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YN —nN PHOTOPRODUCTION: A MODEL WITH CROSSING
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Various dispersion relations techniques have been revisited in order to check the recent
conjecture of Jurewicz that the u-channel exchange of the A (1232) governs the dynamics
of the £ iff amplitude in the YN — =N reaction. The role of crossing symmetry in this process
is clarified and both the E}/> and M3/> amplitudes are calculated in a crossing-symmetric
model.

PACS numbers: 13.60.Le

1. Introduction

Dispersion relations techniques have been used with success for nearly thirty years
in describing photoproduction of pions on nucleons in the low energy region up to the
first nN resonance A(1232). With the advent of high precision data it becomes possible
to extract the individual monopole amplitudes directly from experiment and these mono-
poles can be confronted with thepretical predictions. Owing to the inelasticity appearing
in some amplitudes at photon lab energy of about 400 MeV, it has become conventional
to restrict the comparison of dispersion relations calculations with experiment to. photon
energies below 450 MeV. In particular, the two dominant monopoles, viz. the magnetic
dipole M3/} and the electric quadrupole E}/? have been evaluated by many workers and
compared with experiment. While the magnetic dipole amplitude is well understood, most
calculations failed to reproduce the electric quadrupole amplitude even qualitatively in the
resonance region. Since the disagreement was most severe at the high energy end, the con-
sensus was that the data apparently called for some extra input information to be used for
extending the existing models.

Opposite views have been expressed by Jurewicz who presented recently [1] a param-
eter free calculation in which the electric quadrupole amplitude was found to be in perfect
quantitative agreement with experimeht. It has been suggested in [1] that the A(1232)
exchange in the u-channel of YN — nN reaction might be an important contributor to the
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dynamics of the E7’? amplitude. To verify this conjecture, however, a model with explicit
crossing is needed. It should be noted here that in most papers [1, 5, 6] crossing symmetry
is maintained only at the initial stage of the calculation but is destroyed later on in result
of partial wave projection.

The purpose of this paper is to resolve the controversy about E3'? amplitude and
to clarify the role of crossing symmetry. We are going to show that the constraint used
in [1] to dispose of the polynomial ambiguity follows naturally as the stability requirement
imposed on the solution. In contrast to Jurewicz [1] who uses fixed angle dispersion rela-
tions, we chose to stick to the fixed ¢ approach devised a long time ago by Blankenbecler
and Gartenhaus [3]. The latter model is manifestly crossing-symmetric and allows for an
exact treatment of nuclear recoil. On the other hand, the solution of the underlying integral
equations given in [3] is mathematically not quite correct. In the following we improve
upon this point and come up with the complete solution. The resulting E3/2 and M3/?
amplitudes turn out to be in good agreement with a typical dispersion theoretic predlctlon
[2], i.e. we find marked difference with the results presepted in [1]. Our finding is that with
the crossing symmetry maintained throughout the calculation the u-channel A exchange
contributes negligibly to either M}/2 or E3/? amplitudes. Consequently, the good agreemen
with the data achieved in [1] is not to be attributed to the u-channel A exchange and must
have a different explanation. We discuss this point in some detail in the Appendix.

2. Theory

The analyticity postulate for the four invariant amplitudes of yN — nN reaction
implies the dispersion relations

Xc

Dyx,v) = B*(x, v+ 71‘— -[Im Dy(x', v){ ,1 + il }dx', )

x'—x x'+x+2

X0

where, following the notation of Ref, [3]

Di(x’ 'V) = Ai(x’ v)-—C,-(x, V)-

A{(x, v) are the standard amplitudes of photoproduction with i = 1, ..., 4 and suppressed
sospin indices. Cy(x, v) are the comparison functions, chosen according to Ref. [3] to be
the small phase shifts contribution to the Born amplitudes Byx, v) i.e.

Ci(x, v) = By(x, v)—B}*(x, v). €3]

By(x, v) are taken to be the minimal set of gauge invariant Born amplitudes as defined
in Refs [1, 3, 5]. Our variables are x = (W?2—M 2)/2M, where W is the energy in the center
of mass system, M is the nucleon mass, m, = = ¢ = 1,v = —q - k2M, x, = 1+1/2M,
X, is a cut off parameter, n, = +1 according to the convention adopted in [3].

In order to obtain a unique solution of Eq. (1) several assumptions will be needed.
(i) The (3.3) phase shift dominance: the phase of D{x, v) is assumed to be equal to J33(x)
for v in the neighbourhood of vy = —(1+M/(M+1))/4M.
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(i) The contribution from x > x_ energy range is neglected and the minimal set of gauge
invariant Born amplitudes is used.

(iii) To extract the contributions of A(1232) poles in the complex x plane the elastic phase
shift 853 of Dy(x, vo) will be extrapolated to = at x, as was done in Ref. [1].

These assumptions deserve a few words of comment. As a matter of fact, in this model
X, has to be regarded as a parameter and variation of x_ produces important changes in the
magnitude of the solutions what is a simple consequence of the fact that B}3(x, v) does not
vanish sufficiently rapidly above x,. This indicates that B33(x, v) should be somehow modi-
fied at higher energies by other effects as will become evident later. A simple modification
is suggested by quark models [11, 12], where the NN strong vertex is shown to contain
a formfactor rapidly decreasing with the pion momentum. In the actual calculations
x, was fixed at 770 MeV.

The particular choice of v, in the assumption (§) is motivated by the fact that this
is the only value of v for which no unphysical values of the production angle appear on both
cuts in the x plane. It is assumed that the phase is slowly varying as a function of v around
Vo i.e. 033(x, v) ® 33(x, vo) = d33(x). It should be noted, however, that in general the
phase of Dfx, v) does depend on v what may be easily seen by taking sufficiently large
values of v to make the right (R) and the left (L) hand cuts in the x plane overlap. Then,
the phase of D(x, v) must be zero on L n R if one wants to be consistent with Eq. (1).

Under the assumptions (i), (i), (iif) the complete solution of Eq. (1) may be obtained
from the solution of the associated Riemann boundary condition problem [4]. To show
that let us define the following function in the complex x plane

. 1 1 "

&(x) = — | D{t, vo)h*() | — + ————— | dt, 3
(%) Znij (1, vo) ()[t—x + t+x+2vo]d 3

R

where A*(t) = e P3O sin §,5(t), R = [xo, %), L = [~X.—2vp, —Xo—2vo] and let us
introduce several functions defined on L U R

833(x) = 833(x),
833(—x—2vp) = —833(x),
B{(x) = B(x, v,),
B(—x—2vo) = n;B(x, ),
G(x) = exp (2i833(x)),
gi(x) = By(x)e**® sin §,5(x) = B(x)h(x). @)

In the above definitions of the 535(x) and By(x) functions x belongs to the [x,, x.] interval.
These functions provide natural continuations of the 8;3(x) and B>3(x, vo) defined on
R only.
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Eq. (1) is equivalent to the following Riemann boundary condition on L U R

& (x) = G(X)P; (x)+ gi(x), ()
where
DE(x) = d(x+ie).

The crossing symmetry condition may be expressed in terms of &} as
@ (x) = n:®; (—x—2v,). ©)

Although assumption (/i) makes the index of the problem formulated in Eq. (5) equal
to 2, the crossing symmetry condition (6) reduces the polynomial ambiguity of the solution
10 a single constant C. The full solution of (5) may be written as

N 1 Bwhwat §i(t)5(\t)3t v
o0 = x5 [ 1005+ [Fiom cl. 0
R L
X' = X(t+ie),
where X(x) denotes the solution of the homogeneoué problem
¥ (x) = G(x)P~(x). ®)

It should be stressed that in view of the crossing symmetry condition (6), the homogeneous
solutions X(x) are different for the two values of 5; = +1and n; = —1 (a point not recog-
nized in Ref. [3]). 'According to the assumption (iii) we have

i 1 1 1
Xxm = +1) = (o %) (b % +2vg) P {? J 955(1) [t_:; + t+x+2vo] dt} ®)
R

while for n; = —1 (odd under crossing), one obtains

X(x,m; = —1) = (x+vo) - X(x,m; = +1). (10)

The asymptotic behaviour of our X(x, ;) may be easily deduced from Eq. (3). One sees
immediately that for x — oo these functions should behave like 1/x and 1/x? for ;= —1
and n; = +1, respectively. Furthermore, X(x, 7, = —1) should have a zero at x = —v,
what leads to expressions (9) and (10). The important point is that one solves the boundary
condition problem ‘(5) or (8) with the additional requirement that the solution should
be expressible in the form (3). This definition incorporates properly the crossing symmetry
condition. The flaw in Ref. [3] consisted in that only the function even under crossing was
used and the homogeneous term in (7) was absent.

The final form of the solutions satisfying assumption (iii)) may be obtained from

Dy(x, vo) = B3(x, vo)+2i®] (x). 1y
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The constant C is fixed by the requirement that
Dixsv) =0, i=1,..,4 12

In order to obtain the M}’? and EY/? amplitudes the solutions (11) were projected
onto partial waves and evaluated numerically. The results of these calculations-are shown
in Figs 1, 2. The obtained energy dependence is similar to that found by Adler [5] and
earlier by Finkler [6]. These authors, in fact, fix the polynomial ambiguity in their equations
in the same way as it was done in [1] and in the present paper. It is evident that this method
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Fig. 1. Re M 3/’(J\r) in units 10~2 %/(mec) vs photon energy in the laboratory frame. Data from Berends
and Donnachle [8] (@), Pfeil and Schwela [9] (O), Berends and Donnachie [10} (X)

is the only one.consistent with assumption (i) above, for any other choice of the constant
in Eq. (7) would produce a finite change in the solutions under an infinitesimal variation
X, = X,—¢&, £ > 0 with 53(x) fixed. Therefore a nonstability of the solutions would appear
what is in conflict with assumption (ii).

This procedure was also applied with success by Jurewicz [7] to the electroexcitation
of the A(1232), emphasizing the crucial role of the homogeneous solution in building the
resonant shape of the M¥/Z, It is the function X(x) which is responsible for the resonant
shape of the M3/? in this paper. In the narrow resonance approximation X(x) would give
two poles on the real x axis corresponding to both s and u channel resonances. While the
s channel pole has important effect on the solution, the crossed channel pole plays no
important role because it is far from the physical region and because of the crossing sym-
metry condition constraining the residues.
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Fig. 2. Re Eif(x) in units 1072 %/(mgc) vs photon energy in the laboratory frame. Data from Refs {8, 9,
10] as in Fig. 1

A common feature of the above mentioned works [1, 5, 6], in contrast to the Blanken-
becler-Gartenhaus approach lies in their use of singular integral equations derived for the
particular multipole amplitudes what makes the role of crossing symmetry obscure. Al-
though the s channel A pole may be included explicitly, it does not seem possible to treat
the u channel exchange symmetrically after the partial wave projection has been performed.
The reason for the agreement between the results of this paper and those of Refs [5, 6]
stems from the smallness of the crossed channel contributions. It should be stressed here
that the operations of solving a singular integral equation and performing partial wave
projection on it in general do not commute.

3. Discussion

In concluding it should be noted that in contrast to the M}/2 the behaviour of the
E¥? amplitude above the resonance region is still mysterious. Our solutions could be in
principle corrected by successive iterations of the method in which the new comparison
functions would be taken from the results of previous calculations [3]. These iterations,
however, are not expected to bring significant corrections because they represent the small
phase shifts influence on the dominant multipoles.

The couplings of the photon to the A(1232) were described in this work solely in
terms of ynN dynamics as it was done frequently in the past. This procedure applied con~
sistently has led us to a prediction of E3} amplitude which differs significantly from the
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experimental data. The foregoing discussion suggests that the assumption (ii) is likely
to be incorrect and a question arises what effects are responsible for the observed behaviour
of the E3/2. There are several possibilities. The Born terms B}® may be modified by quarks
inside the nucleon coupled directly to photons and to pions. Additional pole terms may also
be accounted for, and what seems very probable, the high energy contributions from the
dispersion integrals may not be negligible. Finally, the data points in Fig. 2 indicate that
inelastic effects may be rather important for E3/2 as this amplitude clearly does not vanish
anywhere in the region of x..

_ The author wishes to thank Dr. A. Jurewicz for suggesting the problem and for
illuminating discussions.

APPENDIX

As far as the outstanding results~from [#} are concerned we wish to stress that they
have been obtained on the basis of different equations then those used in [3, 5, 6] and also
in the present work. The underlying fixed angle scheme used in [1] is not free from serious
formal objections. To be more specific, the equations for the invariant amplitudes used
in [1] are

© 3
1 av'
Hio(v, €) = By(v, )+ - j\’vT-—_v Z Q;(v, v')Im Hy(v', ¢), 13)
o i=0

where v, ¢ mean in the c.m. system of the s-channel of yN — ©tIN the final three-momentum
squared and the cosine of the production angle, j labels the four Riemann sheets of the
(v, ¢) space resulting from the transformation from (s, ¢, u) to (v, c¢) variables. By, are the
invariant Born amplitudes and Q (v, v") are known functions [1] with the asymptotic behav-
iour Q;(v,v)~ v for v — oo and any finite v'. Let us note, however, that once a cut-off
has been introduced, as follows from (13), H;o(v, ¢) will show a rather unusual asymptotic
behaviour, viz. H;o(v, ¢) — const for v — co. Such a slow fall-off together with the assump-
tion that the high energy tails of the dispersion integrals are negligible is in conflict with
the derivation of Eq. (13) itself, unless the above mentioned constant is equal to zero, but
this is, of course, not guaranteed by the dispersion equations alone. In consequence, the
resulting equations have excessively large kernels producing distortions in E¥? which
rather fortuitously go in the right direction.
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