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The photon bremsstrahlung correction to the differential cross-section and to the
charge asymmetry Arp of e*e—-annihilation into two fermions has been integrated analyti-
cally over the complete photon phase space and is discussed in the context of the standard
electroweak theory.

PACS numbers: 12.20.Ds

1. Introduction

One of the most important reactions observed in ete~-storage rings is the muon pair
creation, or, generally, the creation of two fermions:

ete” - ¥, ¢))
This process provides a unique possibility to study the standard electroweak theory [1]

over a wide range of energies. Taking into account radiative corrections of order &3, it is un-
avoidable to study in parallel the process

ete” - {77y, ¥))
where the fermion pair created is accompanied by a bremsstrahlung photon. The analysis of
(1) relies heavily on the differential cross-section do/d cos 6 with respect to the scattering

angle 0. For unpolarized beams one usually determines the total cross-section
+1
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Oor J d cos adcose 3
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and the forward-backward asymmetry,

1 4]

1 p 0 do do
Agp = '&;[J Cos d—c-os*—o‘ - fd cos 0 d'—c-gg-e] . (4)
0 ~1

The total cross-section o, is sensible to the C-even contributions, and the charge
asymmetry Ag; measures the C-odd terms.

In this paper we study the bremsstrahlung contributions (2) to the observables (3, 4)
within the standard electroweak theory. We obtain analytic expressions for do/d cos 8,
Ayp and o, where the bremsstrahlung integration has been done over the complete
photon phase space, beginning here with the QED corrections which are most easily
obtained.

There are two extreme approaches to hard bremsstrahlung problems. One is the
consequent numeric integration of the squared matrix element by Monte-Carlo (MC)
methods as has been highly developed by a large theoretical collaboration [2]. There is no
doubt that MC-integrated cross-sections are of great value for applications due to their
flexibility concerning experimental cuts. The value of analytic results (the other extreme)
is two-fold. Of course, it is desirable to get analytic results on simple processes even if they
are not simple to obtain. Further, one may use the analytically integrated hard brems-
strahlung and subtract by MC-integration the not needed phase space regions to get a com-
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Fig. 1. Born diagrams for e*e~ — f*f~ in the electroweak standard theory
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Fig. 2. Gauge invariant and infrared finite set of QED bremsstrahlung (a) and one loop diagrams (b)
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pletely independent theoretical prediction for cross-sections with realistic cuts. Analytical
integrations have been done by several groups. The first result on dofdcos 8 is in [3].
Expressions applicable over the whole relativistic energy range including the region of the
Z-boson pole were given in [4] in which several distributions have been presented but not
the cos f-spectrum, and in [5] where the problem raised here has been studied but
compact analytic expressions were not given.

In the present article, we derive analytic results on the pure QED bremsstrahlung,
Fig. 2a, in connection with the Born cross-section of the standard electroweak theory,
Fig. 1. Adding the QED virtual corrections of Fig. 2b we get a gauge invariant infrared
finite set of diagrams. Inclusion of the fermionic vacuum polarization would complete
the QED radiative corrections. The region of applicability of our approximation is defined
by the relative magnitude of the two Born diagrams as functions of s. It is well-known that
at PETRA-energies the electroweak radiative corrections and the genuine Z-boson exchange
Born cross-section are quite small with the exception of QED corrections. So, for
s < 1600 GeV? the dominant contributions are included. As already stated above, we also
assume that m?, m? <s.

The article is organized as follows. In Section 2 we introduce the notation and analytic
results, Section 3 contains numerical results, and in Appendices A—C some formal interme-
diates are presented which are of interest also for the derivation of expressions for yZ-
-interference and pure weak integrated photon bremsstrahlung.

2. Analytic results

The cross-section for (1) together with (2) is in the adopted approximation:

d » o
i =ﬂ %1 +~OL—Fvp + = (Fo+QF 1+ Q°F))
dcos @ 2s |~ n n

+2 Re 10| [v.0(1 +cos® 8)+2a.a cos 0]
+1x1? [(0v? + a?) (v* + a*) (1 +cos? 0) + Sv.a,va cos 0]} . &)
Here, s = 4E2, and 6 is the emission angle of the created fermion f+ with respect to the

e*-beam axis in the cms. Q, v, a are the charge, vector and axial. vector couplings,
respectively (Q, = —1):

v=1-4s34i0l, a=1 (6)
The relative weight of photon and Z-boson exchange is
1 s 1 G, M3
1= ey T o '——LI_A,+0(G[ )] g2 ? (7d)
iﬁswcw s—M 8na /2 - M
1 G, M3
(o e T2 (7)

8na /2 s— s—M?2’
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where Ar = Xf4r is taken from [6, 7}. The definition of y deserves some comment. We
use the on mass shell renormalization framework of Sirlin [7, 8], where

sy = 1—ck = sin? Oy = 1 —MZ/M32. (8)

As has been discussed extensively in the literature [9], the definition (7b) is to be preferred
because it includes some large virtual radiative corrections and will be used here.
The complex parameter M?

M? = MZ—iM,ly, ®

contains the physical mass and width of the Z-boson. In the framework chosen, M is deter-
mined experimentally while I', is predicted by the theory [10]. To be definite, we use
in the following M, = 93 GeV, the t-quark mass m, = 40 GeV, and Higgs boson mass
My = 100 GeV. This, together with the fine structure constant « and the muon decay Fermi
constant G, allow sone to calculate My = 82.0 GeV, sin? Oy, = 0.222, I, = 2.17 GeV-i-( r,1),
I z(t) being the partial width for the t-quark channel. The integrated bremsstrahlung and
virtual QED correction are contained in the F;:

Fo = F(m)(1+cos? 0)+Fj,, (10)
Fy = Fou+Fi, (11)
F, = F,(m) (1+cos® 8)+F%,. (12)

The virtual corrections are well-known (see App. A). The initial (F},), interference (Fi2),
and final (Fi,) bremsstrahlung contributions are derived in Appendices B and C. The
compact final result is:

Fo2 = fo,2(c08 0)+ 15 2(—cos 0), (13)
Fy = fi(cos 8)—fi(—cos 8), (14)
fom44tL3L—3L_+e L.

+A AR -2 L +n*+2(1-L) (Lo +L_)—-L%}

1
+ —[-2+3L+3L+3L_+2L,]

+ ;—i— [(L—2)Ls+7 L\ —¥(c)], (15

2

3 3
fi= =G Le= = 49l 4122 Like. [6+ % +L,_+L+-2L-L+], (16)

fr=1-3cl. 17)



765

The following abbreviations are used:

s s
Le=lﬂ—2;, L,=In5:2,

1 20 1 : 20

¢y =53 (14cos ) = cos 5 c_ = 3(l—cos 0) = sin 5

0 ) 0
L, =Incos’-, L_=Insin>-, L,=Intan®-,
2 2 2

dt
(x) = — j ~In (1-xp). (18)
o

Finiteness and integrability of (10)(12) are ensured by the following modification near
the end points cos 6 = +1 (see Appendix B)

m2 1/2
cos @ — cos (92 +4 —L) : (19)
s
The initial radiative correction F, is dependent on s, m,, m; and 0 while F, and F, are

functions of the scattering angle only. Integration over cos 6 allows one to obtain analytic
expressions for o, and Ag

2
o o o
O =37 ~ {Qz [1 +— (F'+Q*F5Y + . Fv,,]

+2 Re 7|Qlo.v+ 7102 +a2) (”z+a2)} ’ @
1 " o? 3% ot 3 2
A = — 41| Q* = F{"+3 Re 1iQla,a+3lxv00,a |, @n
I . s n
+1
o, =% | dcosOF, ,, €2
-1
1 (1]
FP* =3 (fdcos0F — | dcos0F,), 23)
0 -1
“2
Fgt =1—-7L.+LLi—L¢+ 3 249
7!2
M=3- g T2 n2 = —4.5720, @)
o3 (26)

The F§', were first derived in [2, 3]. Concerning (15)(17), we took advantage from a contact
with the authors of [7] for an understanding of the partial disagreement with their Eq. (14).
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3. Numerical results
Using the parameters as given above we obtain for s in GeV?
x = —4.49 x 107 5/(1 — 5/8649). vX))

The width of the Z-boson may be neglected in the energy range of interest here. As long
as s < 1600 GeV?, the Born interference contribution does not exceed 159 of the photon
exchange Born cross-section and the pure weak contribution is quite small (although in the
numerics we will include it).

The pure QED radiative corrections (with exception of the vacuum polarization)
is contained in the F, Eqs. (10-12). The dependence of the F; on the scattering angle is
shown in Fig, 3. The F, and F, are smooth over the complete kinematical region, whereas
F, (initial state radiation) has sharp peaks of order s/m? times logarithms at the end points
|cos 8] = 1—2 m?/s. These peaks are due to the well-known fermion mass singularities.
Fig. 4 shows the differential cross-section. The QED Born cross-section is symmetric and,
in the normalization chosen, independent of the energy. The Born cross-section of the
GWS-theory is asymmetric in cos § (shown here for s = 1600 GeV?). The inclusion of the
total Bremsstrahlung discussed here leads to a considerable modification, especially at the
end points.

It is well-known that the total cross-section o3, of the GWS-theory in Born approxima-
tion is very near to ¢,,, of QED for mixing angles around 0.25 since then the vector couplings
of leptons become small: v, = v, >~ 0.01 for sin® @ = 0.222 as chosen here. This may be
seen in Fig. 5. The QED bremsstrahlung correction to o, is considerable due to F, and
becomes much smaller if a cut on cos @ is applied.

Fy

o
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Fig. 3. The QED a? corrections of Fig. 2 as defined in (10)-(12) as function of cos § with parameter s
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Fig. 4. The differential cross-section dofd cos 8
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Fig. 5. The total cross-section o, as function of s (o — Born cross-section; the slashed and slashed dotted
lines are radiatively corrected with cuts as explained in the text)

---tcos81<08

—-~lcos81<09
-16 L
-181
-20 L N N "
Q T400 800 1200 1600 2000
s [GeVv]

Fig. 6. The integrated forward-backward asymmetry 4rp as function of s
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The integrated forward-backward asymmetry Agg as function of s is shown in Fig. 6.
In Born approximation, A9y is negative and nearly linearly rising with s in the depicted
energy range. The bremsstrahlung correction @, F{* is positive and constant. Correspond-
ingly, its relative influence diminishes with rising s. In real experiments a cut is applied
on the scattering angle, e.g. |cos 8] < 0.8+0.9. The result of those cuts is shown, too.
Like for g, the correction becomes much smaller. Interestingly, the corrected Ay is closer
to its Born value for |cos 8] < 0.9 than for |cos 8] < 0.8. This is due to a mismatch of the
tendency of F, to add larger contributions to Agg from scattering angles near |cos | = 1
against the peaking of F, at the same points influencing the denominator of Agg in opposite
direction.

We are very much obliged to Dr. D. Yu. Bardin for stimulating and fruitful discussions
and for cooperation in the first stage of the work. We would like to thank Prof. F. Kasch-
Iuhnn for interest into our work and support and the organizers of the IX Warsaw Sympo-
sium on Elementary Particle Physics in Kazimierz (1986) where we had the opportunity
to present our results.

APPENDIX A

The QED vertex correction is in the approximation of small,fermion masses and in
the normalization adopted here:

F(mg) = —2(L¢—1) (Pm—ln '—Z—) —2+%n+3 L -1 L5, (A1)
f

the F,(m,) being defined analogously. The contribution of the two QED box diagrams is:

Fpox = foox(€0s ) —foor(—cos 6), (A2)
Sror = H1+cos® O)L _ (Pm—ln mi) +4C2L,L+2C_L,—C_(I> +L%) (A3)
f
The vacuum polarization is:
F,, = 1 Y leF,p(ml).;. Flvll:drons, (Ad)
eptons
m* 2./n 2m*\  s+yn
F =103 4+ > (14 —}I = AS
(™) R 3s(+ s)ns—\/n (A3)

va(m) [ —'l—f?_+%Ll (mz < S),
n = s>—4am?s. (A6)

In the numerical results we do not include the F,,. This causes a shift for o, compared
to a complete QED one loop calculation.
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APPENDIX B

Here we sketch our derivation of a soft photon contribution to the bremsstrahlung
cross-section:

e~ (k) +et (k) = £7(p)+E(22) +1(p). (B1)
We start with
M = M, - o, (B2)
- —;Qﬁ(kz)y“u(kx)ﬁ(pl)v"u(pz), (B3)
2k 2k 2 2
= (- ) +o (e - ). (B4

The Z, Z and v, © are the fermion propagators,

) ()
Z= "2k1(2)17» v = —2py)P (B5)

Formally, neglecting the photon momentum everywhere but in the denominators of @,
we introduce

& 3 IMR? > T4x, 9B™(t, 2, Z, v, D), (B6)
spins
t"+(s—1
T4, 1) = 2 X
m:  m? s t t s—t s—t
B = (- 2o - 2oy 2 PR A A
( zZz 7 T zz) +Q(Zﬁ Zv  Zv za)
m}  m} s
+Q2(—v—;—-~57’+;—5>. (B7)
Here
t = —2k,p, = ;,_ — ——\/s —4m; 25 Vx V:-4m;s cos 8, (BS8)
t ~xC_, (B9)
x = —2py(ky+k;) =25 p3, (B10)

where pJ is the energy of f+ in the cms: x € (0, 5). For scattering angles with cos 6 very
close to +1, the approximation (B9) is too crude and has to be replaced by

x 2 X mz 1
t:;[] (1 2——)0059]2 —2—[1—005(92+ Ez) ] (B11)
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The integration over the photon phase space has been performed with the method developed
in [11], i.e. using dimensional regularization and the R,-system, the rest system of (f-y)
'ﬁ'}+'p'R = 0. We write the soft bremsstfahlung contribution to (10)-(12) as follows:

do”_ _ Bomom 2 5 B12)
dcos® dcosh m (
5soft = dewln(w), (B13)
(o)
—a 1 +1
") = 2 (e do | dE(1—EH)m92B(e, &), (Bl4)
s B w \2m;
(2 \/7[) r 'E' -1 0 -1
B &) |: m? m?2
a &) =] — -
ki(1—5,8)"  kio(1—Br8)*

s t
+k§a—ﬁxf]+Q[ﬁa—maz

+ t 3 s—t B s—t ]
mek;o(1—B1£) P:to(l - ﬁs:'f)z mek,o(1—B,8)

+¢[— M S —q, (B15)
Pro(1—=B5,6)°  mepro(1—B,,0)

E=cosby, p, = kyx+py(l—a),
ky = kja+ky(1—a), pg = kja+p,(1—a), (B16)

and f, are the velocities corresponding to p;, k; in the R,-system. In deriving (B12-B15)
one takes advantage of the fact that T“(x, ¢) does not depend on the photon angles and
that all momenta used may be chosen to depend on only one of the photon angles, cos g5.
The Feynman parameter integral over « has been introduced to simplify the dependence
of numerators on the photon momentum. Eqs (B13-B14) have been obtained after integrat-
ing over (n—3) angles in the n-dimensional space-time and after restricting the photon
momentum p% to be smaller than the infinitesimal parameter &:

0 < me, Mg < 8. (B17)

This, in term, leads to the restriction for x to the interval x € (s—2m, - @, 5), containing
at x = s the infrared singularity and allows one to separate the Born cross-section factor.
In fact the integral over w is the limited by @ x-integral (see Appendix C). Some further
details on the method used may be taken from [11-13]. The kinecmatis is the same as in [13].
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By straightforward integration one gets
2% N
5aott = (Pm"‘m T) ' 3+01’
o = —2(1-L)—4QL;—20*(1-Ly),

] 7[2 152 1732
5 = [— = HU-L) Lt Lot Lo+ L) +4 L,—iLi]
2
2 2 7
+20L¢- L;+Q '[1+Lr”Lr_ g],

1 Y ” i
Pr=— + 3‘5 —In 2 /7). (B18)

APPENDIX C

The matrix element M corresponding to Fig. 2 is the same as in [13] and has been
integrated as follows:

do,br 513

dcosO nls

dr Z MEP, ey
spins

s 2r

n2 =

dar = — | xdx dcos6} | d C2

J. 45 x 4n(s—x+mf) J cos f <p., (€
0 0

Because of the infrared singularity we cut the x-integral into two parts: i, = (0, s—2m®),
i; = (s—2m®, s). In App. B we split up the singular part of the squared matrix element
and integrated it over i,. What remains is

§ dr[ ¥ IMYi*—64T*(x, t)- B®]+ [ drear*B™, (C3)

(i1+1) spins (i)

where T* and B™ are defined in (B7). The first integral over the unrestricted phase space
is finite. The second one is finite too and even well-defined in the limit @ — O with the excep-
tion of terms containing the numerator (S~ X) for which the exclusion of i, is important:

8=2mels

(C4)

Effectively, one may use (C1)«(C2) and take into account (C4) whenever necessary. This
has been done using the system of analytic manipulation SCHOONSCHIP {14], heavily
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relying on approximations of calculations and tables of integrals described in [12]. The
result is

de™ dogem O dGpara
dcos®  deost = Y Fcos o’ ©)
do_hard _mxz o Q25 -
dcos 25 = hard> (C6)
5hard = 6li)ard"—Q5;1§;d+Q261fmrd, (C7)
i 10 4 2 11 20
Opara (€O 0) = | 7 +5 L.+ (L, —1) (1 +cos” 6){ —&+—In — + Ly
£
-3L+3C_L_+ i(L L,~2L,~®(C.))~%L
3 LTI Lo C2~ + 4L + - 3 L
2 1 1
+ E:L--i— Yo I+ c GL-—2+3L.+3% Lf)]
+[cos 8 «» —cos 0], (C®)
int 2 26
Opara(cos 0) = | 2(1+cos? O)L_ | —21In — +2L—3
My
n? 3 3
+cos0(3+ < +%L2i> tota@ L++8L_]
—[cos 6 <> —cos 6], (C9)
f 2 26 1 5
Opara(c0s 0) = <1+ (1+cos* B | (1—-Ly ln—'—n— +5—7 L
f
”2
+3 - 7]} + {cos 8 <> —cos 6}. (C10)

From the sum of ,,¢, (With Born factor) and Jy,,4 one gets the cut-off independent Fg,, @ = i,

int, f, the IR-singularity of which will be compensated by the corresponding virtual cor-
rections.
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