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Using the group-theoretical methods and the geometrical picture of pure spinors due
to Cartan and Chevalley, we give the explicit construction of the manifold of such spinors
for the group SO(p, q).

PACS numbers: 02.20.+b

1. Introduction

The nonlinear realization of groups arose in physics more than a decade ago in con-
nection with current algebra and low-energy hadron physics [1-5]. This approach is known
under the name of the method of effective Lagrangians. Some models, like for example
the nonlinear sigma model, are interesting on its own right [6]. However, of all the investi-
gated models, to our knowledge, the essentially nonlinear are bosonic fields. It was noticed
recently [7] that a natural basis for nonlinear realization in the case of fermion fields is provid-
ed by E. Cartan theory of pure spinors [8, 9]. In this paper we discuss some topics con-
cerning the mathematical structure of pure spinors for the pseudo-orthogonal groups
SO(p, q). We emphasize the geometrical aspects of the problem. Similar results can be
obtained by algebraic methods [10]. In Sect. 2 we remind some basic notions concerning
the Chevalley construction of the representation of Clifford algebra and introduce the
notion of pure spinors for the group SO(n, C) and its real forms SO(p, q), p+q = n.
Section 3 is devoted to the general method of constructing of the manifold of pure spinors.
In Sect. 4 we give a detailed discussion of the properties of SO(v, v) pure spinors. The
general case is investigated in Sections 5 and 6.
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2. Preliminaries

In this section we remind some basic notions concerning the orthogonal groups and
Clifford algebras.
A. The group SO(p,q) and, the Witt decomposition

SO(p, q) is the real form of the group SO(p+g, C) or, equivalently, SO(p+4, C)
is the complex extension of SO(p,q); Let M be a p+g-dimgnsional vector space over
C, with SO(p+ ¢, C)-invariant symmetric, nonsifigular scalar product. Now, with a con~
venient change of basis in M, it is always possible to choose for qur problem the metric

tensor g in the form
e (b0
2.1
2t = () @

where I, resp. I, is px p, resp. ¢ x ¢, unit matrix. For definiteness we assume that p >g¢.
All real transformatxons from SO(p+q, ) leavmg invariant the scalar product determined
by g, form the group SO(p, ). Namely, 0'¢ SO(p, §) if detO =1, 0* =0 and

0"g0 = g. 2.2)
Consequently, if L belongs to the Lie algebra of SO(p, g), then (2.2) implies
g Mg = L. (2.3)

In the following we adopt the convention without imaginary unitin the definition of infinites-
imal rotations.

According to the Witt theorem [9] in the case p+¢ = dim M = even, M is the direct
sum of two maximal totally singular subspaces, say N and P:

M = N@P,
. . ‘s . p+q _ -
with equal dimension dim N = dim P = 5 = v. For odd p+q = 2v+1

M = V,®N®P,

where ¥V, is a one-dimiensional subspace of M.
Note that the Witt decomposition is not unique. One possible choice is given by the
following unitary transformation of coordinates

x* = KixP, 249
where o, f=1,..,2v or ;8 =0,1,...,2v for even and odd p+gq trespectively, and

| il O

v 1 v 0 -1 o
R=—|—7r 11 2.4

v2{, —il,J 0 (24
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for p+q even, and

(1)o] 0o )
. 1 oy, _LI"_"Ll._O__
R=— 0 =1, (2.4b)
V2|
#1 _-‘\l'[""'Ql 0
£
- 0 l I'J
for p+q odd. ’
The metric tensor takes the form
g = ROk @9
i.e.
_ (o .
g = I,to ( . a)
for p+¢ even,.and
110
g={opolr, (2.5b)
0[1,/0

for p+g odd.
The subspaces N and P are spanned in both the cases by the coordinates

vi viey |
xy = —=(X+ix""), o =.\—/§(7"‘—x‘H )
xh = -1—_(;2‘—;':2“') xt = —-1:(§*+§*+’) (2.6)
i 4 \/2 » P \/2 s

wherei= 1,2, ..., (v—q), k = (v—g+1), ..., v. In the odd case, V, is spanned by x° = x°.
Note that

XN =Xpspy Xp=Xya:a=1,..v 2.7

B. The Clifford algebra

In the sequel we consider the complex Clifford algebra C" with # = p+gand the anti-
commutation rules for generating elements chosen appropriately to our problem (see

Eq. (2.1)) as
{;”. ')\;p} = zéaﬂi' 2.8
The vector space spanned by the generating elements of C* is naturally isomorphic
to M by identification

[x] = X = 3, (2.9)
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In the Witt basis defined by Eq. (2.6), we have
ot =0, (1)} =0, {17} =261 (2.10)
for a,b=1,2,...,v, and in addition

=1, (%A ={(%1%) =0
if p+q is odd.
Furthermore,

X = Xnn+Xpyr (P+q cven)
or

x = X’ +xy v +%2 7% (p+g odd).

C. The Chevalley construction

In the case of Clifford algebra under consideration one can give the elegant construc-
tion of its representation resembling the construction of the adjoint representation for Lie
algebra [9]. This is possible because of the existence of the Witt decomposition. In the
following we restrict ourselves to the case p+¢q even; for the extension to the odd p+g¢
case see Chevalley [9]. First, note that vectors belonging to N, resp. P, can be written as
Xy = XNYng TESP. Xp = Xpyp,. The elements yy, and yp, generate two 2'-dimensional
Grassman algebras CY and C* over N and P, respectively. Let fp be the element of C? of
maximal order, namely

Jr = Yp,7p, - Tpy 2.11)

It is obvious that f5, up to a multiplicative factor, does not depend on the particular choice
of basis in P. Furthermore, let us consider the left ideal C"f, = C™f;. This ideal spans the
space of the representation g of the Clifford algebra. We define this representation by the
formula

ow)C = uCfp C Cfp 2.12)

for each ue C".

Note that the generators yy, = 73 resp. Yps = 7 act under @ as Grassman multiplica-
tion, resp. differentiation. Finally, the representation g determines the representations of the
Clifford group as well as the groups Pin and Spin [9].

D. Pure spinors

Let Z be a maximal totally singular subspace and letM =2 @ Z’ be the correspond-
ing Witt decomposition (we will consider the even case). We put

Jo = VaVey o Voo

As previously, £, is determined by the choice of Z up to a multiplicative factor. Now
£.C" = f,C¥ is the minimal right ideal in C*. It follows then that the intersection C"f,
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o fzC¥ is the one-dimensional subspace of C" [9]. Consequently, we can write
C'p O f2C% = {s2f2}s (2.13)

where s, € CY. We call this one-dimensional subspace, the space of SO(n, C) pure spinors
associated with the maximal totally singular subspace Z. Note that for the particular case
Z = P, this subspace has the form ff, with € C. Equivalently, a pure spinor y associated
with the subspace Z is determined up to a multiplicative factor by the equations:

. p =0 (2.19)

for each z%,eZ.

It is obvious that SO(n, C) pure spinors form a nonlinear realization of SO(n, C).
The manifold of pure spinors can be obtained by the group action on a fixed standard
pure spinor, so it is simply the orbit of the group. The SO(p, q) pure spinors are identified
with the points of the SO(p, g) orbit in the manifold of all SO(n, C) pure spinors.

3. The construction of pure spinors

From the discussion given above we conclude that SO(p, g) pure spinors form a non-
linear realization of this group. Haying this in mind we can proceed in the standard fashion
[2, 4] and construct the orbit of pure spinors as follows. We choose an arbitrary but fixed
“standard” pure spinor and determine its stability group G, € SO(p, 9). The group SO(p, q)
acts transitively on the coset manifold SO(p, ¢)/Go. It follows that we can identify the mani-
fold of pure spinors with the above coset space. Every pure spinor can be obtained from
the standard one by applying a suitable transformation from SO(p, q).

A. The stability: group G,

Let # denote the homomorphism, n: Spin (p, ) - SO(p, ¢), i.e. for se Spin (p, q);
7(s) = O(s) € SO(p, q). Putting

S.Sp = Jow
(compare with Eq (2.13)) we obtain

0(8)s.fp = sf.s7(sw)
but

],:I (721
Taking into account that
Yas ™' = 07

we conclude that

57 =B()fe Bl)eR
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if and only'if the subspace Z is invariant under the action ‘6f O(s). Then’

o9)s. S = F.B(s)sw €£,C% ) CFp.

It follows froin the above consideration that'the stability subgroup of the one-dimensional
subspace of pute spinors associated with Z, consists of those elements of SO(p, g) which
leave Z invariant. Let us choose the pure spinor fp relatéd to the subspace P as the standard
one, i.e. we put Z = P. It is easily seen from the above that the stability group of P should

0
Jeave invariant the vectors of the form (((J)Cfv ) in the even case or | (x%)] the odd case.
. o
However, we need to know the stability group of fp rather than the subspace'P, namely
the elements s € Spin (p, ¢) such -that

sf_,%- e 3.1

Let « be the main involution of the Clifford algebra [9]. Acting with « on both sides of
Eq. (3.1), we get

Sex(s) = fp. (3.2)
On the other hand, multiplying Eq. (3.1) by a(s), we obtain

Jo = ToS)fp. (33)
From Eqgs (3.2) and (3.3) we have

a(s)fp = L fpou(s).

Applying the operation a to the above equation we get

sfp = L fps.
The continuity argument makes us choose the plus sign in the last equation, i.e.:

sfos™! = fp.

It follows then that n(s) restricted to the subspace P should have the determinant equal
to one.

Now, the condition that a global transformation of SO(p, g) leaves the subspace
P unchanged, can be rewritten in terms of elements of the Lie algebra as

(I-Mp)LI, = 0, (34

where ITp projects on the subspace P, and L is the general element of the Lie algebra SO(p, g).
In the following, IT, and L will be used in the Witt basis.
" The condition on the determinant mentioned above can be written in the form

detp(ITpe ;) = 1. (3.9
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Finally, the general pure spinor is obtained by action on the standard spinor, say fp, the
transformations from: the part. of ~SO(p, g) corresponding to SO(p, g)/G,, where
G, C SO(p, q) is a stability group of fp.

4. The case of SO(v,v)

In this Section we restrict ourselves to the simplest case SO(v, v) [12). The general
element of the SO(v, v) Lie algebra has a form

(A
2- (s u_)

in the Cartesian basis, or

R A
L=} 4.1
(5) “o
in the Witt basis. Here, 4 ,, §, 4, R and B are real matrices and AT = —4d,, 4T = — 4,
BT = —B. In the Witt basis the projector IT, has the simple form

1,0

From the conditions (3.4-3.5) and from the general form of L (Eq. (4.1)) in the Witt basis,
we deduce that the general element of the Lie algebra of the stability group G, C SO(v, v)

of fp is
_ (R 4"
to= (GT—E) @3

where AT = —4, TrR, = 0.
The Lie algebra of G, contains two subalgebras

- {Eh) = o)

R, is isomorphic to the sl(v, R) Lie algebra, while «of is the (;)—dimensional Abelian

algebra.
Moreover, & is an ideal in the subalgebra under consideration. The general element
of G, can be written in the form

_ _ 1|4 _(exp R,|0 _ B o
exp o ‘exp Ry = (GlT) ( 5 [exp (-—R(T,)) = {4, €%}, 4.4)
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with the composition law
{4, €%}y - {4', €5}y = {A+eRed eRoT, eBoeRo')

S0, Gy is isomorphic to the semidirect product of SL(v, R) and the (;)dimensional Abelian
group N:
Gy ~ SL (v; R)®,N. 4.5)

A. The manifold of SO(v,v) pure spinors

We can write the general element L of the Lie algebra of SO(v, v) (Eq. (4.1)) in the
following form:

(o) - o)« G) =)+ )

the stability subalgebra L, the complement

i 1
witha = - Tr Rand R, = R— - (Tr R)I. Note that the complements of L, to L do form
v v

Il Q
the subalgebra by themselves. It consists of one-dimensional algebra {(g—%-a—l)} and (;)—
0l0 .
-dimensional Abelian ideal {(—E%B—)} . We parametrize the elements of the coset space W
(which form the group) as follows:

el ()G Een o

so the composition law in W reads:
{o, B} - {o', B'} = {a+0a', B+e **B'}.
Cdnsequently, W is the semidirect product of R and N':
W~ R®N’, 4.7

with (v)-dimensional Abelian group N’. The group W is nilpotent so the exponential map-

ping gives the global map for the group manifold. In our case the group manifold of W is diffeo-

morphic to R we can parametrize the coset manifold W =~ SL(v, v)/SL(v, R)®,N,
and consequently the manifold of SO(v, v) pure spinors, by the matrix elements b, = —by,
of B and by the parameter a. Now, the (nonlinear in general) action of SO(v, v) on the
manifold W of pure spinors can be determined with the famous relation [2, Al

gW = W'g,, 4.8)
g2e SO, v), goc Gy, W, W eW.
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SO(v, v) acts on W according to the law g : W — W’. From (4.8), (4.4) and (4.6) we
obtain the following transformation law for coordinates (x, B) of W

SO(v, v) 3 g: («, B) = (', B').
Explicitly:

. = 0 “’ =a
if g = {0, e*°}o € SL (v, R) then {B, = ¢~ Ro"BeFo, (4.92)

1
o = o+ " In det (I +AB)
B’ = B(I+AB)™', (4.9b)

if g={A,I},eN then

(the constraint 4 # B-! is connected with the fact that SO(v, v) cannot be covered by
exponential map)

] o =g+
= {8,C then {%,= *1
if g={fCreW en {B = e B4C. (4.90)

B. The explicit construction of SO(v,v) pure spinors in the spinor repre-
sentation

First, we give the following general construction of the generators of SO(v, v) in the
spinor representation. Let us introduce the following notation:

)’E((YIE)) 5= (N> - VR VBs - TP, (4.10)
(YP) > Ny » N» Py o+ IPIBY .

where g is the metric tensor in the Witt basis (see Eq. (2.5)). Then the following relation
holds:

L=-%Ly, @.11)

where I denotes the element of the Lie algebra of SO(v, v) in the spinor representation
which corresponds to L. The formula (4.11) can be checked by considering the commuta-
tion rule :

[L,4] = Ly (4.12)

which is obtained with help of the relation (2.3) rewritten in the Witt basis.
Now, we can construct the general pure spinor corresponding to the point (a, B) of the

manifold W. Putting
Qs(glg), Gs(all 0)
B|0 0 |—al

f(a, B) = exp (—1 7#y) - exp (— 1 707) - fo (4.13a)

we obtain
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or expanding in the power series

fle,B) = e? (g)(i = buynynlfe (4.13b)

i<k

(note that f; can be determined in a matrix realization of C by the condition yp fp = 0
forall k=1,..v).

5. The general case p+q = 2v

A. Lie algebra of SO(p, q), p+q = 2v in the Witt basis
The general clement of the Lie algebra L of SO(p, q), p+¢q = 2v, in the Cartesian

basis has the form
i (ffpis )}P
‘E: !i q }a

P gq

with o/, and &/, — real antisymmetric matrices, S — real matrix. After transformation
to the Witt basis with help of R given by Eq. (2.4a), we obtain

AB| Ci D\ v—g
—-D'R|-D% E \gq
L= : : , (5.1
C*BY A% D*jv—¢q
—B'F |-B"—R"/ ¢

v—gq Q9 v-gq q

where the matrices 4, B, C and D are complex, while E, F and R are real. They satisfy
A'= -4, C"=-C, E'=-E F'=-F. 5.2)

Let us denote the subspaces of the Lie algebra L of SO(p, q) generated by A4, B ... as L,
L etc., respectively. By LS and L} we denote the subspaces of L, and L under condition
Tr 4 = 0 and Tr R = 0, respectively.

Then we see from (5.1) that:

a) L, is the subalgebra of L generating direct sum of the basic representation of the
group U(v—q) and its conjugate. Consequently, LY is the Lie algebra of SU(v—gq).

b) Lgis the subalgebra of L generating direct sum of the selfrepresentation of GL(g, R)
and its contragradient selfrepresentation. Consequently, LY is the Lie fllgebm of SL(g, R).

¢) Lg is the subalgebra of L generating Abelian nilpotent (g)-dimensional subgroup
of SO(p, 9).

d) Ly is the subalgebra of L generating Abelian nilpotent (g)dimensional subgroup
of SO(p, g}
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e) L, ® L. is the subalgebra of L generating the group SO(2(v—gq)). Note that
U(v—q) C SO(2(v—q)) acts as automorphism of L¢ ([L,, L] C L)

f) Ly @ L, is the subalgebra of L generating nilpotent (non-Abelian) (g) +29(v—q)-
-dimensional subgroup of SO(p, 9).

g) Ly & Lj is the subalgebra of L generating nilpotent (non-Abelian) (g) +24(v—q)-
-dimensional subgroup of SO(p, 9).

h) SO(2(v—¢q)) and GL(g, R) mentioned in (¢) and (b) commute.

1) Ly and L are the irreducible antisymmetric tensors of GL(g, R); namely, under
e GL(¢,R) E' = "Ee®", F' = e"FFe X",

j) Lg and L, are singlets of SOQ2(v—q)).

k) L and L, are the representation spaces for GL(g, R) and U(v—gq).
B. The stability subgroup G,

Now, from the conditions (3.4), (3.5) and the general form of the element of Lie
algebra of SO(p, q) (see Eq. (5.1)), we obtain that elements of the stability algebra have
the following form (in the Witt basis)

A40] 0 D

ZD'Ry|-D" E .
Lo=1—5701 2% p*|’ (53)

""" 6“26’"!""6"';’3}'{3

with Trd, = TrR, = 0, A} = —A4,, E* = —E,E, R, are real, A, D are complex.
Therefore, the stability algebra L° is the direct sum

L = LolyoLOLy. (54)

Consequently, as follows from the discussion in the first part of this section, the stability
subgroup G, of a SO(p, g) pure spinors associated with singular subspace P is the semi-
~direct product of SU(v—¢)xSL(g,R) and the nilpotent non-Abelian subgroup N

generated by Ly L, dim N = 2q(v—¢q)+ (g)

Go = (SU(v—9) x SL(g, R))®,N. (5.5)

If we use the exponential parametrization for N and denote by U and T the group elements
of SU(v—gq) and SL{(g, R), respectively, then we obtain

Goego = {U, T, D, E}

10 0D \ [UO0 0
ZoR I SDTEL(BD 4 D7D%) | 6"_'%'6'"{6 """"

00 I D* oio|U*o ' .6
R R .
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Then the composition law for G, reads

2086 = {U,T,D,E}-{U', T, D', E'}
= {UU, TT,D+UD'T , E+TE'T"
+1[TD"'UD+TD'"UD* - DIUD'TT~ DTU*D'*T™]}.
C. The coset space SO(p,q)/Go =L
The elements of L corresponding to the coset space W have the form
Ly = Li®Ls®L DL, DLy,

where L, and L, are the one-dimensional subalgebras — the orthogonal complement
of LY and L% to L, and Lg, respectively.

The dimension of L equals dim Ly = v2—v+2— g) —0,,0—9,,0. The elements
of the coset space W can be parametrized as follows

WaWw = {X,Y,

@AV}
LF?.STLB '-A\Zé’LR Eg
I1x| 00 (10 0 0
| o1} o iolfo 10 0 v s
| o x* 1 0]{o 0 le*ro ’ D
—XtZ |-XTI/\0 0 |0 e
where Z = Y— 1 (X1X+X"X*) and ¥V generated by
0 0|20
_ [0 0joio}
“ 7 laxo

here Q is complex antisymmetric (v—q) x (v—q) matrix and parametrizes the coset space
SO (2(v—q))/U(v—q), and X is a complex (v—g) x g matrix, Y is real antisymmetric gx g
matrix.

The nonlinear action of G on W can be determined with help of Eq. (4.8).
Summarizing, the manifold W of pure spinors

W = SO(2v—gq, 9)/(SU(v—q) x SL(q, R))®N
has the structure of the topological product:

RH0-0+(D)*1 % SOQ2(v—g))/SUV—g).

Two extreme situations: v = q(SO(v,v)) and ¢ = 0(SO(2v)), correspond to RG)Jd
(fully noncompact) and SO(2v)/SU (v) (fully compact) cases, respectively.
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D. SO(p, q), p+q = 2v, pure spinors in the spinor representation

Following the procedure from the SO(v, v) case, the general element I of the Lie
algebra of SO(p, q) in the spinor representation has the form (4.11), namely

L= -3y,
with y and 7 defined as in Eq. (4.10) and L given by (5.1). Taking L, in the form

uplxl Q0

Ly = 5 .
¥ o+ X*]~z¢1 0 638

—X*

(compare with Eq. (5.7)), we can express the general SO(p, q), p+4g = 2v, pure spinor in
the exponential parametrization as

PX, Y, 9,4, Q) = exp(Ly) - fos (5.9)
where LW = ~3 yLWy

6. The general case of p+q = 2v+1

In this case, the metric tensor g is given by (2.5b) and consequently the projector 11,
in the conditions (3.4), (3.5) should be of the form

0/0]0\ 1
n,,=<0 1[0 }v. (6.1)
0jolo/ v

Nt St Nt
i v v

The general element of the Lie algebra of SO(p, q), p+4q = 2v+1 in the Witt basis
has the following form:

(0! b b* | e )

f 1
-btt 4|/B| Cc | D v—g
L=|-e'-DHR|-D" E | g4 6.2)
~b" C*|B*| 4*| D* | v—q.
_~/"I-B'|F |-B" |-R" | q

1 v—q ¢q v—gq ¢

where the matrices 4, B, C, D, E, F and R have the same properties as in Eq. (5.1) while b
is complex 1 x (v—¢) matrix and e, f are real 1 x ¢ matrices.
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From Eqs (3.4), (3.5), we obtain the general element of the stability subalgebra

(0] 0[0] 0] e )
T0| 4,0] 0| D
Lo = | —€"|—DYRy|—D| E (6.3)
0] oo 4% »p*
L o] 0l0| o [-R]

jie. I° = LoIX®LOL.OL,,.
Because the subalgebra Ly @ L @ L, is nilpotent (non-Abelian) ideal in L° (it is
+1

q(q2 ) +2q(v—-‘q))-

-dimensional subgroup N, then G, is the semidirect product of SU(v—g)xSL(g, R) and
N, namely

singlet of LY and a representation space for L}) generating nilpotent (

Go = (SU(v—q) xSL(¢, R))®,N, (6.4)

with dim N =

+1)
q(q2 ) 4 20(—0.

Now the manifold W of pure spinors is the coset space
W ~ SOQ2v+1—~gq, @)/(SU(v—q) x SL(q, R))® N 6.5)

q+1
2
Taking into account the fact that L, @ L @ L, spans the Lie algebra of SO(2(v—gq)
+1), while Ly @ Ly @ L, is nilpotent subalgebra generating nilpotent subgroup iso morphic
to N we see that W is topological product

and dim W = v’ +v+2—- ( —8,0—040-

qtq+ 1)

3 SOQ(v—g)+1)/SU(W—q).

29(v-g)+
R

The manifold W can be locally parametrized by 'exponentiation of the complement of
stability algebra L° in L, with general element

Ly =L-D. (6.6)

A general pure spinor in the spinor representation is obtained analogously to Eq. (5.9)
with Ly, given by Eqs (6.6) and (6.3), (6.2). However, a modification is necessary in the
definition of y (and 7): one must add y° in the first row:

,yo
y= (?IE)) . 6.7
(7p)
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7. Conclusion

A formalism has been developed for describing the pure spinors. We have found
explicitly the manifold of pure spinors for all pseudoorthogonal groups SO(p, g). It is
osomorphic to the coset space

SO(p, 9)/(SU(v—-q) X SL(g, R))®,N,

+
where v = [1’_2_2]

We have also given an explicit construction of the general pure spinor in the spinor
representation. From the physical point of view the use of the pure spinors in field theory
is motivated by the following fact. First, they reduce considerably the fermionic number
of degrees of freedom. Moreover, at least part of the fermionic degrees of freedom can
be expressed by the bosonic ones [11, 12]. Finally, it provides a way of introducing
a dynamical principle like in the sigma model [11, 12].

We are greatly indebted to Prof. R. Raczka for inspiring discussions and permanent
encouragement. We also would like to thank Prof. P. Budinich for the discussion during
his visit in Warsaw,
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