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In the supersymmetric gauge theories the “non-renormalization™ theorem guarantees
that some quantities which are zero in lowest order remain zero in higher orders of perturba-
tion theory. We show that such quantities get nonvanishing contributions from instanton-
-induced interactions. Also; no cut-off in the size of instantons is needed.
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1. Introduction

The instantons of Euclidean Yang-Mills equations correspond to tunneling between
states with different topology and thus lead to a nontrivial vacuum structure of non-abelian
gauge theories. In particular n = 1 BPST-instantons [1] have been discussed in quantum
chromodynamics (QCD) but unfortunately no measurable effects could be pinpointed
which should be uniquely due to instantons and not to (higher orders of) ordinary perturba-
tion theory. Quantitative predictions are handicapped by the need for a cut-off in the
size of the instantons.

This situation improves in supersymmetric gauge theories (SGT): The “non-renormali-
zation” theorem guarantees that certain quantities which are zero in lowest order remain
zero in higher orders of perturbation theory. However, it will be interesting to see that such
quantities get nonvanishing contributions from instanton-induced interactions. Also no
cut-off in the size of instantons is needed.

Let us consider two such cases which we will need in our discussion later on.

(#) The Green functions of lowest components [2, 3] 4 of chiral superfields [4] ¢ are zero
jh perturbation theory, e.g. there is no A-4, only a A*-A4 propagator. Unbroken super-
k4
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symmetry guarantees that such Green functions are constant:
000 O T(Af(x1), ... An(%n)) 10D
= (T(4,(%1) - {Qawu(x)} - An(xm))) 6))

(with y the second component of the chiral multiplet) because § commutes with A and
annihilates the vacuum. We will demonstrate that such Green functions are indeed constant
and — different from perturbation theory — nonvanishing in an instanton background
field. Since they do not depend on their arguments x; taking these far apart from each
other allows clustering, and the vacuum condensates {4) can be calculated.

(i) Perturbation theory does not create new terms in the effective potential of SGT, but
such terms can be generated nonperturbatively violating the non-renormalization theorem.
They should be in accordance with the unbroken symmetries of the fundamental Lagran-
gian. Consider e.g. the well-known case [5, 6] of N, = 2 supersymmetric QCD (SQCD)
with one flavor, i.e. two (i = 1, 2) chiral (with Weyl spinor components) color doublet
(« = 1, 2) superfields, ¢} eventually multiplied by &,* to give $*. Without superpotential

the D-type potential
1 2 ) 2
VP = 7 (- 52— E A‘*xA‘) )
i

is minimal (zero) for {(4',> = vé', with undetermined v. For v # 0 the super Higgs effect
makes the three gauge vector multiplets (including a real scalar) heavy and only one of
four superfields remains massless. This is the field ¢ in 3 decomposition ¢, = 6ip+ ...
in the unitary gauge or the field T = ¢',¢* = ¢? in gauge-invariant language. It is the
coordinate in the flat valley of the potential. What could be the effective superpotential
compatible with the symmetries of the theory? The symmetries are color («) and isospin
() invariance, chiral invariance under

¢ - ¢ &)

and R-invariance
do — €°do, i €L, ¢ o 23 “4)

for the gaugino and the “matter” superfields. There is an anomaly free combination of
(3) and (4) with x = —5/3 y. Asking for an effective invariant superpotential containing
only the field 7, the unique answer is

c AS .
gl:&npert = deB _(_i)_f s (5)
with A the scale of the gauge theory and ¢ some still unknown constant. This gives a po-
tential

ASZ

A3

VNonpert ~

©
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(this is easily seen expanding ¢ around {4)) driving (42> = (T = v?® ~ . With a mass
term in the superpotential the corresponding potential

M

has a stable minimum at {42} = v* ~ A%*m~'/2, The vev calculated in the instanton
field according to (i) will give the same result with fixed normalization.
The effective Lagrangian approach, however, is not unique since it depends on the

choice of the low energy effective fields. Introducing also a field S = %,ua;, the
2
gaugino spinor field) one can even reproduce the anomalous symmetry [7]. With
L = [ d*0(log (1+SS*)+log (1+TT*)+ | d*6(S log (ST)—~aS) ®

the potential is

2

V = (1+S8*)|log STI*+(1+TT*) o —m )
leading to
T 1
(S =(T™H, <—;—> =(T*» ~ —, (10)
h) m

i.e. the same result as above. But this is not always the case, in particular N; > N, is ex-
cluded in the approach without field S because of Bose statistics of the fundamental fields
¢ building up the composite fields of the effective Lagrangian in a strictly local way (which
seems to be rather artificial [8]) and also the case N; = N, cannot be described with such
a Lagrangian [5). Since the construction of effective Lagrangians requires educated guesses
and since the appearance of terms breaking the nonrenormalization theorem has to be
substantiated, let us pass now to more concrete instanton calculations.

2. SUSY instanton calculus
The well-known n = 1 BPST instanton field [1]

2 . -
An = Mo X fx=X0) - with - () = (x*+eH)7! (11)

(SU, Q) index a=1,2,3, m=1,...,4) is a self-dual solution of Fuclidean (imaginary
time) classical SU(2) Yang-Mills equations. #,,, is projecting one SU(2) out of O(4)
~ SU(2) x SU(2). Inserting the field strength

4 ~
G:m = - —g_ ﬂamnngz = Grann (12)
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into the action integral one obtains a topological charge

2

S = J‘d‘x;‘;G,‘:mG;,,, = Jd‘x,—i—Gf,,,éf,,, =n 8;"2- (13)
with #n = 1. Instanton contributions to the vacuum functional correspond to tunneling
between degenerate minima differing by unit topological charge. Quantum corrections
around the instanton background field can be calculated after renormalization. Zero
modes of the operator bilinear in the quantum fields are related to translation (x,), dilata-
tion (@), and color rotation of the instanton and are absorbed into collective coordinates
Xo,., @ — the position and size of the instanton — and the direction in color space. In
a pure gauge theory the n = 1 instanton contribution to the vacuum functional is given
by [9, 16]

do [ 8z \* —8n?
f fd‘x —_ (———) exp (————— +8 log ,uq-!—qﬁ) , 14
°e® \&¥w g (u
with constant f and function ¢ including the effects of non-zero modes. (14) is renormaliza-

g(m)
tion group (u) invariant and can be expressed in terms of the invariant A = pexp J' Ed(% .
g(A
In more complicated cases renormalization group invariant expressions like (154)) allow
to determine the f-function {2, 10]. This is particular relevant for SUSY gauge theories
where the bosonic and fermionic non-zero modes are degenerate and cancel in the determi-
nant of the vacuum functional.

The zero modes of fermionic fields — these are matter fields and also gaugino fields —
in SGT require particular care: The (Weyl spinor) kinetic term —ip™D™yp contains
the covariant derivative in the instanton background field. General spinor fields can be
expanded in the normalized eigenfunctions y, of the operator y, D* " with eigenvalues E,

w(x) = y'vi+ % cipi(x), (15)

where zero modes y} are written separately. The path integral of the vacuum functional
then is in the Grassman-valued variables %, ¢; and in particular for zero modes we have

[Dy], = I} (Np)~""2dy} (16)

(with normalization factor N in case of y, not properly normalized and with u entering
after renormalization). Since | dyy” = §,,;, one has to calculate the Green functions with
at least one y per zero mode in order not to obtain zero if there are no y-mass terms. Thus
there is a new nonperturbative interaction of fermions in the instanton background field [9].
It is an important observation [2, 4] that in pure SUSY Yang-Mills theory the gaugino
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modes are solutions of the equations of motion in an instanton background!
( D" im!G pm)‘ =i gaabczb&n Ac,
‘)’“D“ imtl = ')’,,D” instz = 0’ (17)

with 4 = 0 the instanton field G&, of Eq. (12) is again a solution and 4 is its superpartner
obtained by a SUSY transformation since the Eqs (17) are supersymmetric. Indeed they
are even invariant under superconformal (SUCO) transformations. SUSY and SUCO
transformations with Grassmann-valued spinor parameters 0, and J

{x) = —0p—x,0™3 (18)
applied to the instanton field lead to gaugino zero modes (6.4 = 6™¢G,,)

2
AB(GSUSY)(x, ﬂ) = '; a.:ﬂQZf'Z(x_xo)’

- 2
AV x, By = % (0°0™)yi(x — Xo)mef *(x —Xo), (19)

multiplied by 6,, and 34, respectively. Hence these zero mode parameters are generalized
(Grassmann-valued) collective coordinates of the instanton. The introduction of superfield
language [2, 11, 12] turns out to be very profitable: The most general gauge superfield
is obtained from a superfield with the instanton in the one-6-component by SUCO (J)
and SUSY (8,) transformations:

Wo(y, 0) = —iai™0G'(y) (v = x+ifad), (20)
with
§ = 0—0—(y—xg)n0™3
(remember W, = —iA—ioT"0,G,,+ ...). This gives the gauge-invariant field
g 2 6 44 2
oW = adf (y—x0)8%. @

Note that SUSY is not broken automaticaily by instantons since there is no D-compo-
nent in W,.

! These are equations in Euclidean space. The definition of chiral fermions in the Euclidean requires
some care, The fermionic components of chiral (anti-chiral) superfields ¢ and @ are not related by complex
conjugation and thus represent independent field variables. Hermiticity has to be replaced by Osterwalder-
-Schrader positivity and supersymmetry is realized in a non-unitary way [16]. An alternative way presented
in the Appendix A of Ref. [11] is to stay with Minkowski space tensors and only work with imaginary time
in the path integral.
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For chiral “matter” fermions we have further zero modes which enter the instanton-
-induced interaction. Knowing the number of zero modes, it is very easy to read off the
anomaly-free current (e.g. the one mentioned following Eq. (4), see Fig. 1) from this effective
vertex. More general the anomalies of the anomaly supermultiplet (SUCO, dilatation,
U,(1)) follow from the noninvariance of the integration measure due to zero modes [2].

In the case of chiral matter fields ¢ = A+0y+ ... the fermion is not in the lowest
component which we need later on in the Green functions. The most straightforward
possibility for a scalar field A4 in a Green function is to couple to fermionic zero modes 4,,
v, through perturbative gauge interactions {2, 3} (Fig: 2) which is equivalent to insertion
of a solution of

a\#
2in: - . a T
(D*'*%4), = 'g'l’gps,w/-os (—2‘) R (22)

Fig. 2. Perturbative coupling of scalars to the instanton-induced vertex

where y,, the solution of
)JBD“ lnsxv)o =0 (23)

for ¢ in the fundamental representation is well known [9, 1]:

VA(X) = L+ 0022 (x—x0) (24)
n

(Lorentz spinor indices 4, B are suppressed occasionally). The 4, are given in Eg. (19). In the
superfield formalism )}, is accompanied by a spinor Grassmann parameter ¥ and appears
in the 6 component of the chiral superfield. The scalar component discussed above is
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obtained substituting 6 by  (Eq. 20) since (22) follows from (23) (multiplied by y D) through
a SUSY-SUCO transformation with parameters 8, and 3, respectively [2, 11, 12]

¢i(}’, 8) = 29‘4‘1’04)((‘), (25)
4
¢*(y, 6) = = O’y —x0)07. (252)

It is crucial to note that the solution of (22) has no homogeneous part if |4| — 0 for |x| — oo,
i.e. if there is no classical nonzero vev of the scalar fields 4',. Also only in this case the
(QCD-type) instanton stays a solution of the field equations. Since in this approach one
assumes that no big ((4) > A) vevs appear, the gauge theory should confine. Instantons
are the dominant nonperturbative contributions only at small distances. Hence reliable
calculations can be only performed in this region. One calculates the Green functions at
small distances and one has to assume that small instantons dominate in this case [3].
The latter is not generally accepted and we will discuss a different approach soon, where
a Higgs phase with large (4> > A guarantees weak coupling.

3. Calculation of the Green functions in the instanton background

Let us have a look now to some Green functions [2, 3, 8] containing gauge-invariant
W2 = 24 and ¢l (@ = 1, 2; i = 1, ..., M). Whereas in the component approach there
is a lot of combinatoric, the calculation is very elegant in the superfield formalism [2, 12],
e.g. we have for the pure Yang-Mills theory (N = 2, M = 0) (see Fig. 3)

2 2
= . g
gf)‘g ” = <r(32 i W (h, 0) = .‘2 2 Wz()’z» 02))>

= 4nC fd4xodgzdzood29 (— 7% oy — x0)6§> x(1>2) (26)

which gives a nonzero, finite Feynman integral for the lowest components

4
=4ncjd“xod9 ( ) 0% 4%y — Xo)f (% — X)X, — %) = 4nCA6 X))

C is a well-defined constant related to the definition [12] of 4. No cut-off in ¢ is needed
like in QCD and indeed the lowest component G, is a constant as derived from
SUSY in the introduction. Accepting that for x, close to x, small instantons dominate
and that therefore the resulting constant is correct, the same constant should come out
(because of SUSY, Eq. (1)) for large distances where instantons play no role [3]. Taking

X1, X, far apart from each other the Green functions cluster into a product of vev’s (A2
2

. g
and o btai
ne obtains <32R2

but with the prefactor fixed.

U.> ~ A3 in agreement with the effective Lagrangian approach
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For My, # O calculations run through similarly. A perturbative mass term inser-
tion [8) is needed for some Green functions in order to give a nonzero results, e.g.
for My =1 Goyo corresponds to the graph of Fig. 4 and is calculated as ~mA®.
Gio = {T($*(x,)W?3(x,))) corresponds to the graph of Fig. 5 and is calculated as ~ A°.
Cluster decomposition gives

A2 ~ mAS,  (AA) (4% ~ A°, (28)
and hence
(A ~ A3 m,  (AA) ~ 432 [m. (29)
Xq

Fig. 4. Graph for G{{=9
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\\\f’ A{//'

~

Fig. 5. Graph for G(¥=1

This is in qualitative agreement with the results of the effective potential approach, but
quantitatively the prefactors in (29) are in disagreement with the “Konishi anomaly rela-
tion” [13]

2

(0, F04,(0)}/2 Y2 = —mA()A,(x)+

Ty A (30)
which predicts a relation between lowest component Green functions containing 42 and
AA. Further quantitative inconsistencies appear for My, > 2 [12, 14, 11]. There are more
relations than condensates now, and the prefactors (not the powers in m) for the same
condensates obtained from different Green functions are not consistent. Even worse,
a Green function like (¢%¢2(x,)p%d2(x,)) is also nonvanishing and clustering leads to
condensates which do not make sense. This is related to the point that the instanton calcula-
tion preserves flavor symmetry. A mass term for matter fields breaks this symmetry, but
it only plays a role in certain Green functions (e.g. not in the 4-¢ Green function mentioned
before). In Ref. [14] it was proposed that in the case of massive ¢-fields, nonzero modes

<€ 9
and related infrared effects ( ) are important in order to avoid such inconsistencies.
m ;

The determination of higher modes for general m # 0 is prohibitively difficult but for
large m the calculation is simple since chiral field zero modes become unimportant and the
massive field propagator can be substituted by the free one in leading order. Nonleading
contributions to lowest component Green functions calculated that way have an x-depend-
ence forbidden by SUSY, but they vanish for m — co. The limit m — co might not look
very appealing but indeed it can be proved that the power in m of such Green functions
is also a constant. This follows [15, 14] from the anomaly-free U(1) built out of R and
Ug(1). Thus one can calculate for large m and continue to small m. For a consistent calcula-
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tion the arguments of the Green functions should fulfil the conditions [14]
1 1
— < |jx—yl < —, €2))
m A

which allow a perturbative calculation (g small) and still make the mass cut-off effective.
With such infrared effects everything becomes consistent for SQCD type theories with
N colors and M flavors. E. g. for the case N = 2, Mf = 1 considered before Gy, is un-
changed, but G,, is given by a contribution corresponding to Fig. 6 for m — oo. In theories

A Ao
g __$5\2
x mo vy
&
Ao AY
Fig. 6. Leading graph for G{¥=" for m —

with chiral fermions there is no mass parameter m available and the above method cannot
be applied. Fortunately enough in an SU(6) gauge theory with chiral flavor (one a.s.
tensor, two fundamental representations) consistency [17] comes out without infrared
effects. However, in Ref. (18] it was shown by very effective superspace methods that in
SU(6) with K (K > 1) a.s. and 2K fundamental representations and in other chiral theories
indeed inconsistencies appear. Thus further effects have to be searched for?.

4. Instanton effects in the Higgs phase

There is another approach [4, 11] to instanton calculations which is rather different in
spirit: One is looking for gauge theories in the Higgs phase, i.e. with a scalar vev of a chiral
superfield (A) » A which fixes the gauge coupling and prevents strong coupling and
confinement & la QCD. As already observed [9] by °’t Hooft a Higgs vev {4) = v still
allows for an approximate instanton solution for ¢ < v:

DmIMGY = igA*D,™A ~ 0 (32)
together with a zero mode solution

D4, =0, (A2-0v* for |x|— ) (33)
for the scalar field:

Ave = i007(x — XIS ' *(x —Xo).

2 Writing up this talk I was kindly informed by K. Konishi that in a forthcoming preprint he will
present methods how to project out a Green function in a vacuum with broken flavor symmetry out of the
symmetric result of the instanton calculation which should be interpreted as a sum of amplitudes in different
vacua. This remark also applies to SQCD-type theories, but there infrared effects are also needed for con-
sistency.
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. . 8n? . .
“Approximate” means that the action —- +4n®v?¢? is not really minimized for ¢ # 0
g

and that the integration over the collective parameter ¢ is done for such a nonminimal
contribution to the path integral.

SUSY (SUCO) transformations [11, 5, 12] (Q on A, then Q, S on the resulting fermion-
ic component lead to a superfield up to normalization which indeed has the fermionic
zero mode discussed before (Eq. (24)). The color singlet ¢2 is given by

Xy, 0) = 203 (5 ~ xo)*f(F — xo), (34
with
7 = y+2ifo0,

where 8o, the parameter of Q-transformations, corresponds to y in Eq. (25). The ipd
gauge coupling term in the action requires a substitution

0%v? = 9*(1 +4i30,)0* = §h? (39)

in the action. Calculations of the Green functions again are performed very economically
in the superfield formalism though they are somewhat more involved than in the first
approach.

In the case N, = 2, N; = | discussed above one obtains after some substitutions
{11, 12]

, cA® do? ,
gm0 _ T)—Z—J‘d‘xo ;—)2« d*0,d38d*0, exp (—4nv3g%)
6 4,4, “A2~,.20 2o 5
Xt - ’“t“z‘ o f (¥, “xo)gxz" (P2—=x0) f(§2—x0) = —8CA”. (36)

Also “big” instantons with size v contribute in this integral. Contrary to the philosophy
of Ref. [3, 14] it is not dominated by instantons of size |x,—x,]. The Green function
2
gy = <£"E w 2> corresponding to Fig. 7 can be calculated as
n 1 - inst
~ 45
M=1 _ _ ‘iL A
¢ =

(37N

8

Fig. 7. G{¥ =" in the Higgs phase approach
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and with g~ = 22 (no instanton) one has consistently G,, = G,G,. Putting in the

m
“Konishi” relation Go = — -EG, it follows

=2y (38)

in agreement with the result of effective Lagrangians. Instead of using the Konishi relation
one could also calculate the fermionic part of the effective superpotential [11, 19] induced
by the instanton (Fig. 8) and obtain (38), i.e. consistency with the Konishi relation.

+
/57
AT TA
*

L*_(A,)

%Y

Fig. 8. Fermionic part of the effective superpotential in the case Mg = 1 discussed in Section 2

€56 (1-nstanton) turns out.to be x dependent, i.e. it violates SUSY, but for v -
(or m — 0) this contribution vanishes [12] faster than m and is dominated by the two
instanton contribution which clusters into (g§Y{;.ix.,)?. Hence the limit m — 0, v — o
is needed! In this limit everything is consistent also for M;, = 2. Recently consistency for
all SQCD type theories has been proved [20] using powerful superfield methods.

Since scalar zero modes which are basic in this approach only exist for m = 0, the
limit m — O is necessary anyway, though perturbation in m around the case m = 0 which
is topologically different from the case m 0 still is dangerous [21]. One should be able

. - . I .
to show that the topological untwisting at distances {x; > — from the instanton center
m

necessary to obtain a trivial topological configuration, does not effect the calculation.

The two approaches with v, = 0 and v, # 0 are based on two different phases of the
gauge systems — confinement in one case, Higgs phase in the other case. The normalization
of the instanton induced the Green functions expressed in powers of A is different, but
both pictures lead to consistency for the Green functions. Of course the consistency of
a hypothesis does not prove that it is right. In the first case the calculation is done for
m - o (v — 0), in the other case for m — 0 (v — o). The powers in m are universal,
but apparently there is no analytic connection between the two cases; they are disconnected.
Still the results for the vacuum condensates in both approaches agree qualitatively. Very
often they can be read off from simple diagrams including an instanton-induced effective
vertex.
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Leaving aside these questions, very impressive effects induced by instantons can be
demonstrated, in particular the breaking of SUSY in gauge theories with chiral matter,
discussed in Ref. [22]. In the last part of these lectures we will use the information about
the vacuum condensates of SQCD-type theories in order to discuss the BPY model [23].

5. The vacuum structure and the spectrum of the BPY-model [24]

Consider [23] a supersymmetric SU(2) gauge theory with six doublets of chiral super-
fields y. and hence with a flavor group Ug(6) x Ug(l). If the anomaly-free flavor group
SU(6) x U (1) is broken spontaneously, Goldstone bosons appear accompanied by massless
fermions because of SUSY. The latter might be candidates for composite Lh. quarks and
leptons. The ’t Hooft anomaly matching between the fundamental and the effective theory
including the fermionic fields of the Goldstone supermultiplet fit for two cases:

(i) the breaking

SU(6) x U (1) — SU(4) x SU(2) x Uz(D), (39)

where Ux(l) is anomaly-free like U (1).

(ii) Unbroken flavor symmetry.

The case (i) requires 36— (15+3+1) = 17 Goldstone bosons in at least 8+ 1 chiral
supermultiplets. The latter are conjectured to correspond to the underlined interpolating
composite superfields in the a.s. 15-representation of SU(6):

P = EaﬂX:X; (40)
decomposed according to (39):

(15)suer = @D+ LD+, 1). (1)

In such a model one is tempted to argue that there are also- composite W-bosons made
out of the scalars of the chiral superfields. In this picture the weak interaction should origi-
nate as an effective coupling between composite quarks/leptons and W-bosons like e.g.
the coupling N-N-g of composite hadrons. Contrary to QCD, however, the effective
coupling should be weak! Universality (here inside one family, generalizations are possible)
comes out because of the conserved weak isospin and because of the spectator character
of one of the constituents. An effective Weinberg angle appears as a result of elementary
y-composite W-mixing [25]. The question arises if one can understand the binding of the
W if there are further composite vector bosons mediating further interactions, and last
not least, why the weak coupling is weak in such a model.

The analysis of the spectrum of hadrons in QCD is conveniently performed with SVZ
sum rules [26] for gauge-invariant composite operator two-point functions. These sum
rules are based on asymptotic freedom and analyticity and some knowledge about the
vacuum structure of QCD. With some ansatz for the intermediate state spectrum (e.g. one
particle + high energy background) the parameters, masses and couplings can be calcu-
lated. In QCD the vacuum structure is not so well known, but of course one knows the
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particle spectrum which should come out from experiments. In the case of the BPY model
the latter is just in question. Fortunately the vacuum structure can be fixed to a large
extent. Contrary to QCD scalar condensates turn out to be most important and indeed
the sum rules will look completely different from QCD.

The first point to realize [24] is that an SU(2) gauge theory with six chiral flavors
corresponds to SQCD, with three flavors. Mass terms

mye g+ mae™ @, + MaE 0, (42)
coupling pairs of x,’, (Gi,j=1,2;a,b; = 1,2 corresponding to I = 1 ... 6) gauge-invariantly
break the original flavor symm;trzy:

SU(6) —» SU(3) xSU(1) 43)
explicitly and condensates break it spontaneously:
(@i = <Ppaxh> = viey

<¢axb;> = vgsaxbx‘ (44)

azba 3 azxb;

As discussed in previous chapters, instanton-induced interaction leads to vacuum conden-
sates

(ALY ~ A3 (mymymy)! 2,
3/2
v} ~ — (mymymy)'/? (45)
m;
if the Green functions including ¢,; and A1 are clustered (Fig. 9).
Unbroken SUSY implies for fermionic vacuum condensates:

<yyy ~ m{E* 0. (46)
Hence with finite {x*x> (see below) for m — 0 fermionic ‘‘matter” condensates vanish.
x] A. A- X 2
A
A M A
A A
¥, - ’,:
m;y 1 A ; 2
v
my mz my ’
a) b)

Fig. 9. Graphs for a) G{¥=%), b) G{¥= in the confinement picture
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From (45) we read off [24] two possible limiting cases for m; — 0 with finite conden-
sates:

(i) my ~my,m; ~mymy »0: 02 =0, =02 =0, “n
(i) my~m-0: v} =0v:=03=0. (48)

These are exactly the two cases of SU(6) breaking/nonbreaking mentioned before. This
invites for an interpretation which is not quite in the spirit of composite models of strongly
interacting subparticles: y.'? are the two Higgs fields H, H' and y2° the quark/lepton
chiral superfields of one family in the supersymmetric standard model. As a consequence
there would be Higgs condensates in the gauge theory without Higgs Lagrangian. The
condensates discussed here do not break the gauge symmetry, but it is well known that the
so-called spontaneous breaking of the gauge symmetry and the Higs effect leading to massive
vector bosons can (and perhaps even must) be treated in a gauge-invariant picture.

What about {x*x> = #* condensates? ((x}*x1> = (X322 = D etc. similar to (44))
2*y is not the lowest component of a chiral field. Still the condensates are not unconstrained
as one might suppose: They can be determined using (generalized) SUSY-Dashen sum
rules [24]. Neglecting effects of gluon condensates one obtains

52 =02 = f2, 5§=”§=°’ fi =ty (49)

Here the f,, f, and f;, are the Goldstone boson couplings to the currents (1, 1) and (4, 2),
respectively, of spontaneously broken symmetries (39).

The calculation of higher condensates including x*y, if possible at all, is much more
difficult. One can make the very plausible assumption that higher condensates including
x*x also factorize, i.e. are equal to a product of smaller condensates of gauge-invariant
quantities into which they can be decomposed. This fixes all scalar condensates, and sum
rules can be written down for the two-point function of gauge-invariant composite opera-
tors of type x.xse” with quantum numbers (1, 1), (4, 2) and (6, 1) of unbroken (m — 0)
flavor SU(4) x SU(2). In the (6, 1) channel there is a nonperturbative, instanton induced
interaction in a vacuum with {x,ex,> = v? # 0 leading to a mass ~A (Fig. 10). The
sum rules in the two first channels can be saturated by massless (pseudo) Goldstone
superfields. These channels also appear in the two-point functions of flavor currents
7:(e*")y;s = J,, but in this case there are also the channels (1, 3) and (15, 1).

The invariant part of the perturbative side of the sum rule for § d*xe'*(T(J(x)J(0))>

L L,’fi
3 v Vf 5
Y, A A Y
¥is 2 g ¥eu
\‘,L A ’

_.’k
Xy Y, ¥V, Xy

Fig. 10. Instanton process which generates a mass for the SU(4) sextet &g
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in the (1, 3) channel has the form [24] (in lowest order in g?/4n = ag with ag{x*y) ~ O(1),
see also Fig. 11)

2

1 1 \
3 log 2 + ‘?<x 10— (q )2 2 ¥t
2% -
¢ m)"f D+ - (50)

(% are the Pauli matrices in SU(2) isospin space, x is the 3, ;2 -isospin doublet). Using factori-
zation the third and the following terms give a geometrical series which sums to a pole
at a vector boson (supermultiplet) mass mZ = 2rnax*x>. The first term corresponds

SO % X x X ¥ >€ ,ﬁf’i, X
e N _‘rWV\Ns)_ Ms)—
~ = A~
DN % 4 % VN £

Fig. 11. Graphs corresponding to the expression (45)

to a loop graph and is most important for QCD sum rules. Here it can be interpreted [27]
as part of a two-particle (W-Higgs) cut. In the (1, 15) channel there is only this kind of
singularity and there is no indication for further vector bosons. Thus with the vacuum
structure discussed above one just reproduces the spectrum of the SUSY standard model
in a gauge invariant language. Composite quark/lepton and Higgs superfields are the
standard elementary superfields dressed by the vacuum containing the fields y! and x2.
The “Novino” of the BPY model is a massless Higgsino.

Thus there is no hint for genuine composite vector bosons in the BPY model though
of course our assumption about the higher condensates is only highly plausible and not
proved and the ansatz for the spectrum in sum rules allows much freedom. SUSY gauge
theories lead to scalar condensates. This gives sum rules completely different from QCD.
Analogies with the QCD case are not allowed and we may be led back to a Higgs-standard
picture. Inspection of the case (i) with unbroken U(6) symmetry leads to the conclusion that
such a phase is unlikely to exist at all.

A similar sum rule for the vector channel has been discussed before [28, 27] for the
Abbot-Farhi model, a composite model with the field content of the standard model but with
an unbroken SU(2) gauge symmetry supposed to lead to strong interactions and to QCD-type
composites. Also in this case the standard model is a solution of the sum rules for a factoriz-
ing vacuum structure, as one would expect from a gauge-invariant formulation of the stand-
ard model. The effective weak coupling [28] (Fig. 12) then is equal to the gauge coupling
o and not small in a strongly interacting system. In Ref. [28] we speculated about a more
unconventional vacuum structure leading to a.; < ag. Another possibility is that the scalar
condensates are very large: {(x*x> > A such that a; does not get big. This is technically
possible with the limit (42) but not very plausible. Besides these difficulties there remains
also the question how SUSY is broken. This has to be definitely answered if one wants to
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Fig. 12. Effective weak coupling of composite W to composite fermions in the case of dominance of
x-condensates

make contact with phenomenology. Still the idea that instanton effects generate the (Higgs)
condensate of weak interactions is intriguing.

I would like to appreciate the enjoyable collaboration with W. Buchmiiller, H. G.
Dosch, J. Fuchs, and M. Kremer on various topics considered in these lectures and I would
also like to thank D. Amati, K. Konishi, Y. Meurice, M. Shifman, and G. Veneziano for
useful discussions.
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