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The Lie algebra of the post-Galileian relativity group is constructed and investigated.

PACS numbers: 02.20.+b

1. Introduction

A general Poincare transformation changes the coordinates of points of the Minkowski
space-time in the following way:

X = A" X"+, (1.1)

We can also present a general Poincare transformation of coordinates in the form:

X'= RX+D t+0, (1.2)
t = pt+c 20" Rx+b, 1.3)

where %T = (x1, x2, x3), ¢t = x°, ¥ = (), v%,v*) and y = (1-c25"0)"%. When & and
b vanish we obtain a Lorentz transformation which preserves the scalar product (cf)* —Xx"x
and, therefore, the 3 x 3 matrix # must satisfy the condition

- Ro0' R
AR =1+ —5—. (1.4)

One can easily check that the solution of the condition (1.4) may be written in the form

Y v i
R = 1+.y—:'°_—17 R, (1.5)

where R denotes an arbitrary 3 x 3 orthogonal matrix.
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The aim of the present paper is to investigate the structure of the Lie algebra generated
by the low-energy approximation to the relativity group described above. Executing this
program we shall follow the way described in Ref. [1] and represent the corresponding
quantities as the sums:

X = ”20 Xont1s (1.6)
t= 3 tan wn
D= ,.io Bans 15 (1.8)
R = n{;o P, (1.9)
R = i R,,, (1.10)
%= ,,2, ot (1.11)
b= "S;O Bam (1.12)

where the terms on the right-hand sides are labelled by a corresponding order of smallness.

Now we may substitute all the representations into (1.2) and (1.3). Comparing the
terms of the same order of smallness on both sides we obtain an infinite series of transfor-
mation properties for X,,+; and ¢,,, When n = 0 we have the usual Galileian relativity
group. The first-order corrections coming from relativistic physics appear in our considera-
tions when n € {0, 1}. In this case the transformations also form a group, called in this
paper the post-Galileian group of the first. In the present paper we restrict our investiga-
tions to relativistic corrections of the first order. Therefore it will be quite enough for us to
write explicitly the series -of transformation -properties orly up to quantities of the third
order of smallness:

to = to+Db, (1.13)
X; = Rox;+Dyto+ay, 1.14)
. V04 viRox,q
t2 = t2+ 2—€‘2‘t0+ —‘c—z“— +b2, (1.15)
- v e DIRE Uiy - -
x3 = Rox3+Qx1+' 262 - UI +Ult2+ _202 +v3 to+a3, (1.16)

where Q denotes R, and since R is an orthogonal matrix Q@ must fulfil the following condi-
tion:
RI0+Q"R, = 0. .17
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2. The Lie algebra'of the post-Galileian group

For further investigations of the group of transformations given by the rules (1:13)-
—(1.16) it is necessary, however, to know the exact form of the matrix Q. The formula
(1,17) is the only source of our information about Q. The left side of the formula (1.17)
is a symmetrical matrix and, therefore, there are only three independent parameters in Q.

R, describes the pure rotation and, therefore, we may assume that it is a differentiable
function of its parameters

R, = Ro(¢', ¢°, ¢°). 2.1)

One can easily check that
3
. OR
0= E A () @2)
'
i=1

is a good solution of the condition (1.17).
Looking at the form of the matrix' Q we see that it will not be easy to make use of it.
Denoting by R;, R,, R; the generators of rotations we may write R, in the form

R, = CXP'(_Z (PiRi)' 2.3)

In general, the rotations form a non-Abelian group and, therefore, it would be very difficult
to find the composition law for the parameters {g;}. Hence, instead of direct investigations
of the post-Galileian group we present in this paper corresponding investigations of its
Lie algebra.

The whole transformation given by (1.13)-(1.16) can be presented in a compact
form

& = LE+&,, (24)

where &7 = (1o, #,, X}, X3) is a vector of eight-dimensional vector space, &, is a constant
vector corresponding to the translations and'L is an automorphism (8 x 8 matrix) of the
eight-dimensional vector space. The group of transformations L is parametrized by twelve
parameters (p,, ..., P12) = (@, 0y, 4, U3)

L = L($’ Bla as ;3) (2'5)
One can easily check that the mappings
p; = L(0,0,....p; ..., 0) 2.6)

are homomorphisms except the case when i€ {10, 11, 12}. But if we change 7, into # in the
following way:

. b e
- T T 27
v3—>u:=03+?—5-vi (2.
c
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we see that the mappings (2.6) are homomorphisms for every i € {1, 2, ..., 12} and therefore

L(g, 9, 4, #) — where for the sake of simplicity we have denoted 7, by v — has the expo-
nential form

3
L, d,4) = exp (¥, ¢'Gr, +0'Gy, + 4Gy, +4'Gy,). (2.8)

From the transformation rules (1.13)-(1.16) we see that the generators Gg, Gy,
Gy, Gy, have the following form:

oL 10 0
Gg, = i g gi ?4 ) 2.9
0 0 O 0
_ oL 0 0 c™%nf O
Gy, = P el ERP ol (2.10)
0 n, O 0
oL 00 O
Gy, =—+ = s 2.1
Qi aql 0 [0 Ai 0] ( 1)
dL | 0 0
Gy =—5 = , 2.12
Ui 3u' 0 [n,- 0] ( )

where the right-hand sides of the formulas denote, of course, 8 % 8 matrices, n; is a unit
3-vector ((n); = 6;;) and A; = Eyu(Ainhi — Miity).
The generators fulfil the following commutation relations:

[Grs Gr] = &umGro (2.13)
[Gr,» Gv.] = €uamGy..» (2.14)
[Gro Goul = €umGom (2.15)
[Grpy Gu. ] = &umGu, (2.16)
[Gvo Gyl = —¢ *8unGo, (2.17)
[Gyv,» Go] = €umGu,» (2.18)
[Gv, Gy l=0, 2.19)
[Gg» Go] = 0, (2.20)
[GQ,; Gyl=0, (2:21)

[GUP Gv,‘] = 0. (2.22)
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The commutation relation between a generator G of the homogeneous part of the

transformation (2.4) and a generator G4, of a translation has the form

[GL’ Geo] = GGL'EO'

(2.23)

Using the formula (2.23) we can now complete the list of commutation relations

(2.13)2.22):

The pure translation commutators obviously vanish.

[Gr, Gi] =0,
[Gr»G5] =0,

[Gro G:,] = 28umG3,.
[Gr, G3,.] = 28"‘,,,6.
[Gv, Gl =Gz,
[Gv. Gyl =Gz,
[Gy, Gz,] = ¢~ %0,Gy,
[Gvi» G5, 1 =0,

[Go, G2l =0,

[Ge, G,] =0,

[Go, G:‘?l.‘;l = 285m0 %30
[Gos Gz,] = 0,

[Gu, Gi)] = Gz,

~
X3m?

[Gvi, G"\z] = 0,
[GUl’ G;uc] = 0’

i [GUg’ G;“”‘] = 0.

3. Classification of the post-Galileian Lie algebra

(2.24)
(2.25)
(2.26)
(2.27)
(2.28)
(2.29)
(2.30)
(2.31)
(2.32)
(2.33)
(2.34)
(2.35)
(2.36)
(2.37)
(2.38)

(2.39)

In order to investigate the physical consequences of the post-Galileian relativity
principle, one should know the representations of the Lie algebra constructed in Sect. 2.
_ The representations of Lie groups and Lie glgebras are vastly studied in mathematical
literature [3, 6]. All Lie algebras are well classified and. up to isomorphism there are only
some types of them. Every type of Lie algebra has its own representations and, therefore,
also the physical consequences are different for different types of algebras. One must
then first determine the type of a Lie algebra in order to read out its representations and
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then its physical aspects. In particular, we have in mind the quantum numbers of particles
described by the representations of our group.
Let us denote with .Z the post-Galileian algebra given by the commutation relations
(2.13)-(2.22) and (2.24)(2.39). The algebra % is a real twenty-dimensional Lie algebra.
In order to recognize what type of algebra we have, two sequences are introduced:

PO =g, PO .= [PW g™, (3.1)

.?(0) = .g,p, ' g(n-‘%l) = {y(n), g], (3.2)

where n = 0, 1, 2, ... . One can easily see that for the algebra % the following fact comes
frue:

PV =@, =2 (3.3

and, therefore, the algebra .# is not solvable as well as it is not nilpotent. It is also not
semisimple because it has non-zero commutative ideal which is a subalgebra generated
by Gy, and Gy,. There is also another reason why % cannot be semisimple: the Killing
form of algebra ., Cartan metric tensor of which is:

ga;By = —246 45 - Opr - 5:‘19 34
is strongly degenerated. As we see from (3.4), g 3.-8 , is diagonal and it has only three non-
-zero elements which come from rotations Gg,. Moreover, the algebra £ is not simple
because it has many ideals which are different than {0} and Z.

The subalgebra of & generated by Gy, G, Gy and by generators of translations is an
ideal of . Denoting that ideal by I, we obtain that

I1® = {0} (3.5)
and

I = {O}. (3.6)

From (3.6) (and directly from (3.5)) we see that the ideal 7 is solvable. It is easy to see that
I'is the maximal solvable ideal of .# (the so-called radical) and, thereforé, the quotient
algebra £/I is semisimple (and isomorphic with the subalgebra generated by rotations Gg).

From the Levi-Malcev theorem we know that there exists a semisimple subalgebra
S of £ such that & is given by

Z=1@,5, (3.7

where the symbol @, denotes the semidirect sum of two Lie algebras. S is obviously equal
to the subalgebra generated by G, because there are no more subalgebras in % which
would be semisimple and larger than the one generated by Gy. In this way we have obtained
the well-known fact that the subalgebra generated by Gy (the rotation Lie algebra) is semi-
simple. Denoting the subalgebra generated by G with #; we have that:

Z=1@, % (3.8)

Because the algebra Z is very well known it will be quite sufficient for further investiga.
tions of &£ to consider the radical 7 only.
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From (3.6) we see that T'has a nontrivial center / 5, which is the subalgebra of & gener-
ated by Gg,..

According to the theorem of Ado every Lie algebra is isomorphic to some linear
subalgebra of the full linear algebra gl (n, C). Therefore we can represent I by certain algebra
of matrices.

Let us denote with T the vector space of all m x m upper triangular matrices with
equal diagonal elements and let 7¢™™>»™ denote the set of all linear transformations
acting in the space

V=V,eVe..eo% (3.9)

being a direct sum of vector spaces Vy, V,, ..., ¥, in such a way that:
1) the subspaces ¥V, i=1,2,...,k, are invariant with respect to transformations
A € T-(m;,mz,...,mk), )
2) in each subspace V; with the basis {#{’}7%, every 4 e T™ has the form
A A
o . (3.10)

A

0

Because the matrices 4 € T"*™™) are triangular they form a Lie algebra. An arbitrary
nilpotent linear Lie algebra is isomorphic to a subalgebra of some Lie algebra T¢"m2»m)
(for the proof see [2]).

According to that fact and to the theorem of Ado, the radical 7 which is nilpotent
because of (3.6), can be represented by triangular matrices.

A connected Lie group is called solvable, nilpotent, Abelian, simple or semisimple,
if its Lie algebra has one of those properties.

Now, when we already know the type of the post-Galileian Lie algebra we can use
the known mathematical methods to construct its representations. The next and the most
important question would be the physical interpretation of the parameters which determine
the given representation. This problem, however, will be discussed in a future paper.

The author is indebted to Professor E. Kapuscik for suggesting these ‘investigations,
for valuable discussions and encouragement. I would also like to express my gratitude
to J. Szczesny for many critical remarks.
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