longitudina{l evolution of the system in a space-time
diagram, such as the one displayed in Fig. 3. It is also useful to introduce special coordinate,
referred to as the space-time proper time and rapidity, respectively:

~ =5 t+z
t=VE-z, p=3ilh—, Q@.7)
t—2z
in terms of which one has:
t =tcoshn, z=tsinhy. (2.8)

In this space-time diagram, the various stages of the collision are bordered by hyperbolae
of constant proper time 7, as a result of the longitudinal boost invariance (physical quanti-
ties such as the energy density, the pressure, are independent of 5). Let us now describe
briefly these various stages. '

For negative times, the two ions are moving towards each other at a speed close to that
of light, and suffer a Lorentz contraction which reduces their apparent tongitudinal size
to 2R/y, where y = 1/+/1—0v? and R is the radius of the ions. Strictly, this Lorentz contrac-
tion does not apply to the small momentum components of the nuclear wavefunctions
(defined in the center of mass frame), but we shall ignore these subtleties here [7]. The nuclei

*t=tshhn
Free hadvron gas

i
sz; out transition
g W
M zation usﬁ“‘d\“

z=Tcoshy

Fig. 3. Space-time diagram representing various stages of a central collision. Thesevar ious stages are sepa-
rated by hyperbolae of constant proper time, as implied by the longitudinal boost invariance
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collide at z = ¢ = 0, and a lot of quanta get produced. The detailed mechanisms by which

these quanta materialize as well identified particles are still poorly understood. But, as we

already mentioned, it is generally assumed that the particle production is invariant under

longitudinal boosts, namely that the initial distribution of quanta is independent of the

space time.rapidity # and depends only on some initial proper time 7, [8]. Thus in the
space-time diagram of Fig. 3, the particles are created on an hyperbola labelled by 7,.

A particle which appears on this hyperbola at the space-time point (z, ¢) has there a velocity

equal to z/t. The assumption of thermalization implies that (shortly?) after formation,

the distribution of quanta is that of local thermal equilibrium:

1
exp (&,/T(r, ) F 1’

n(r, p,1) = &y = VP +m?, 2.9
where T(r, t) is the local temperature of the system. Let us remark that the longitudinal
boost invariance implies that T depends on z and ¢ only through the combination ¢*— z2,
that is the proper time 7. The estimates of the formation time as well as of the time at which
the system is thermalized are fairly uncertain [9]. In order to be specific in our description
of the scenario, we shall assume that after a proper time of the order of one fermi, the system
has reached local thermal equilibrium (see further discussiqn of this point in the next
section). From there on the system is described by the equations of hydrodynamics.

The hydrodynamical evolution of the system may be understood as the superposition
of two collective motions [10). The first one is the longitudinal expansion of the fluid, which
because of the boost invariance reduces to a simple scaling mode. Thus for example,
at a given distance from the collision axis, the longitudinal expansion causes the entropy
density to drop like 1/z:

8(1) = s(to)ro/T. (2.10)

This result reflects simply the fact that the entropy is conserved during the evolution and
that the proper volume of the system increases like the proper time 7. The longitudinal
expansion of the system implies a rapid cooling of the plasma. Superimposed to this longi-
tudinal expansion is the transverse motion which begins with the inwards propagation of
a rarefaction wave. If no phase transition takes place in the system the rarefaction wave
will reach the collision axis in a time R/c, = R /3 ~ 12 fm for a large nucleus (we have
used the fact that the speed of sound in an ultrarelativistic medium is ¢/,/3). This is a fairly
long time scale compared to the time scale of the longitudinal expansion. Note for example
that in a time of order 12 fm the central temperature drops by some 40 % due to the longitu-
dinal cooling alone (this is obtained from (2.10) which implies that temperature and time
are related by: T3t ~ T31,, and 1, is taken to be 1 fm). Thus the overall hydrodynamics
is by far dominated by the longitudinal expansion. However the interesting physics is con-
tained in the transverse motion. This is because the transverse motion may be quite modified
by the occurrence of a phase transition in the fluid as it cools down. In particular instabili-
ties may develop in the transverse hydrodynamic flow [10, 11], and this strongly affects
the final distribution of particles.
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As the plasma cools down, it eventually reaches the critical temperature at which
it may hadronize. In the framework of the hydrodynamic description, this hadronization
is treated as a phase transition (the reverse of the deconfinement transition). As we already
mentioned, this phase transition may have a strong influence on the transverse flow. When
the hadronization is over, the system, mostly composed of pions, is still strongly interacting
and its evolution described by hydrodynamics until the hadron mean-free-path becomes
comparable to the size of the system. This is the so-called freeze-out transition where the
particles decouple. From there on, the distributions of particles evolve as free distributions.
A correct description of the freeze-out transition would require a detailed kinetic calcula-
tion. In the framework of the hydrodynamical model, one usually assumes that freeze-out
takes place when the temperature has dropped down to some value T, called the freeze-
-out temperature [12]. This is usually taken to be of the order of the pion mass for the reason
that the pion mean-free-path, which is inversely proportional to the pion density, increases
rapidly as the temperature decreases below the pion mass.

3. The initial energy density in the central rapidity region

The highest energy density achieved in the collision is a useful number to know, as
it largely determines the state of the matter produced initially. Of course there is some
ambiguity in the very definition of this quantity, which furthermore is not so easy
to measure. However it is a worthwhile exercise to go through various models of particle
production and see how in each case the question may be phrased. As we proceed, some
general features will emerge. We shall in particular concentrate on the 4-dependence of the
initial energy density.

In hydrodynamics, the initial energy density is obtained by running the evolution
backwards in time. One may then define the initial energy density as being the energy
density at the time 1, at which thermal equilibrium is first achieved. The initial energy
density is then a function of the initial temperature T, which itself is related to the initial
entropy S,. To a good approximation, the entropy is conserved in the hydrodynamic
evolution: §; ~ S,. As for the final entropy, S;, it may be calculated from the total number
of produced particles. More precisely the amultiplicity per unit rapidity of the produced

particles is given by:

dN 1 dSi~ 1

(-— = — —'= - RZs501,, (3.1)
dy J4-.4. 36 dy 3.6

where s, is the initial entropy density, i.e. the entropy density at proper time 7,. Assuming
that the multiplicity in 4-4 collisions scales like 4, one gets from (3.1) that s, scales
like A3, or, since so ~ T3:

Této ~ A2, (32)

In the absence of a detailed knowledge of the microscopic mechanisms leading to thermal
equilibrium one may invoke the uncertainty principle to put constraints on allowed values
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of the initial temperature T, or the initial proper time 7,. A simple argument shows that
quantum fluctuations can be safely ignored as long as:

T()To > 1. (3.3)

Now, T » and 1, are related by the equation (3.2) which implies that the product Ty, varies
with 7, as 73/%, that is it decreases as 7, goes to zero. Therefore it does not make sense
to run the evolution too far backwards in time. The minimum time 1, and correspondingly
the maximum temperature 7, which can be tolerated are obtained when T7, ~ 1. Combin-

ing this with the formula (3.2), one finds the following relationships:
Ty ~ AY%, 1o~ ATV, gy~ AP, 3.4)

where we have used the fact that the energy density goes like 7%. The possible 4 dependence
of t, was suggested by McLerran in Ref. [1].

An estimate of the initial energy density can also be obtained using the parton model.
In order to do so, let us consider a system of partons in the central rapidity region and
with transverse momentum k. Clearly, the number of partons in that system grows like
the number of nucleons, i.e. like A. On the other hand, the volume of the system goes as
A?3[k,, where 1/k; measures the langitudinal size of the partons (note that ky is the only

energy scale in the problem). Since the energy per parton is kr, one ends up with the follow-
ing formula:

go ~ Ak, (3.5)
This formula can be compared to the estimate proposed by Bjorken, and which reads [8]:

g ~ A3 -lfl, (3.6)
To
where 14, the so-called formation time, is the time needed for the parton to come on their
mass shell. Again, since kT/is the only energy scale available, it is not unreasonable to assume
o ~ 1/ky, which makes (3.5) and (3.6) identical.

In the usual parton model, it is assumed that the average transverse momentum is fixed,
typically of the order of 300 MeV. However, it is possible to argue that the average transverse
momentum of the partons which significantly contribute to the energy density grows
like A1/ [14]. To see that, let us evaluate the mean-free-path of the partons in the system,
A = 1/on. The cross-section ¢ may be taken of the form a/k2, while the number density
is easily evaluated to be n ~ A'/3k;. Thus:

J o~ kg AV3, 3.7

The partons which will contribute dominantly to the energy density are those whose mean-
-free-path is of the order of the longitudinal size-of the system, i.e. for which 4 ~ 1/kr.
Partons which have a much larger mean-free-path have a large transverse momentum and
thus interact weakly. Partons with small mean-free-path do interact strongly but since their
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transverse momentum is small, they give little contribution to the energy. Thus the important
partons have a transverse momentum which scales as 416, Interestingly, the same result
can be derived from more microscopic considerations based on an analysis of the Altarelli-
-Parisi equations which govern the evolution of the parton densities as a function of mo-
mentum [13, 14]. Let us also mention the recent estimate by Hwa and Kajantie who assume
that ky remains fixed, while the size in rapidity of the parton system which will eventually
thermalize is allowed to grow with A. The scaling behaviour of the energy density they
obtain is identical to Eq. (3.5).

There is still another popular family of models used to describe the initial stages of the
collision, and which we shall refer to as flux tube models. In such models, one assumes
that the collision is initiated by a large amount of gluch exchanges, so that a large flux
tube is spanned between the two receding ions [15, 16]. The color electric field is assumed
to be coherent over a transverse size taken to be typically that of a proton, forming so-called
elementary tubes. Particles (quarks, antiquarks and gluons) are then produced in each of
these elementary tubes by tunneling, in very much the same way as electron—positron
pairs are produced in a strong electric field [17]. With reasonable assumptions, one can
easily estimate how the various physical quantities scale with 4 in this model.

First, we note that the number of gluon exchanges producing the electric field in an
elementary tube goes as v ~ A%/3, that is as the number of nucleon—nucleon collisions
involved in the collision of two tubes of length 4/3. Assuming that the charge resulting
from these gluon exchange builds up in a random way, and that the produced electric field
is proportional to the charge, one finds:

Eo ~ Jv ~ A3, (3.8)
AY

Note that if only the color charge carried by the valence quarks were allowed to fluctuate,
one would get a different result since then the charge would grow only as A'/°, The rate
of production of massless particles is given by:

dN

i~ E3. (3.9
This may be understood simply from dimensional analysis, noting that the electric field
E, is the only quantity in the problem which carries a dimension. Similar dimensional
analysis leads to:

1
To ~ e~ ATYE, (3.10)

VEo

where 1, is the time scale governing the pair production process. In order to get from the
rate to the total multiplicity, one needs to integrate over a space-time domain. The elemen-
tary volume element is typically of the form area x tdy x dr, where area is a fixed transverse
area and tdy the longitudinal extension. For a fixed rapidity interval dy the integrated
volume scales therefore as 73, i.e. as 4~ /3, Thus the multiplicity of the particles produced
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in one elementary tube is given by:
dN
—| ~ATPE; ~ 4, (.11

dy elem ° )

This result is compatible with the one used earlier: since the number of elementary tubes
scales like 4%/3, the total multiplicity scales like 4. One can continue this analysis and
show that the average transverse energy per unit rapidity goes as [18]:

Er | ATPEY? ~ A2 (3.12)
dy )

It follows that the average transverse energy per particle is given by:

dEr[/dy

AVS, .
Ny (3.13)

KEp) =

This digression illustrates how little one really understands about the very beginning
of the collision, how the particles (or in the thermodynamical language the entropy) are
produced, how the energy density builds up. However fairly general statements can be
made about the dependence of some important observables upon the control parameters
in the problem such as for example the mass number. An important result' of the foregoing
discussion is that the initial energy density is expected to grow with 4 like 4%/3, implying
that the energy density achievable in a nucleus-nucleus collision is much higher than in
a proton—proton collision.

We wish to conclude this discussion of the initial conditions by indicating how in the
hydrodynamic model, these could be related to observables like the multiplicity of final
particles. It turns out that the relevant dimensionless parameter which governs the hydro-
dynamic flow for the geometry we have considered is s,To/sgRo Where sy is the entropy
density of the hadron phase at the critical temperature, s, is the initial entropy density,
7o the time at which the hydrodynamical evolution starts and R, the transverse size of the
system [19]. It is easily seen that this parameter is proportional to the multiplicity:

5670 3.6 dN 36 1 dN

= . (3.14)

sgRo  7R3sy dy nrosH A dy y
Provided 7o/R, is small enough, the flow at decoupling (which governs the particle mor/nen-
tum distributions) depends only on the ratio soto/R, and not on these three parameters
independently.

4. Hydrodynamics with a phase transition

As we have seen in Section 1, baryonless hadronic matter is expected to undergo
a phase transition at high enough temperature. This was illustrated in Fig. 1 showing the
energy density as a function of the temperature. Another way to look at this phase transi-
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Fig. 4. (a) The entropy den51ty as a function of temperature as may be inferred from lattice gauge calculations
or from the bag model equatlon of state (see Ruuskanen’s lecture). (b) Speed of sound squared as a function
of the temperature. In the bag model equation of state, the discontinuity in the entropy density at Tc 18

a sharp one, and the speed of sound is a constant, equal to 1/4/3 at all temperatures, except at T where
it vanishes

tion is given by Fig. 4a which shows how the entropy density varies as a function of the
temperature. For the simple bag model equation of state, discussed for example in Ruuska-
nen’s lecture, the entropy density is simply given by the formula which applies to an ideal
gas of massless particles:
p2 SN

s=v 5 T, 4.1
where v is the number of particle species in the system. At the critical temperature, v jumps
discontinuously from a low value typical of hadronic matter (v = 3 for a massless pion gas)
to a large value characteristic of a quark-gluon plasma (v = 37 for a plasma made out
of gluons and u and d quarks). This rapid variation of the enfropy density has a strong
influence on the hydrodynamical evolution of the system. Fig. 4b shows the variation of the
speed of sound ¢, implied by the variation in the entropy density. Let us recall that:

cg=if_'=‘”nT_ (4.2)
de dins

Away from the transition region, the speed of sound is essentially constant, and close to the
ideal gas value 1/,/3. It decreases very rapidly as one approaches the critical temperature;
in the bag model equation of state, it is exactly zero at T = T,. Temperature ranges in
which the speed of sound decreases as the temperature increases may lead to instabilities
in the hydrodynamic flow. A simple situation where such instabilities develop is provided
by the one-dimensional rarefaction wave. A typical temperature profile for such a wave
is given in Fig. 5a. The arrows indicate the velocity of the flow pattern, that is the velocity
of points with given temperatures. This velocity is the relativistic composition of the fluid
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velocity and the sound velocity:

dx v—c, 43
dt  1-vc,’ (4.3)

In normal circumstances (as in Fig. 5a) dx/dt increases as the temperature decreases, and
the wave is stable. However, if it so happens that the following condition [10] is violated

d [ se, <0 44
d_f<’1">/ 4.4

stabie
rarefaction

unstable

r

Fig. 5. (a) Temperature profile in a simple one dimensional rarefaction wave. The arrows indicate schemati-
cally the velocity of the flow pattern. (b) Same as Sa but for a speed of sound which violates the condi-
tion (4.4) ‘

then the velocity of the pattern may decrease as the temperature decreases. In this case,
illustated by Fig. 5b, the simple wave is unstable and a shock develops. Such an instability
may be encountered in the transverse expansion of a quark-gluon plasma as we shall see
in the next Section. A recent discussion of shock phenomena in baryonless plasma is given
in Ref. [11]. :

In this discussion, one has implicitly assumed that the phase transition proceeds
smoothly as the temperature goes through the critical temperature. This leads to a well
defined scenario in which the quark—gluon plasma, as it cools down, is gradually con-
verted into a uniform mixed phase of plasma and hadrons. More violent scenarios could
be considered if one allows the plasma to supercool. These are discussed in Friman’s
lecture [28].

The occurrence of discontinuities in the hydrodynamic flow requires particular care
in numerical calculations. We have extended [19] for this purpose a method used in non
relativistic problems, and which is due to Godunov [21]. The next Section is devoted to
a presentation of this method.
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5. Similarity flows and the Godunov method

For simplicity, we shall consider here only one dimensional flows and ideal fluids.
Similarity flows are particular solutions of the hydrodynamic equations in which physical
quantities such as the energy density, or the fluid velocity, depend on the position x or the
time ¢ solely through the combination x/t. There are three types of similarity solutions
corresponding respectively to a uniform flow, a rarefaction wave and a shock wave. A help-
ful representation for similarity waves is provided by y—{ diagrams, where y denotes the
fluid rapidity and ¢ the flow pattern rapidity (which is equal here to the space-time rapidity
n defined in (2.7)). In such a diagram, uniform flow regions are represented by horizontal
lines (constant y); rarefaction waves are segments of the curves { = y+y,, and shock
waves are vertical segments. The line { = y is a set of points where the pattern velocity
is the same as the fluid velocity. Clearly such a line cannot be crossed by a shock wave
or a rarefaction wave. It can only be crossed by a horizontal line corresponding to uniform
flow. Examples of y—{ diagrams are given in Figs 6 and 7. The latter corresponds to the
situation to be described at length in the next Section, namely that of a mixed phase of
hadrons and quark-gluon plasma being converted into a hadron gas through a rarefaction
shock followed by a rarefaction wave at the Jouguet point.

A typical problem which can be solved by similarity waves is the determination of the

ﬁ y Ay
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Fig. 6. y-{ diagrams illustrating the flow patterns of a simple one-dimensional rarefaction wave (a), or a one
dimensional shock wave (b), separating two regions of uniform flow
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Fig. 7. y-¢ diagram representing a rarefaction shock followed by a rarefaction wave at the Jouguet point



672

flow pattern which connects two uniform mediums which, at time ¢ = 0, occupy respectively
the regions x < 0 and x > 0. Note that these initial conditions do not introduce any length
scale in the problem. This is precisely the situation where one expects the flow pattern
to be given by similarity waves. In general the solution to the problem consists of regions
of uniform flow and rarefaction waves, separated by weak discontinuities or shock waves.
This type of problem is at the heart of the Godunov method which we now des‘cribe.‘

As in most numerical methods for solving differential equations, we assume that space-
-time is dicretized into cells of area Az, where 4 is the step in the spatial direction, 7 the
step in the time direction. At the beginning of each time step, one makes all quantitiés
characterizing the state of the fluid uniform over a cell. For example, the energy density
in a cell is assumed to be constant within the cell, equal to the integral value of the true
&(x) within the cell. The same is done with other quantities, such as the pressure, or the
fluid velocity. During the time step t one then solves for each pair of adjacent cells.a problem
analogous to the one discussed before. Note that this can be done exactly even if a shock
develops in a particular cell. This is where lies the superiority of the Godunov scheme over
more conventional ones. Of course the time step 7 should not be taken too long to avoid
that a similarity wave emanating from the boundary of a given cell reaches the other bound-
ary. Typically 7 is taken to be of the order of the spatial step. At time 747 the evolution
is frozen and the physical quantities averaged in each cell. One is then back to the situation
at the beginning of the time step and the whole process can be repeated.

To test the validity of the method, we have carried out a series of numerical calcula-
tions in one dimensional situations where we could compare with.the exact analytical
result. Some of these calculations are presented in Refs [19, 22]. We shall just give here
an illustration of the ability of the method to deal with shocks. Fig. 8 represents the flow
pattern corresponding to two hadronic fluids moving into each other. The relative velocity
of the two fluids has been chosen so that a double shock develops, leiding to the formation
of a quark—gluon plasma. This complicated flow pattern is easily handled by the Godunov
method and it can furthermore be verified that the numerical and the analytical solutions
are in close agreement.
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Fig. 8. Iltustrative application of the Godunov method: a double shock configuration generated by two
hadron fluids flowing into each other and producing a quark-gluon plasma. (a) Energy density profile.
(b) y-{ diagram
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6. Correlation between transverse momenta and multiplicities

‘We shall now proceed to a discussion of some specific results of hydrodynamical cal-
culations. The geometry of the system which we study is as discussed in Sections 1 and 2.
Furthermore we assume a definite scenario for the phase transition, namely the mixed
phase scenario described in Section 4.

The dominant feature of the transverse hydrodynamic flow in this scenario
is the existence of a rarefaction shock converting the mixed phase into hadrons [23-25].
The effects of this shock is most easily analyzed in the one dimensional flow displayed
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Fig. 9. Mixed phase being con\\/erted into hadrons through a rarefaction shock. This figure shows the
energy density profile of a one-dimensional system as a function of & = x/t. The arrows on the profile
indicate schematically the velocity of the hadrons (to the right), or of the shock (to the left)

in Fig. 9. This figure shows the energy density profile for a system prepared in a mixed
phase. As time goes on, the rarefaction shock slowly moves inwards. The hadrons emerge
from the shock at the speed of sound relative to the shock (Chapman-Jouguet point).
It is important to observe that the velocity of the shock relative to the mixed phase decreases
as the energy density, or equivalently the entropy density, in the mixed phase increases.
This can be verified by an explicit calculation but is also easily understood when one knows
that very little entropy is produced in the transformation of the mixed phase into hadrons
(at most a few percent). The displacement of the shock into the mixed phase liberates
a large amount of entropy which has to be carried away by the hadrons. Because the
velocity of the hadrons is bounded when they leave the shock, there is a limit to the total
amount of entropy they can carry away per unit time. This implies a slowing down of the
shock with the increase of the entropy density contained in the mixed phase.

An example of temperature profile for the full three-dimensional expansion is given
in Fig. 10a. This figure corresponds to a situation where a quark gluon plasma is formed
initially. It can be seen that the plasma cools down fairly quickly, mostly as a result of the
longitudinal expansion, and dissolves into a mixed phase of hadrons and plasma. In the
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Fig. 10. (a) Temperature profile showing the transverse evolution of a quark-gluon plasma. (b) Schematic
cut of the system through the plane z = 0 in the early stage of the evolution

mixed phase, the temperature stays constant, and a shock develops at the boundary between
the mixed phase and the hadrons which surround the system (see Fig. 10b). The shock
becomes weaker and weaker as time goes. This is due to the longitudinal expansion which
continuously decreases the entropy of the mixed phase, making it richer and richer in
hadrons. Eventually the mixed phase disappears and a hadron rarefaction wave moves
inwards and reaches the collision axis. From that time on the cooling of the whole system
is essentially uniform and rapid.

One of the goals of the hydrodynamical calculations is to provide a framework for
the calculation of various global observables. These observables may be reconstructed from
the particle distributions at freeze-out. These distribution functions have the form of local
equilibrium distribution functions:

1
exp (puuu/n.o.) -1’

fx,p) = 6.1)

where u,(x) is the four-velocity of the fluid on the freeze-out isotherm at temperature 7, .
(See Section 2 for a discussion of the freeze-out transition and Ruuskanen’s lecture for
details concerning the calculation of the distribution functions.) A typical example of distri-
bution is shown in Fig. 11. Three calculations are compared. In the first one (curve labelled
mixed phase) it is assumed that the system is prepared in a mixed phase of hadrons and
quark-gluon plasma. In the second one (curve labelled “hadrons”) it is assumed that
the system is initially a hadron gas, with the same entropy density (and hence a higher
temperature) as in the previous case. Finally, the curve labelled “thermal” gives the distribu-
tion of a static thermal distribution at the freeze out temperature. Comparison of this
distribution with the previous two shows that the acceleration of the particles due to the
transverse hydrodynamical flow is not at all negligible.

The curves in Fig. 11 are very regular and much, but not all, of the physical information
that one can extract from them is contained in the first moment of the distribution, that is the
average transverse momentum {pr). Fig. 12 is a plot of this average transverse momentum
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Fig. 11. Typical distribution of particle transverse momenta. The two curves labelled “mixed phase™

and “hadrons” represent the results of calculations in which the system has been prepared either in a mixed

phase or a pure hadronic phase, but with the same energy density in both cases. The curve labelled ““thermal”
refers to a calculation of the thermal distribution at the freeze-out temperature

carried away by the pions as a function of the initial entropy density. In this plot, the
dashed line corresponds to the predictions obtained by ignoring the collective flows, and
taking the freeze-out temperature to be the initial temperature. Let us notice that in the
absence of collective flow, the particle distribution is isotropic in the laboratory frame and
the average transverse momentum {p;) is related to the mean energy per particle (E) by the
equation:

(pry = ; CED. (6.2)

Thus the curve labelled “thermal” represents the initial energy per particle as a function
of the initial entropy. Using elementary thermodynamics, one can write (E) as follows:

KE) = —=—>—T, (6.3)

where s/n is the entropy per particle. For a pure hadron gas, s/n = 3.6, P =¢/3
and {p;) = 2.12 T. As soon as one enters the mixed phase, the temperature and the pressure
stay constant and a simple calculation shows that:

&

—_—=1-
e+ P

, 6.4)

ENEY
o |

where sy is the hadron entropy density at the critical temperature. As s goes from sy to
5,1 the entropy per particle grows from 3.6 to 4.2. The maximum value of {py) is obtained
for s = s,, $/n = 4.2, and is 3.25 T,. When the entropy density of the initial state exceeds
S, the system is prepared entirely in the plasma phase, and the average transverse momen-
tum starts to grow again, going asymptotically as {p> = 2.5 T. Note that the slope of the
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“thermal” curve in Fig. 12 is smaller for the quark-gluon plasma than for the hadron gas.
This is to be attributed to the difference in the number v of degrees of freedom in the two
cases (pr ~ T~ v-1/351/3), The structure observed in the dashed curve is characteristic
of the rapid phase transition which takes place in the system as one increases the entropy:
This behaviour has been proposed [25-27] as a possible signal for the formation of a quark-
—gluon plasma. However, the hydrodynamics affect this simple picturé in a profound way:
it may be seen in Fig. 12 (full curve) that the_behaviour of the average transverse momentum
as a function oI entropy is deceivingly flat, exhibiting no real structure.
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Fig. 12. Average transverse momentum as a function of the initial entropy density

The dominant agent responsible for the disappearance of the expected structure is the
longitudinal cooling of the system, which largely dominates over the transverse accelera-
tion. The transverse expansion alone would preserve (enhance) nicely the structure associ-
ated with the phase transition. This is illustrated in Fig. 13 which shows how the fluid rapidity
varies at freeze-out, as a function of the initial entropy density, for a one dimensional flow.
The three regimes, hadron gas, mixed phase and quark-gluon plasma are clearly exhibited.

In the first regime (hadron gas), the fluid rapidity is obtained from the standard formula
for a rarefaction wave:

- So 13
y=.3In (——) . (6.5)
St.0.
This formula holds as long as s, < sy. The plateau corresponding to the mixed phase

(8o > sy) is easily understood from the discussion carried along with Fig. 9: once the
nitial entropy density has reached a certain value, the rarefaction shock comes to rest
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Fig. 13. Fluid rapidity as a function of the initial entropy density, for a one-dimensional flow. The dashed
curve corresponds to an ideal gas of massless hadrons

and tlie hadrons emerge from the mixed phase at the sound rapidity and a fixed energy
density (¢ = &y/3). They are then further accelerated along a rarefaction wave. However
due to our choice of parameters (T, = 0.74 T, i.e. s¢, /sy = 0.4) this extra acceleration
is very small and the plateau occurs at y ~ y, where y, is the sound rapidity. When s, > sg,
the fluid initially in the plasma is accelerated before entering the mixed phase. The
corresponding increase in rapidity is given by:

1/3
Ay = J3In (-S°—) . (6.6)

Spl

In order to find remnants of this behaviour in the three dimensional calculation,
one has to go deeper into our analysis of the transverse momentum distributions. It is usefut
in this context to consider the isotherms displayed in Fig, 14. The initial part of the criticat

titm/c)
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Fig. 14. Freeze-out (full line) and critical (dashed line) isotherm in the r~¢ plane. The magnitude of the
arrows indicate schematically the velocity of the fluid on the isotherm. The dashed dotted line is the trajectory
of the rarefaction front which propagates into the hadron fluid after the hadronization has been completed’
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isotherm coincides with the trajectory of the rarefaction shock converting the mixed phase
into hadrons. For short times, the shock moves very slowly inwards, but the longitudinal
‘expansion forces the entropy density in the mixed phase to decrease, which results in an
acceleration of the shock. Eventully, the longitudinal expansion will turn all the mixed
phase into hadrons before the shock reaches the collision axis. The freeze-out isotherm is
also indicated in Fig. 14, together with the magnitude of the transverse velocity of the
fluid on this isotherm. One sees that the particles with the largest rapidity are emitted at

Fig. 15. Moments of the transverse rapidity distribution as a function of the initial entropy density

carlier time, and at times where the freeze-out isotherm follows a trajectory close to that
of the rarefaction shock. One may therefore expect that these are the particles which have
a chance to be the most sensitive to the phase transition. This is indeed confirmed by a de-
tailed calculation reported in Fig. 15. In this figure are plotted the successive moments of
the transverse rapidity distribution of the fluid. One sees that while the average rapidity
does not show up any marked structure, such a structure reappears when higher moments
are considered. In fact the fluid clements with the maximum rapidity are very little affected
by the longitudinal expansion and the curve of #,,,. versus entropy is very much like what
was obtained in the one dimensional calculation presented in Fig. 13. The role of 71, in the
particle distribution can be seen on the asymptotic form derived in Ref. [19]:

dN
dydPy

~ JJPrexp (—Pre "™T, ). 6.7

Such a behaviour was found to hold for p; 2 5 T, [19]. By taking higher and higher mo-
ments of the momentum distribution, one gives more and more weight to the region where
(6.7) holds, and in which these moments are easily seen to obey the following relation:

1
; In (P"l"> = nma'x+C5te, (6.8)

where “Cste” depends on n and T, only.
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7. Concluding remarks

It seems fair to say that hydrodynamical calculations are reaching the level of sophisti-
cation where they allow for the calculation of observables which can eventually be compared
with experiment. We have shown that the correlations between various observables may
reflect important features of the underlying equation of state. In particular, we have analyzed
in detail the correlations between multiplicities and transverse momenta and discussed
how they could possibly signal the occurrence of a phase transition in the evolution of the
system.

However, the state of the art is still very unsatisfactory. Most of what has been doné
until now relies on a definite scenario for the phase transition. It is certainly the simplest,
and possibly the most plausible one, but clearly more work needs to be done to get a better
understanding of the dynamics of the phase transition.

Furthermore, in order to get from idealized model studies to more realistic situations,
many improvements are needed. For example the freeze-out transition is crudely treated
in our approach. Also, it would be desirable to get rid of the longitudinal boost invariance,
to include finite baryon number and to treat the fragmentation regions. This is especially
important in view of the forthcoming experiments at CERN or BNL which will deal
mostly with fragmentation regions or with a baryon contaminated central region.

Finally, let us add that while hydrodynamical calculations do provide us with a useful
and nice phenomenological guide to get a first orientation into the dynamics of ultra-
relativistic heavy ion collisions, we should keep in mind that one still does not really under-
stand the very beginning of the collisions during which the plasma is expected to be formed.
Does the newly produced matter quickly thermalize? Are non-equilibrium phenomena
playing an important role? Hopefully, the forthcoming experiments will shed some light
on these important issues.

I am grateful to A. Mueller and J. Y. Ollitrault for many interesting discussions.
It is a pleasure to thank our Polish friends for their warm hospitality and in particular the
organizers of what has been a very enjoyable school.
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