Vol. B18 (1987 ACTA PHYSICA POLONICA No 9

TOWARD THE INFLATIONARY PARADIGM: LECTURES ON
INFLATIONARY COSMOLOGY*

By M. S. TURNER

Theoretical Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
and
Department of Physics and Astronomy and Astrophysics, The University of Cilicago, Illinois 60637, USA

( Received February 23, 1987)

A review of the present status of inflationary cosmology is presented.
PACS numbers: 98.80.Bp

1. Overview

Guth’s inflationary Universe scenario has revolutionized our thinking about the
very early Universe. The inflationary scenario offers the possibility of explaining a handful
of very fundamental cosmological facts — the homogeneity, isotropy, and flatness of
the Universe, the origin of density inhomogeneities and the origin of the baryon asym-
metry, while at the same time avoiding the monopole problem. It is based upon microphysi-
cal events which occurred early (¢ < 10-34 sec) in the history of the Universe, but well
after the Planck epoch (¢ = 10~*3 sec). While Guth’s original model was fundamentally
flawed, the variant based on the slow-rollover transition proposed by Linde, and Albrecht
and Steinhardt (dubbed ‘new inflation’) appears viable. Although old inflation and the
earliest models of new inflation were based upon first order phase transitions associated
with spontaneous-symmetry breaking (SSB), it now appears that the inflationary transition
is a much more generic phenomenon, being associated with the evolution of a weakly-
coupled scalar field which for some reason or other was initially displaced from the mini-
mum of its potential. Models now exist which are based on a wide variety of microphysics:
SSB, SUSY/SUGR, compactification of extra dimensions, R? gravity, induced gravity,
and some random, weakly-coupled scalar field. While there are several models which
successfully implement the inflation, none is particularly compelling and ali seem some-
what ad hoc. The common distasteful feature of all the successful models is the necessity
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of a small dimensionless number in the model — usually in the form of a dimensionless
coupling of order 10~!°. And of course, all inflationary scenarios rely upon the assumption
that vacuum energy (or équivalently a cosmological term) was once dynamically very
significant, whereas today there exists every evidence that it is not (although we have no
understanding why it is not). For these reasons I have entitled these lectures Toward the
Inflationary Paradigm. 1 have divided my lectures into the following sections: Successes
of the standard cosmology; Shortcomings of the standard cosmology; New inflation —
the slow-rollover transition; Scalar field dynamics; Origin of density inhomogeneities;
Specific models, 1. Interesting failures; Lessons learned — prescription for successful
inflation; Two models that work; The inflationary paradigm; Loose ends, and Inflation
confronts observation.

2. The standard cosmology and its successes

The hot, big bang cosmology — the co-called standard cosmology, neatly accounts
for the (Hubble) expansion of the Universe, the 2.7 K microwave background radiation
(see Figs 1, 2), and through primordial nucleosynthesis, the cosmic abundances of the
light elements D and “He (and in all likelihood, *He and Li as well; see Fig. 3). The most
distant galaxies and QSO’s observed to date have redshifts in excess of 3 — the current
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Fig. 1. Summary of microwave background temperature measurements from 4 ~ 0.05 to 80 cm (see Refs.
[4]). Measurements indicate that the background radiation is well described as a 2.75+0.05 K black body.
PW denotes the discovery measurement of Penzias and Wilson
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Fig. 2. Summary of microwave background anisotropy measurements on angular scales from 10" to 180°
(see Ref. [S]). With the exception of the dipole measurements, the rest are 95%; confidence upper limits
to the anisotropy

record holders are: for galaxies z = 3.2 (Ref. [1] and QSO’s z = 4.0 (Ref. [2]). The light
we observe from an object with redshift z = 3 left that object only 1-2 Byr after the bang.
Observations of even the most distant galaxies and QSO’s are consistent with the standard
cosmology, thereby testing it back to times as early as 1 Byr (see, e.g., Ref. [3]). The surface
of last scattering for the microwave background is the Universe at an age of a few x 50° yrs
and temperature of about 3000 K. Measurements at wavelengths from 0.05 cm to 80 cm
indicate that it is consistent with being radiation from a black body of temperature 2.75 K
+0.05 K (see Fig. 1 and Ref. [4]). Measurements of the isotropy indicate that the tempera-
ture is uniform to a part in 1000 on angular scales ranging from 10" to 180° — to a part
in 10* after the dipole component is removed (see Fig. 2 and Ref. [5]). The observations
of the microwave background test the standard cosmology back to times as early as
100,000 yrs. According to the standard cosmology, when the Universe was 0.01 sec—300 sec
old, corresponding to temperatures of ~ 10 MeV-0.1 MeV, conditions were right for the
synthesis of a number of light nuclei. The predicted abundances of D, *He, “He, and "Li
are consistent with their observed abundances provided that the baryon-to-photon ratio is

n = npln, & (4-T)x 10710, €))

The baryon-to-photon ratio and the fraction of critical density contributed by baryons
are related by: Qu#*/T;, =~ 3.53x107 5 where T, , is the microwave temperature in
units of 2.7K and 4 is the present value of the Hubble constant in units of 100 km s!
Mpc-!. The allowed range for n corresponds to: 0.014 < Q4%T;, < 0.025, implying
that baryons alone cannot provide the closure density. The concordance of theory and
observation for D and “He is particularly compelling evidence in support of the standard
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cosmology as there are no known contemporary astrophysical sites which can simulta-
neously account for the primordial abundances of both these isotopes (see Fig. 3; see
Ref. [6] for further discussion of primordial nucleosynthesis). In sum, all the available
evidence indicates that the standard cosmology provides an accurate accounting of the
evolution of the Universe from 0.01 sec after the bang until today, some 15 or so Byr
late—quite a remarkable achievement!

I will now briefly review the standard cosmology (more complete discussions of the
standard cosmology are given in Ref. [3]). Throughout I will use high energy physics units,
where it = k = ¢ = 1. The following conversion factors may be useful.

1GeV™! = 0.197x 10~ "% cm,
1GeV™! = 0.658 x 107 2* sec,

1GeV = 1.160x 10" K,
1 GeV* = 2.32x 10" gem ™°,
1My = 1.99x10% g = 1.2x 10°" baryons,
1 pc = 3.26 light — year ~ 3.09 x 10'® cm,

1 Mpc = 3.09x 10** cm,
Gy = 6.673x107 % cm® g7 ' sec™? = my?,
(mp, = 1.22x10'% GeV).

On large scales (> 100 Mpc) the Universe is isotropic and homogeneous, as evi-
denced by the uniformity of the 2.7 K background radiation, the x-ray background,
and counts of galaxies and radio sources, and so the standard cosmology is based on the
maximally-symmetric Robertson-Walker line element

ds? = —dr*+ R*(1) [dr?[(1 —kr?)+r*d0* +r* sin® 0d ], @

where ds? is the square of the pioper separation between two space-time events, k is the
curvature signature (and can, by a suitable rescaling of R, be set equal to —1, 0, or +1),
and R(z) is the cosmic scale factor. The expansion of the Universe is embodied in R(¢) —
as R(t) increases all proper (i.e., physical — as measured by meter sticks) distances scale
with R(t). The coordinates r, 6, and ¢ are comoving coordinates: test particles initially
at rest will have constant comoving coordinates, and the velocity of NR test particles
moving with respect to the comoving coordinates decrease (oc R(¢)!). The distance between
two objects comoving with the expansion, e.g., two galaxies, simply scales up with R(?).
The momentum of any freely-propagating particle decreases as 1/R(t). In particular, the
wavelength of a photon 4 oc R(¢), i.e., is redshifted by the expansion of the Universe.

The coordinate distance at which curvature effects become noticeable is [k|-!/2,
which corresponds to the physical (or proper) distance

Rouer = R(1) [KI71/2 3
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— which one might call the curvature radius of the Universe. Note that R_,,, also just
scales with the cosmic scale factor R(?).

The evolution of the cosmic scale factor and of the stress energy in the Universe are
governed by the Friedmann equations:

H? = (R/R)* = 8nGo/3—k/R?, @
d(gR%) = —pd(R®), ©)

where ¢ is the total energy density and p is the isotropic pressure. (The assumption of
isotropy and homogeneity require that the stress-energy tensor take on the perfect fluid
form: T* = diagonal (— g, p, p, p).) Because ¢ «c R-" (n = 3 for matter, n = 4 for radia-
tion) it follows from Eq. (4) that model Universes with & < 0 expand forever, while those
with & > 0 must necessarily recollapse.

The expansion rate H (also known as the Hubble parameter) sets the characteristic
imescale for the growth of R(r): H-! is the e-folding time for R. The present value of H is

H = 100h km sec™! Mpc;

where the observational data strongly suggest that 0.4 < h << 1 (Ref. [7)).
The sign of the spatial curvature & — and the ultimate fate of the Universe can be
determined from measurements of ¢ and H:

L/H?R? = g/(3H*/87G)—1 = Q~1, 6)
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Fig. 3. Big bang nucleosynthesis predictions for the primordial abundances of D, *He, “He, and "Li. Y, =
mass fraction of “He, shown for N, = 2, 3, 4 light neutrino species. Present observational data suggest:

0.23< Yp< 025, (D/H), » 1x107%, [(D+°He)Hlp < 1074, and ("Li/H), =~ (1.1+£0.4)x10*°. Con-
cordance requires 7 ~ (4—7)x 107*%, For further discussion see Ref. [6]
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where Q = 0/0.;; and @ = 1.88 A2 x 10-2° gem2 = 1.05x 10* A2 eV cm—2. The cur-
vature radius, R, is related to Q by

(Rcurv/H_ 1)2 = 1/(‘2 - 1)' (7)

A reliable and definitive determination of 2 has thus far eluded cosmologists. Based
upon the luminous matter in the Universe (which is relatively easy to keep track of) we
can set a lower bound to Q

Q = Qo =~ 0.01.

Based on dynamical techniques — which all basically involve Kepler’s third law in one
guise or another, the observational data seem to indicate that the material that clusters
with visible galaxies on scales <{10-30 Mpc accounts for

QGAL o 0.1 '—0.3-

Although Q can, in principle, be determined by measurements of the deceleration
parameter g,

4o = —(R/R)/H? = Q(1+3p/e)/2, ®)

because of the difficulty of reliably determining g,, the observations probably only restrict
2 to be less than a few [7]. (For a more thorough discussion of the amount of matter in
the Universe see Ref. [8].)

The best upper limit to £ comes from the age of the Universe. The age of the Universe
is- related to the Hubble time H-' by

ty = f(QH; ', ®

where f(Q) is a monotonically decreasing function of Q; f(0) = 1and f(1) = 2/3 for a matter-
-dominated Universe and 1/2 for a radiation-dominated Universe. The dating of the oldest
stars and the elements strongly suggest that the Universe is at least 10 Byr old — the
best estimate being around 15 Byr old [9]. From Eq. (9) and ty > t,, 10 Byr it follows that
Qf?[t2, > Qh?. The function Qf? is monotonically increasing and bounded above by
n2/4, implying that independent of h, Qh* < 2.5[t%,. Requiring h >> 0.4 and 7, > 1, it follows
that Qh? < 1.1 (see Fig. 4).

The energy density of the Universe quite naturally splits up into that contributed
by relativistic particles — today the microwave photons and cosmic neutrino backgrounds,
and that contributed by non-relativistic particles — baryons and whatever else! The energy
density contributed by non-relativistic particles decreases as R(f)-*> —just due to the
increase in the proper volume of the Universe, while that of relativistic particles varies
as R(t)~* — the additional factor of R being due to the fact that the momenta of relativistic
particles are redshifted by the expansion. (Both of these results follow directly from Eq. (5).)

The energy density contributed by relativistic particles at temperature 7 is

TEZ 4
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Fig. 4b. The functions Qf? and Q4% (h = 0.4 and 0.5). The function 2f*/t}, bounds 04? from above. For
10> 1 and £ > 0.4(0.5), this implies 24% < 1.1(0.8). The age of the Universe ty = #,,10 Gyr

where g,(T) counts the effective number of degrees of freedom (weighted by their tempera-
ture) of all the relativistic particle species (those with m < T):

gLT) = BZ ga(Ti/T)* +7/8 FZ ge(TH/T)", an

ermi

here T, is the temperature of the species i, and T is the photon temperature.
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Today the energy density contributed by relativistic particles (photons and three
neutrino species) is very small (g4 = 3.36)

Q,3,h% ~ 4x107°T3,.

However, because gy oc R, while gng oc R-3, at early times the energy density contri-
buted by relativistic particles dominated that of non-relativistic particles. To be specific,
the Universe was radiation-dominated for
t < tpg = 4% 10" sec (Qh*) T3 ,,

R < Rgq = 4% 10 7R 04,y (R ' T3 5,

T > Tpq = 5.8V QW’T3 ;.

Therefore, at very early times Eq. (4) simplifies to

H = (R/R) = (4n°g,/45)'*T*|mp,

= 1.66gi’2T2/mp1. (12)
(Note since the curvature term varies as R(¢)~? it too is negligible compared to the energy
density in relativistic particles.) For reference, g.(few MeV) = 10.75 (y, e*, 3w);
2+(100 GeV) ~ 110 (y, 8G, W*Z, 3 families of quarks and leptons, and 1 Higgs doublet).
So long as thermal equilibrium is maintained, the second Friedmann equation, Eq.

(5), implies that the entropy per comoving volume, S oc sR?, remains constant. Here s is the
entropy density which is dominated by the contribution from relativistic particles, and is

s =(0+p)T =~ (21r2/45)g*T3. (13)

The entropy density is just proportional to the number density of relativistic particles.
Today the entropy density is just 7.04 times the number density of photons. The constancy
of S means that s oc R-3, or that the ratio of any number density to s is just proportional
to the number of that species per comoving volume. The baryon number-to-entropy ratio is

ngfs >~ (1/7n =~ (6—10)x 10™**

and since today the number density of baryons is much greater than that of antibaryons,
this ratio is also the net baryon number per comoving volume — which is conserved so
long as the rate of baryon-number non-conserving reactions is small.

The constancy of S implies that

T o g (T)7PR(D™ 14)
Whenever g, is constant, this means that T oc R(#)~. Together with Eq. (12) this gives
R() = R(1o) (t/10)'",
t~12H " ~03g, ' Pmp/T?,
~ 2.4%x107% sec gz YA(T/GeV) ™2 (15)
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Finally, let me mention one more important feature of the standard cosmology,
the existence of particle horizons. In the standard cosmology the distance a photon could
have traveled since the bang is finite, meaning that at a given epoch the Universe is com-
prised of many causally-distinct domains. Photons travel on paths characterized by ds? = 0;
for simplicity and without loss of generality consider a trajectory with dp = do = 0.
The coordinate distance traversed by a photon since ‘the bang’ is

H
fat'|R(t)
V]
which corresponds to the physical distance (measured at time ¢)

dy(1) = R(1) é dt'[R(1). (16)

If R(t)oct” and n < 1, then the horizon distance dy(t) is finite and dy(¢) = #/(1—n)
= nH'/(1—n) =~ 1.

Note that even if dy(f) diverges (e.g., if R(¢) oc ¢” with n > 1), the Hubble radius
H-! still sets the scale of the ‘Physics Horizon’. All physical distances scale with R(z).
Thus microphysical processes operating on a timescale 2 H-! will have their effects distorted
by the expansion, strongly suggesting that a coherent microphysical process can only operate
over a time interval of order H-!. Then, causally-coherent microphysical processes can
only operate on distances <C the Hubble radius, H-. The intuitive notion that the Hubble
radius acts as the ‘Physics Horizon’ is borne out quantitatively time and time again, and
so it is useful to think of H~'.as the maximum scale for microphysical processes.

During the radiation-dominated era » = 1/2 and dy(?) = 2¢; the entropy and baryon
number within the horizon at a given time are easily computed:

Suor = (4n/3)t%,
~ 0.05g . *(mp/T)*,
Ng_nor = (n8/5)Skor,
= 10-—12(mP!/T-)3,
= 107°M (T/MeV) ™2,

We can compare these numbers to the entropy and baryon number contained within the
present horizon volume:

Sy ~ 10%%,  Ngy ~ 1078,
Evidently, in the standard cosmology the comoving volume which corresponds to the

part of the Universe which is presently observable contained many, many horizon volumes
at early times. This is an important point to which we shall return shortly.
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3. Shortcomings of the standard cosmology

The standard cosmology is very successful — it provides us with a reliable frame-
work for describing the history of the Universe as early as 10-2 sec after the bang (when
the temperature was about 10 MeV) and perhaps as early as 103 sec after the bang (see
Fig. 5). In sum, the standard cosmology is a great achievement. There is nothing in our
present understanding of physics that would indicate that it is incorrect to extrapolate
the standard cosmology back to times as early as 10-43 sec — the fundamental constituents
of matter, quarks and leptons, are point-like particles and their known interactions should
remain ‘weak’ up to energies as high as 10'® GeV — justifying the dilute gas approxima-
tion made in writing gg oc 7. (This fact was first pointed out by Collins and Perry [9a].
However, at times earlier than 10~**sec, corresponding to temperatures greater than
10'° GeV, quantum corrections to general relativity — a classical theory, should become
very significant.)

However, it is not without its shortcomings. There are a handful of very important
and fundamental cosmological facts which, while it can accommodate, it in no way eluci-
dates. I will briefly review these puzzling facts.

(1-2) Large-scale isotropy and homogeneity

The observable Universe (size ~ H-! ~ 10?8 cm =~ 3000 #~* Mpc) is to a high degree
of precision isotropic and homogeneous on the largest scales, say > 100 Mpc. (Of course,
our knowledge of the Universe outside our past light cone is very limited; see Ref. [10].)
The best evidence for the isotropy and homogeneity is provided by the uniformity of the
cosmic background temperature (see Fig. 2): (67]T) < 10-3 (10~ if the dipole anisotropy
is interpreted as being due to our motion relative to the cosmic rest frame). Large-scale
density inhomogeneities or anisotropic expansion would result in temperature fluctuations
of comparable magnitude (see Refs [11, 12]). The smoothness of the observed Universe
is puzzling if one wishes to understand it as being due to causal, microphysical processes
which operated during the early history of the Universe. Our Hubble volume today contains
an entropy of about 1088, At decoupling (f =~ 6 x 10'2 (QA2)~1/2 sec, T ~ 1/3 eV), the last
epoch when matter and radiation were known to be interacting vigorously and particle
interactions might have been able to smooth the radiation, the entropy within the horizon
was only about 8 x 1082; that is, the comoving volume which contains the presently-obser-
vable Universe, then was comprised of about 2 x 10° causally-distinct regions. How is it
that they came to be homogeneous ? Put another way, the particle horizon at decoupling
only subtends an angle of about 1/2° on the sky today — how is it that the cosmic back-
ground temperature is so uniform on angular scales much greater than this?

The standard cosmology can accommodate these facts — after all the FRW cos-
mology is exactly isotropic and homogeneous, but at the expense of very special initial
data. In 1973 Collins and Hawking [13] showed that the set of initial data which evolve
to a Universe which globally is as smooth as ours has measure zero (provided that the
strong and dominant energy conditions are always satisfied).
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(3) Small-scale inhomogeneity

As any real astronomer will gladly testify, the Universe is very lumpy — stars, galaxies,
clusters of galaxies, superclusters, etc. Today, the density contrast on the scale of galaxies
is: dgfe ~ 10°. The fact that the microwave background radiation is very uniform even
on very small angular scales ( €1°) indicates that the Universe was smooth even on the
scale of galaxies at decoupling. (The relationship between the angle on the sky and mass
contained within the corresponding length-scale at decoupling is: 6 ~ 1'(M/10*2 M )!/3
x Q-1/341/3)) On small angular scales: 67/ =~ c(50/0)4c., Where the numerical constant
€ =~ 10-'—10-2 (see Ref. [12] for further details). Whence came the structure which today
is so conspicuous?

Once matter decouples from the radiation and is free of the pressure support provided
by the radiation, any density inhomogeneities present will grow via the Jeans (or gravita-
tional instability) — in the linear regime, dg/g oc R(¢). (If the mass density of the Universe
is dominated by a collisionless particle species, e.g., a light, relic neutrino species or relic
axions, density perturbations in these particles can begin to grow as soon as the Universe
becomes matter-dominated.) In order to account for the present structure, density pertur-
bations of amplitude ~10-2 or so at decoupling are necessary on the scale of galaxies.
The standard cosmology sheds no light as to the origin or nature (spectrum and type —
adiabatic or isothermal) of the primordial density perturbations so crucial for understand-
ing the structure observed in the Universe today. (For a review of the formation of structure
in the Universe according to the gravitational instability picture, see Ref. [14].)

(4) Flatness (or oldness) of the Universe
The observational data suggest that

0.01 < Q < few.

Q is related to both the expansion rate of the Universe and the curvature radius of the
Universe:

Q = 8nGo/3H?* = H%,/H?, an
12—1| = (H™'/Rours)*. (18)

The fact that Q is not too different from unity today implies that the present expansion
rate is close to the critical expansion rate and that the curvature radius of the Universe
is comparable to or larger than the Hubble radius. As the Universe expands © does not
remain constant, but evolves away from 1

Q = 1/(1-x(1)), (19
(1) = (k/R*)/(8Ge/3), (20

) o R(#)? radiation-dominated
x R(t) matter-dominated.
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That Q is still of order unity means that at early times it was equal to 1 to a very high degree
of precision:

1210743 sec)— 1 =~ 0(107°9),
iQ(1 sec)~1] ~ 0(10719).

This in turn implies that at early times the expansion rate was equal to the critical rate
to a high degree of precision and that the curvature of the Universe was much, much greater
than the Hubble radius. If it were not, i.c., suppose that |(k/R?)/(87Gg[3)| = O(1) at
t >~ 1043 sec, then the Universe would have collapsed after a few Planck times (k > 0)
or would have quickly become curvature-dominated, (¢ < 0), in which case R(t) oc ¢ and
T = 3K) < 10-!! sec! Why was this so?

The co-called flatness problem has sometimes been obscured by the fact that it is con-
ventional to rescale R(t) so that k = —1, 0, or +1, making it seem as though there are
but three FRW models. However, that clearly is not the case; there are an infinity of
models, specified by the curvature radius R, = R(Dk|-12 at some given epoch, say
the Planck epoch. Our model corresponds to one with a curvature radius that exceeds
its initial Hubble radius by 30 orders-of-magnitude. Again, this fact can be accommodated
by FRW models, but the extreme flatness of our Universe is in no way explained by the
standard cosmology. (The flatness problem and the naturalness of the X = 0 model have
been emphasized by Dicke and Peebles [14a].)

(5) Baryon number of the Universe

There is ample evidence (see Ref. [15]) for the dearth of antimatter in the observable
Universe. That fact together with the baryon-to-photon ratio (n >~ 4-7x 10-1°) means
that our Universe is endowed with a net baryon number, quantified by the baryon number-
-to-entropy ratio

ng/s = (6—10)x 10712,

which in the absence of baryon number non-conserving interactions or significant entropy
production is proportional to the constant net baryon number per comoving volume
which the Universe has always possessed. Until five or so years ago this very fundamental
number was without explanation. Of course it is now known that in the presence of interac-
tions that violate B, C, and CP a net baryon asymmetry will evolve dynamically. Such
interactions are predicted by Grand Unified Theories (or GUTs) and ‘baryogenesis’ is one
of the great triumphs of the marriage of grand unification and cosmology. (See Ref. [16]
for a review of grand unification.) If the baryogenesis idea is correct, then the baryon
asymmetry of the Universe is subject to calculation just as the primordial Helium
abundance is. Although the idea is very attractive and certainly appears to be qualitati-
vely correct, a precise calculation of the baryon number-to-entropy ratio cannot be
performed until The Grand Unified Theory is known. (Baryogenesis is reviewed in
Ref. [17].)
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(6) The monopole problem

If the great success of the marriage of GUTs and cosmology is baryogenesis, then
the great disappointment is ‘the monopole problem’. °t Hooft-Polyakov monopoles [18]
are a generic prediction of GUTs. In the standard cosmology (and for the simplest GUTSs)
monopoles are grossly overproduced during the GUT symmetry-breaking transition,
so much so that the Universe would reach its present temperature of 3 K at the very tender
age of 30,000 yrs! (For a detailed discussion of the monopole problem, see Refs [19, 20].)
Although the monopole problem initially seemed to be a severe blow to the Inner
Space/Outer Space connection, as it has turned out it provided us with a valuable piece
of information about physics at energies of order 10'* GeV and the Universevat times as
early as 10-3* sec — the standard cosmology and the simplest GUTs are definitely in-
compatible! As it turned out, it was the search for a solution to the monopole problem
which in the end led Guth to come upon the inflationary Universe scenario [21, 22].

(7)'The smallness of the cosmological constant

With the possible exception of supersymmetry/supergravity and superstring theories,
the absolute scale of the scalar potential V(¢) is not specified (here ¢ represents the scalar
fields in the theory, be they fundamental or composite). A constant term in the scalar
potential is equivalent to a cosmological term (the scalar potential contributes a term Vg,
to the stress energy of the Universe [23]. At low temperatures (say temperatures below any
scale of spontaneous symmetry-breaking) the constant term in the potential receives contri-
butions from all the stages of SSB — chiral symmetry breaking, electroweak SSB, GUT SSB,
etc. The observed expansion rate of the Universe (H = 100k km sec~! Mpc—?) limits the
total energy density of the Universe to be

eror < 0(107*° GeV*).

Making the seemingly very reasonable assumption that all stress energy selfgravitates
(which is dictated by the equivalence principle) it follows that the vacuum energy of our

Vi(g) Vig)
A A T = 3K

< to“‘i
GeV

e

-

Fig. 6. In gauge theories the vacuum energy is a function of one or more scalar fields (here denoted col-

lectively as #); however, the absolute energy scale is not set. Vacuum energy behaves like a cosmological

term; the present expansion rate of the Usiverse constrains the value of the vacuum energy today
to be < 1046 Gev*




827

SU(3) x U(1) vacuum must be less than 10-*¢ GeV#. Compare this to the scale of the various
contributions to the scalar potential: O(M*) for physics associated with a symmetry break-
ing scale of M

10—122 M = anl
1071°* M = 10'* GeV
1073 M = 300 GeV
1074 M = 1 GeV.

Vioday/ M * < eror/M* <

At present there is no explanation for the vanishingly small value of the energy density
of our very unsymmetrical vacuum. It is easy to speculate that a fundamental understanding
of the smaliness of the cosmological constant will likely involve an intimate link between
gravity and quantum field theory.

Today we can be certain the vacuum energy is small and plays a minor role in the
dynamics of the expansion of the Universe (compared to the potential role that it could
play). If we accept this as an empirical determination of the absolute scale of the scalar
potential ¥(¢), it then follows that the energy density associated with an expectation value
of ¢ near zero is enormous — of order M* (see Fig. 6) and therefore could have played
an important role in the dynamics of the very early Universe. Accepting this empirical
determination of the zero of vacuum energy — which is a very great leap of faith, is the
starting point for inflation. In fact, the rest of the journey is downhill.

All of these cosmological facts can be accommodated by the standard model, but
seemingly at the expense of highly special initial data (the possible exception being the
monopole problem). Over the years there have been a number of attempts to try to under-
stand and/or explain this apparent dilemma of initial data. Inflation is the most recent
attempt and I believe shows great promise. Let me begin by briefly mentioning the earlier
attempts:

* Mixmaster Paradigm — Starting with a solution with a singularity which exhibits
the features of the most general singular solutions known (the so-called mixmaster model)
Misner and his coworkers hoped that they could show that particle viscosity would smooth
out the geometry. In part because horizons still effectively exist in the mixmaster solution
‘the chaotic cosmology program’ has proven unsuccessful (for further discussion see
Ref. [24]).

* Nature of the Initial Singularity — Penrose [25] explored the possibility of explain-
ing the observed smoothness of the Universe by restricting the kinds of initial singularities
which are permitted in Nature (those with vanishing Weyl curvature). In a sense his
approach is to postulate a law of physics governing allowed initial data.

* Quantum Gravity Effects — The first two solutions involve appealing to classical
gravitational effects. A number of authors have suggested that quantum gravity effects
might be responsible for smoothing out the space-time geometry (de Witt [26], Parker
[27}; ZePdovich [28]; Starobinskii [29]; Anderson [30]; Hartle and Hu [31]; Fischetu
et al. [32]). The basic idea being that anisotropy and/or inhomogeneity would drive gravita-
tional particle creation, which due to back reaction effects would eliminate particle horizons
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and smooth out the geometry. Recently, Hawking and Hartle [33] have advocated the
Quantum Cosmology approach to actually compute the initial state. All of these approaches
necessarily involve events at times <$10~43sec and energy densities =my,.

* Anthropic Principle — Some (see, e.g., Ref. [34]) have suggested (or in some cases
even advocated) ‘explaining’ many of the puzzling features of the Universe around us (and
in some cases, even the laws of physics!) by arguing that unless they were as they are intelli-
gent life would not have been able to develop and observe them! Hopefully we will not
have to resort to such an explanation.

The approach of inflation is somewhat different from previous approaches. Inflation
(at least from my point-of-view) is based upon well-defined and reasonably well-understood
microphysics (albeit, some of it very speculative). That microphysics is:

* Classical Gravity (general relativity), at least as an effective, low-energy theory
of gravitation.

* ‘Modern Particle Physics’ — grand unification, supersymmetry/supergravity, field
theory limit of superstring theories, etc. at energy scales <my,.

As I will emphasize, in all viable models of inflation the inflationary period (at least
the portion of interest to us) takes place well after the planck epoch, with the energy densi-
ties involved being far less than my, (although semi-classical quantum gravity effects might
have to be included as non-renormalizable terms in the effective Lagrangian). Of course,
it could be that a resolution to the cosmological puzzles discussed above involves both
‘modern particle physics’ and quantum gravitational effects in their full glory (as in a fully
ten dimensional quantum theory of strings).

1 will not take the time or the space here to review the historical development of our
present view of inflation; I refer the interested reader to the interesting paper on this subject
by Lindley [35]. It suffices to say that Guth’s very influential paper of 1981 was the ‘shot
heard round the world’ which initiated the inflation revolution [22], and that Guth’s doomed
original model (see Guth and Weinberg [36], Hawking et al. [36]) was revived by Linde’s {37]
and Albrecht and Steinhardt’s [38] variant, ‘new inflation’. I will focus all of my attention
on the present status of the ‘slow-rollover’ model of Linde [37] and Albrecht and Stein-
hardt [38].

4. New inflation — the slow-rollover transition

The basic idea of the inflationary Universe scenario is that there was an epoch when
the vacuum energy density dominated the energy density of the Universe. During this
epoch ¢ >~ V ~ constant, and thus R(?) grew exponentially (cc exp (Ht)), allowing a small,
causally-coherent region (initial size <<H-*) to grow to a size which encompasses the region
which eventually becomes our presently-observable Universe. In Guth’s original scenario
[22], this epoch occurred while the Universe was trapped in the false (¢ = 0) vacuum
during a strongly, first-order phase transition. In new inflation, the vacuum-dominated,
inflationary epoch occurs while the region of the Universe in question is slowly, but inevi-
tably, evolving toward the true, SSB vacuum. Rather than considering specific models
in this section, I will try to discuss new inflation in the most general context. For the mo-
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ment I will however assumec that the epoch of inflation is associated with a first-order,
SSB phase transition, and that the Universe is in thermal equilibrium before the transition.
As we shall see later new inflation is more general than these assumptions. But for defi-
niteness (and for historical reasons), let me begin by making these assumptions.
Consider a SSB phase transition characterized by an energy scale M. For T > T,
~ O(M) the symmetric (¢ = 0) vacuum is favored, i.e., ¢ = 0 is the global minimum
of the finite temperature effective potential V(¢) (= free energy density). As T approaches
T, a second minimum develops at ¢ = 0, and at T = T, the two minima are degenerate.
At temperatures below T, the SSB (¢ = ¢) minimum is the global minimum of V. {¢)
(see Fig. 7). However, the Universe does not instantly make the transition from ¢ = 0

Vo () TS Vo (9)
i )

T>> Tc T:“_‘Tc T<< TC

¢ ¢ g ¢
Fig. 7. The finite temperature effective potential as a function of T (schematic). The Universe is usually
assumed to start out in the high temperature, symmetric minimum (4 = 0) of the potential and must even-

tually evolve to the low temperature, asymmetric minimum (4 = ). The evolution of ¢ from & = 0 to
% = ¢ can prove to be very interesting — as in the case of an inflationary transition

to¢ = o; the details and time required are a question of dynamics. (The scalar field ¢ is the
order parameter for the SSB transition under discussion; in the spirit of generality ¢ might
be a gauge singlet field or might have nontrivial transformation properties under the gauge
group, possibly even responsible for the SSB of the GUT.) Once the temperature of the
Universe drops below T, ~ O(M), the potential energy associated with ¢ being far from
the minimum of its potential, ¥ ~ V(0) >~ M*, dominates the energy density in radiation
(¢, < T?), and causes the Universe to expand exponentially. During this exponential
expansion (known as a deSitter phase) the temperature of the Universe decreases exponen-
tially causing the Universe to supercool. The exponential expansion continues so long as
¢ is far from its SSB value. Now let’s focus on the evolution of ¢.

Assuming a barrier exists between the false and true vacua, thermal fluctuations and/or
quantum tunneling must take ¢ across the barrier. The dynamics of this process determine
when and how the process occurs (bubble formation, spinodal decomposition, etc.) and
the value of ¢ after the barrier is penetrated. If the action for bubble nucleation remains
large, S, > 1, then the barrier will be overcome by the nucleation of Coleman-deLuccia
bubbles [39]; on the other hand if the action for bubble nucleation becomes of order
unity, then the Universe will undergo spinodal decomposition, and irregularly-shaped



830

fluctuation regions will form (see Fig. 8; for a more detailed discussion of ‘the barrier
penetration process see Refs [38-40]). For definiteness supposg, that the barrier is over-
come when the temperature is Ty, and that after the barrier is penetrated the value of
¢ is ¢,. From this point the journey to the true vacuum is downhill (literally). For the mo-
ment let us assume that the evolution of ¢ is adequately described by semi-classical equations
of motion:

¢+3H¢+Td+V =0, 1)

where ¢ has been normalized so that its kinetic term in the Lagrangian is 1/20,40"¢, and
prime indicates a derivative with respect to ¢. The subscript T on V has been dropped;
for T < T, the temperature dependence of V', can be neglected and the zero temperature
potential (= ¥) can be used. The 3H¢ term acts like a frictional force, and arises because
the expansion of the Universe ‘redshifts away’ the kinetic energy of ¢(cc R-3). The I'd
term accounts for particle creation due to the time-variation of ¢ (Refs. [41, 42]). The
quantity I is determined by the particles which couple to ¢ and the strength with which
they couple (I'-! ~ lifetime of a ¢ particle). As usual, the expansion rate H is determined

O ° o

5 >> ] O
Fig. 8. If the tunneling action is large (§> 1), barrier penetration will proceed via bubble nucleation,
while in the case that it becomes small (S ~ O(1)), the Universe will fragment into irregularly-shaped
fluctuation regions. The very large scale (scale > bubble or fluctuation region) structure of the Universe

is determined by whether S ~ O(1) — in which case the Universe is comprised of irregularly-shaped do-
mains, or §> O(1) — in which case the Universe is comprised of isolated bubbles
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by the energy density .of the Universe:
H? = 8rGp/3, (22)
¢ > 126>+ V(¢)+ e, (23)

where o, represents the energy density in radiation produced by the time variation of ¢.
(For Ty < T, the original thermal component makes a negligible contribution to g.)
The evolution of g, is given by

6, +4Ho, = I'P?, (24)

where the I q§2 term accounts for particle creation by ¢.

In writing Eqs (21-24) I have implicitly assumed that ¢ is spatially homogeneous. In
some small region (inside a bubble or a fluctuation region) this will be a good approxima-
tion. The size of this smooth region will turn out to be unimportant; take it to be of order
the ‘Physics Horizon’, H-! — certainly, it is not likely to be larger. Now follow the evolu-
tion of ¢ within the small, smooth patch of size H-!.

If V(¢) is sufficiently flat somewhere between ¢ = ¢, and ¢ = o, then ¢ will evolve
very slowly in that region, and the motion of ¢ will be ‘friction-dominated’ so that 3H¢
~ — V' (in the slow growth phase particle creation is not important [43]). If V is sufficiently
flat, then the time required for ¢ to transverse the flat region can be long compared to the
expansion timescale H-'; for definiteness say, t, = 100 H-!. During this slow growth
phase ¢ >~ V(@) ~ V(¢ = 0); both g, and 1/2¢?are <V(¢). The expansion rate H is then
just

H = 8zV(0)3mz)'/* = O(M*jmy), (25)

where ¥(0) is assumed to be of order M*. While H ~ constant, R grows exponentially:
R oc exp (Ht); for 1, = 100H-!, R expands by a factor of ¢!°° during the slow rolling
period, and the physical size of the smooth region increases to ¢'%H-?,

As the potential steepens, the evolution of ¢ quickens. Near ¢ = o, ¢ oscillates around
the SSB minimum with frequency m,: m} ~ V"'(6) = O(M?) » H? ~ M*/m},. As¢ oscil-
lates about ¢ = ¢ its motion is damped both by particle creation and the expansion of the
Universe. If I'! < H-!, then coherent field energy density (V' + 1/2¢?) is converted into
radiation in less than an expansion time (4tgy ~ I''), and the patch is reheated to a temper-
ature T ~ O(M)—the vacuum energy is efficiently converted into radiation (‘good
reheating’). On the other hand, if I'-! > H-1, then ¢ continues to oscillate and the coherent
field energy redshifts away with the expansion: (V+ 1/2¢?) «c R-3 — the coherent energy
behaves like non-relativistic matter. Eventually, when ¢ ~ I'-! the energy in radiation
begins to dominate that in coherent field oscillations, and the patch is reheated to a temper-
ature T =~ (I'/H)'*M ~ ('mp)'/* < M (‘poor reheating’). The evolution of ¢ is summa-
rized schematically in Fig. 9. In the next section I will discuss the all-important scalar field
dynamics in great detail.

For the following discussion let us assume ‘good reheating’ (I' > H). After reheating
the patch has a physical size e!°°H-! (~ 10'7 cm for M =~ 10'* GeV), is at a temperature
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of order M, and in the approximation that ¢ was initially constant throughout the patch,
the patch is exactly smooth. From this point forward the region evolves like a radiation-
-dominated FRW model. How have the cosmological conundrums been ‘explained’?

First, the homogeneity and isotropy; our observable Universe today (=~ 10%% ¢m)
had a physical size of about 10 cm (= 10%% em x 3 K/10!'* GeV) when T was 10'4 GeV —
thus it lies well within one of the smooth regions produced by the inflationary epoch.
Put another way, inflation has resuited in a smooth patch which contains an entropy of
order (1017 cm)® x (10'* GeV)® ~ 10'34, which is much, much greater than that within

¢ ¢
.

Vi) J ——— -

. El e )
T¢ >> H << F
INFLATION REHEATING
Fig. 9. Evolution of ¢ and the temperature inside the bubble or fluctuation region (schematic). Early on
& evolves slowly (relative to the expansion timescale), then as the potential steepens ¢ evolves rapidly (on the

expansion timescale). The oscillations of ¢ are damped by particle creation, which leads to the reheating
of the bubble or fluctuation region

the presently-observed Universe (= 108%). Before inflation that same volume contained
only a very small amount of entropy, about (10-23 cm)® (104 GeV)® ~ 10'4. The key
to inflation then is the highly nonadiabatic event of reheating (see Fig. 10). The very large-
-scale cosmography depends upon the state of the Universe before inflation and how infla-
tion was initiated (bubble nucleation or spinodal decomposition); see Ref. [45] for further
discussion.

Since we have assumed that ¢ is spatially constant within the bubble or fluctuation
region, after reheating the patch in question is precisely uniform, and at this stage the
inhomogeneity puzzle has not been solved. Inflation has produced a smooth manifold on
which small fluctuations can be impressed. Due to deSitter space produced quantum filuctua-
tions in ¢, ¢ is not exactly uniform even in a small patch. Later, T will discuss the density
inhomogeneities that result from the quantum fluctuations in ¢.

The flatness puzzle involves the smallness of the ratio of the curvature term to the energy
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Fig. 10. Evolution of the scale factor R and temperature 7 of the Universe in the standard cosmology and
in the inflationary cosmology. The standard cosmology is always adiabatic (RT ~ const), while the inflation-
ary cosmology undergoes a highly non-adiabatic event (reheating) after which it is adiabatic

density term. This ratio is exponentially smaller after inflation: x,,., =~ 2% x, ... since
the energy density before and afterinflation is O(M*#), while k/ R? has exponentially decreased
(by a factor of €29°), Since the ratio x is reset to an exponentially small value, the inflationary
scenario predicts that today Q should be 14 O(1078¢%),

If the Universe is reheated to a temperature of order M, a baryon asymmetry can
evolve in the usual way, although the quantitative details may be different [17, 43]. If the
Universe is not efficiently reheated (T3, < M), it may be possible for ng/s to be produced
directly in the decay of the coherent field oscillations [41-44] (which behave just like
NR ¢ particles); this possibility will be discussed later. In any case, it is absolutely necessary
to have baryogenesis occur after reheating since any baryon number (or any other quantum
number) present before inflation is diluted by a factor of (M/Tys)® exp (3Ht,) — the factor
by which the total entropy increases. Note that if C, CP are violated spontaneously, then
& (and ng/s) could have a different sign in different patches — leading to a Universe which
on the very largest scales (>¢'°° H-!) is baryon symmetric.

Since the patch that our observable Universe lies within was once (at the beginning
of inflation) causally-coherent, the Higgs field could have been aligned throughout the
patch (indeed, this is the lowest energy configuration), and thus there is likely to be <1 mo-
nopole within the entire patch which was produced as a topological defect. The glut of
monopoles which occurs in the standard cosmology does not occur. (The production of
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other topological defects (such as domain walls, etc.) is avoided for similar reasons.)
Some monopoles will be produced after reheating in rare, very energetic particle colli-
sions [46a]. The number produced is both exponentially small and exponentially uncertain.
(In discussing the resolution of the monopole problem I am tacitly assuming that the SSB
of the GUT is occurring during the SSB transition in question, or that it has already occur-
red in an earlier SSB transition; if not then one has to worry about the monopoles produced
in the subsequent GUT transition.) Although monopole production is intrinsically small
in inflationary models, the uncertainties in the number of monopoles produced are expo-
nential and of course, it is also possible that monopoles might be produced as topological
defects in a subsequent phase transition [46b] (although it may be difficult to arrange that
they not be overproduced).

Finally, the inflationary scenario sheds no light upon the cosmological constant puzzle.
Although it can potentially successfully resolve all of the other puzzles in my list, inflation
is, in some sense, a house of cards built upon the cosmological constant puzzle.

5. Scalar field dynamics

The evolution of the scalar field ¢ is key to understanding new inflation. In this section
I will focus on the semi-classical dynamics of ¢. Later, I will return to the question of the
validity of the semi-classical approach. Much of what I will discuss here is covered in more
detail in Ref. [47].

Stated in the most general terms, the current view of inflation is that it involves the
dynamical evolution of a very weakly-coupled scalar field (hereafter referred to as ¢)
which is, for one reason or another, initially displaced from the minimum of its potential
(see Fig. 11). While it is displaced from its minimum, and is slowly-evolving toward that
minimum, its potential energy density drives the rapid (exponential) expansion of the Uni-
verse, now known as inflation.

V() Vi)
A A

L — L g b

¢i o o ¢¢

Fig. 11. Stated in the most general terms, inflation involves the dynamical evolution of a scalar field which
was initially displaced from the minimum of its potential, be that minimum at ¢ =0 or o0 # 0
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The usual assumptions which are made (often implicitly) in order to analyze the scalar
field dynamics inflation are:
* A FRW spacetime with scale factor R(z) and expansion rate

H? = (R/R)* = 8no/3m&—k|R?, (26)

where the energy density is assumed to be dominated by the stress energy associated with
the scalar field (in any case, other forms of stress energy rapidly redshift away during infla-
tion and become irrelevant).

* The scalar field ¢ is spatially constant (at least on a scale 2 H-') with initial value
¢, # o, where V(o) = V'(6) = 0.

* The semi-classical equation of motion for ¢ provides an accurate description of its
evolution; more precisely,

¢(1) = Pel(t)+ Adqu.

where the quantum fluctuations (characterized by size d¢qy ~ H/2rn) are assumed to be
a small perturbation to the classical trajectory ¢(¢). From this point forward I will drop
the subscript ‘cl’. T will return later to these assumptions to discuss how they have been
or can be relaxed and/or justified.

Consider a classical scalar field (minimally coupled) with lagrangian density given by

= — $0,00"¢—V(¢). @n

For now I will ignore the interactions that ¢ must necessarily have with other fields in the
theory. As it will turn out they must be weak for inflation to work, so that this assumption
is a reasonable one. The stress-energy tensor for this field is then

Tuv = _au¢av¢ - gguv' (28)

Assuming that in the region of interest ¢ is spatially-constant, T, takes on the perfect
fluid form with energy density and pressure given by

=3 ¢*+V($) (+(V¢)*[2RY), (29a)
p =3 ¢*~ V(@) (—(V$)*/6R?), (29b)

where I have included the spatial gradient terms for future reference. (Note, once inflation
begins the spatial gradient terms decrease rapidly, (V$)*/R? oc R-2, for wavelengths = H-*,
and quickly become negligible.) That the spatial gradient term in ¢ be unimportant is crucial
to inflation; if it were to dominate the pressure and energy density, then R(t) would grow
as 7 (since p = — @) and not exponentially.

The equations of motion for ¢ can be obtained either by varying the action or by using
T2 = 0. In either case the resulting equation is:

S+3HH(+TP)+V'(p) = 0. (30)
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I have explicitly included the I'¢ term which arises due to particle creation. The 3H$
friction term arises due to the expansion of the Universe; as the scalar field gains mo-
mentum, that momentum is redshifted away by the expansion.

This equation, which is analogous to that for a ball rolling with friction down a hill
with a valley at the bottom, has two qualitatively different regimes, each of which has
a simple, approximate, analytic solution. Fig. 12 shows schematically the potential ¥(¢).

(1) The slow-rolling regime

In this regime the field rools at terminal velocity and the ¢ term is negligible. This
occurs in the interval where the potential is very flat, the conditions for sufficient flatness
being [44]:

V< 9H?, (31a)
V' ing/V < (48m)"2 (31b)

Condition (31a) usually subsumes condition (31b), so that condition (31a) generally suffices.
During the slow-rolling regime the equation of motion for ¢ reduces to

é ~ —V'[3H. (32)

During the slow-rolling regime particle creation is exponentially suppressed [43] because
the timescale for the evolution of ¢ (which sets the energy/momentum scale of the particles
created) is much greater than the Hubble time (which sets the physics horizon), i.e., any
particles radiated would have to have wavelengths much larger than the physics horizon,

V()
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Fig. 12. Schematic plot of the potential required for inflation. The shape of the potential for ¢ < o deter-

mines how the barrier between ¢ = 0 and # = o (if one exists) is penetrated. The value of ¢ after barrier
penetration is taken to be &,; the flat region of the potential is the interval [&,, &#.]
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which results in the exponential suppression of particle creation during this epoch. Thus,
the I'¢ term can be neglected during the ‘slow roll’.

Suppose the interval where conditions (31a, b) are satisfied is (¢, ¢.], then the number
of e-folds of expansion which during the time ¢ is evolving from¢ = ¢, tod = ¢, (= N)is

¢o
N = [Hdt ~ ~3¢§ HdelV'(¢) ~ —(Bnjmf) | V(d)de/V'($). (33)

(Note that R./R, = exp (N) since R/R = H.) Taking H?/V’ to be roughly constant over
this interval and approximating ¥’ as >~ ¢V’ (which is approximately true for polynomi-
nal potentials) it follows that

N =~ 3H¥V'" = 3.

If there is a region of the potential where the evolution is friction-dominated, then N will
necessarily be greater than 1 (by condition (31a)).

(2) Coherent field oscillations
In this regime

V"> 9H?,
and ¢ evolves rapidly, on a timescale < the Hubble time H-!. Once ¢ reaches the bottom

of its potential, it will oscillate with an angular frequency equal to m, = ¥*/(¢)*/2. In this
regime it proves useful to rewrite Eq. (30) for the evolution of ¢ as

i

6y = —3H$*—ré?, (34)

where

1/2 2+ V().

Once ¢ is oscillating about ¢ = o, q‘32 can be replaced by its average over a cycle

i

Qs

<4§2>cycle = Q¢;
and Eq. (34) becomes

64 = —3Hoy—Tg, 35)

which is nothing else but the equation for the evolution of the energy densnty of zero mo-
mentum, massive particles with a decay width I'.

Referring back to Eq. (29) we can see that the cycle average of the pressure (i.e., space-
-space components of 7,,,) is zero — as one would expect for NR particles. The coherent
¢ oscillations are in every way equivalent to a very cold condensate of ¢ particles. The decay
of these oscillations due to quantum particle creation is equivalent to the decay of zero-
-momentum ¢ particles.
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The complete set of semi-classical equations for the reheating of the Universe is

0s = —3Hey—T'g,,

(36a)
ér = "4HQ, + I‘Q¢5 (3bb)
H? = 87G(e,+ ¢4)/3, (36¢c)

where ¢, = (n?/30)g,T* is the energy density in the relativistic particles produced by the
decay of the coherent field oscillations. (I have tacitly assumed that the decay products
of ¢ rapidly thermalize; Eq. (36b) is correct whether or not the decay products thermalize,
so long as they are relativistic.) The evolution for the energy density in the scalar is easy
to obtain

0 = MYRIR) > exp [~ T (1~1,)], (7

where I have set the initial energy equal to M*, the initial epoch being when the scalar
field begins to evolve rapidly (at R = R, ¢ = ¢, and ¢ = 1),

From t = ¢, until 7 >~ I'"!, the energy density of the Universe is dominated by the
coherent sloshings of the scalar field ¢, set into motion by the initial vacuum energy associ-
ated with ¢ < 6. During this phase

R(1) o 23,

that is, the Universe behaves as if it were dominated by NR particles — which it is!

Interestingly enough it follows from Eq. (36) that during this time the energy density
in radiation is actually decreasing (o, cc R~3/2 — see Fig. 13). (During the first Hubble
time after the end of inflation g, does increase.) However, the all important entropy per
comoving volume is increasing S oc R15/8, When ¢ =~ I'1, the coherent oscillations begin
to decay exponentially, and the entropy per comoving volume levels off — indicating the
end of the reheating epoch. The temperature of the Universe at this time is,

Tan = g2 ' Y(Tmp)' . (38)

If -1 is less than H-, so that the Universe reheats in less than an c);pansion time, then all
of the vacuum is converted into radiation and the Universe is reheated to a temperature

Twm=g M (fIr>H) (38)

the so-called case of good reheating.

To summarize the evolution of the scalar field ¢: early on ¢ evolves very slowly,
on a timescale >-the Hubble time H-!; then as the potential steepens (and |F’] be-
comes > 9H?) ¢ begins to evolve rapidly, on a timescale < the Hubble time H-1. As ¢ oscil-
lates about the minimum of its potential the energy density in these oscillations dominates
the energy density of the Universe and behaves like NR matter (g, «c R~%); eventually
when 7 =« I"-1, these oscillations decay exponentially, ‘reheating’ the Universe to a temper-
ature of Tpy ~ g5 /*(P'my)'/? (if ' > H, so that the Universe does not e-fold in the time
it takes the oscillations to decay, then Tyy =~ g5 '*M). Saying that the Universe reheats
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when ¢ >~ ! is a bit paradoxical as the temperature has actually been decreasing since

shortly ‘after the ¢ oscillations began. However, the fact that the temperature of the Uni-

verse was actually once greater than Ty for ¢ < I'-! is probably of no practical use since

the entropy per comoving volume increases until # ~ I'"*— by a factor of (M?/I'my)*?,.
and any interesting objects that might be produced (e.g., net baryon number, monopoles,

etc.) will be diluted away by the subsequent entropy production. By any reasonable measure,

Tyy is the reheat temperature of the Universe. The evolution of g, ¢,, and S are summarized

in Fig, 13.

Armed with our detailed knowledge of the evolution of ¢ we are ready to calculate
the precise number of e-folds of inflation necessary to solve the horizon and flatness prob-
lems and to discuss direct baryon number production. First consider the requisite number
of e-folds required for sufficient inflation. To solve the homogeneity problem we need to
insure that a smooth patch containing an entropy of at least 1038 results from inflation.
Suppose the initial bubble or fluctuation region has a size H-! ~ mp/M? — certainly
it is not likely to be significantly larger than this. During inflation it grows by a factor
of exp (N). Next, while the Universe is dominated by coherent field oscillations it grows
by a factor of

(Rpu/R,) ~ (M 4/ T:H)”S,

where Tgy is the reheat temperature. Cubing the size of the patch at reheating (to obtain
ts volume) and multiplying its volume by the entropy density (s & T5y), we obtain

Spatch = eSlea'l/(l"I *Trn)

patc
Insisting that S, be greater than 1088, it follows that
N = 53+21n (M/10'* GeV)+1 In (Tpy/10'° GeV). 39)

Varying M from 10'° GeV to 10% GeV and Txy from 1 GeV to 10!° GeV this lower bound
on N only varies from 36 to 68. :
The flatness problem involves the smallness of the ratio

x = (k/R*)/(8nGe/3)

equired at early times. Taking the pre-inflationary value of x to be x; and remembering
that

R™%? ¢ = const
x(t) c{R @« R™?
R* g« R™*

it follows that the value of x today is
Xioday = Xi€~ 2 (M| Ton)**(Tyu/10 eV)*(10 €V/3 K).
Insisting that x,.,, be at most of order unity iniplies that

N = 53+1In (x)+2 In (M/10'* GeV) +1 In (Txy/10'° GeV)
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Fig. 13. The evolution of 94, gr, and S during the epoch when the Universe is dominated by coherent ¢-oscilla-
tions. The reheat temperature Try =~ g~'/%(I'mpp)!/2. The maximum temperature achieved after inflation
is actually greater, Tmax = (TRuM)'/?

- up to the term In (x;), precisely the same bound as we obtained to solve the homo-
geneity problem. Solving the isotropy problem depends upon the initial anisotropy present;
during inflation isotropy decreases exponentially (see Ref. [48]).

Finally, let’s calculate the baryon asymmetry that can be directly produced by the
decay of the ¢ particles themselves. Suppose that the decay of each ¢ particle results in the
production of net baryon number &. This net baryon number might be produced directly
by the decay of a ¢ particle (into quarks and leptons) or indirectly through an intermediate
state (¢ —» XX; X, X — quarks and leptons; e.g., X might be a superheavy, color triplet
Higgs [49]). The baryon asymmetry produced per volume is then

np = eng,.
On the other hand we have

(8,7 [30) ity = nymy,.
Taken together it follows that [42, 50]

npls = (3/4)eTxu/my. (40)

This then is the baryon number per entropy produced by the decay of the ¢ particles
directly. If the reheat temperature is not very high, baryon number non-conserving interac-
tions will not subsequently reduce the asymmetry significantly. Note that the baryon asym-
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metry produced only depends upon the ratio of the reheat temperature to the ¢ particle
mass. This is important, as it means that a very low reheat temperature can be tolerated,
so long as the ratio of it to the ¢ particle mass is not too small.

6. Origin of density inhomogeneities

To this point 1 have assumed that ¢ is precisely uniform within a given bubble or
fluctuation region. As a result, each bubble or fluctuation region resembles a perfectly
isotropic and homogeneous Universe after reheating. However, because of deSitter space
produced quantum fluctuations, ¢ cannot be exactly uniform, even within a small region
of space. It is a well-known result that a massless and noninteracting scalar field in deSitter
space has a spectrum of fluctuations given by (see, e.g., Ref. [51])

(4¢)* = (2n) " *k*0¢,> = H?/16n°, (41)
where
3¢ = (2m)* | d*kép ™, (42)

and x and k are comoving quantities. This result is applicable to inflationary scenarios
as the scalar field responsible for inflation must be very weakly-coupled and nearly massless.
(That Universe is not precisely deSitter during inflation, i.e., g4+p = ¢ # 0, does not
affect this result significantly; this point is addressed in Ref. [52]). These deSitter space
produced quantum fluctuations result in a calculable spectrum of adiabatic density perturba-
tions. These density perturbations were first calculated by the authors of Refs [53-56};
they have also been calculated by the authors of Ref. [57] who addressed some of the tech-
nical issues in more detail. All the calculations done to date arrive at the same result.
I will briefly describe the caiculation in Ref. [56]; my emphasis here will be to motivate
the result. I refer the reader interested in more details to the aforementioned references.
It is conventional to expand density inhomogeneities in a Fourier expansion

doje = (2m) 73 | S d>k. 43)

The physical wavelength and wavenumber are related to comoving wavelength and wave
number, A and &, by

Ao = r/K)R() = AR(Y);
ko = k/R(D).

The quantity most people refer to as 6p/¢ on a given scale is more precisely the RMS mass
fluctuation on that scale

Be/o) = KBMIMY*), = 47 = 2m) k15,17, (44)

which is just related to the Fourier component §, on that scale.
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The cosmic scale factor is often normalized so that R,,q,, = 1; this means that given
Fourier components are characterized by the physical size that they have today (neglecting
the fact that once a given scale goes non-linear (8g/g¢ 2 1) objects of that size form bound
‘lumps’ that no longer participate in the universal expansion and remain roughly constant
in size). The mass (in NR matter) contained within a sphere of radius 1/2 is

M(2) =~ 1.5x 10" M (1/Mpc)*Qn>.

Although physics depends on physical quantities (K, 4,4, etc.), the comoving labels &, M,
and A are the most useful way to label a given component as they have the affect of the
expansions already scaled out.

I want to emphasize at the onset that the quantity 5g/o is not gauge invariant (under
general coordinate transformations). This fact makes life very difficult when discussing
Fourier components with wavelengths larger than the physics horizon (i.e., ., > H™).
The gauge non-invariance of 6¢/g is not a problem when A, << H-, as the analysis is essen-
tially Newtonian. The usual approach is to pick a convenient gauge (e.g., the synchronous
gauge where goo = —1, go; = 0) and work very carefully (see Refs [58, 59]). The more
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Fig. 14. The evolution of the physical size of galactic- and (present) horizon-sized perturbations (Aph & R)

and the size of the physics horizon H-!. Causally-coherent microphysics operates only on scales < H-1.

In the standard cosmology a perturbation crosses the horizon but once as H-* oc R*(n > 1), making it im-

possible for microphysics to create density perturbations at early times. In the inflationary cosmology

a perturbation crosses the horizon twice (since H-! ~ const during inflation), and so microphysics can
produce density perturbations at early times
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elegant approach is to focus on gauge-invariant quantities; see Ref. [60]. I will gloss over
the subtleties of gauge invariance in my discussion, which is aimed at motivating the correct
answer.

The evolution of a given Fourier component (in the linear regime — dg/¢ < 1) sepa-
rates into two qualitatively different regimes, depending upon whether or not the perturba-
tion is inside or outside the physics horizon (~ H-'). When 4,, < H-!, microphysical
processes can affect its evolution — such processes include: quantum mechanical effects,
pressure support, free-streaming of particles, ‘Newtonian gravity’, etc. In this regime the
evolution of the perturbation is very dynamical. When a perturbation is outside the physics
horizon, 4,, > H-!, microphysical processes do not affect its evolution; in a very real
sense its evolution is kinematic — it evolves as a wrinkle in the fabric of space-time.

In the standard cosmology, a given Fourier component crosses the horizon only.
once, starting outside the horizon and crossing inside at a time (see Fig. 14)

t > (M/M )" sec

(valid during the radiation-dominated epoch). For this reason it is not possible to create
adiabatic (more precisely, curvature) perturbations by causal microphysical processes
which operate at early times [59, 60]. In the standard cosmology, if adiabatic perturbations
are present, they must be present ab initio. The smallness of the particle horizon at early
times relative to the comoving volume occupied by the observable Universe today strikes
again!

(It is possible for microphysical processes to create isothermal, more precisely iso-
curvature, perturbations. Once such perturbations cross inside the horizon they are char-
acterized by a spectrum

(3¢/0) o (M[My)~""

or steeper. Here My is the horizon mass when the perturbations were created. Thus the
earlier the processes operate, the smaller the perturbations are on interesting scales. By
an appropriate choice of gauge it is possible to view these isothermal perturbations as
adiabatic perturbations with a very steep spectrum, dg/¢ oc M-7/6; however, as must
be the case, they cross the horizon with the amplitude mentioned above. For more details,
see Refs. [59, 60].)

Because the distance to the physics horizon remains approximately constant during
inflation, the situation is very-different in the inflationary Universe. All interesting scales
start inside the horizon, cross outside the horizon and once again come inside the horizon
(at the usual epoch); see Fig. 14. This means that causal microphysical processes can set up
curvature perturbations on astrophysically-interesting scales. (This point seems to have
been first appreciated by Press [61].)

Consider the evolution of a given Fourier component k. Early during the inflationary
epoch 4,, < H-!, and quantum fluctuations in ¢ give rise to density perturbations on this
scale. As the scale passes outside the horizon, say at ¢ = ¢,, microphysical processes become
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impotent, and Jg/¢ freezes out at a value,
(ej) ~ O(pHAPIM*?),
~ O(¢H*IM*), (45)

as the scale leaves the horizon. From that point forward, the QM fluctuation is assumed
to ‘freeze in’ and thereafter evolve classically. Note in the approximation that H and ¢ are
constant during the inflationary epoch the value of dg/¢ as the perturbation leaves the
horizon is independent of k. This scale independence of dg/¢ when perturbations cross
outside the horizon is of course traceable to the time translation invariance of deSitter
space.

While outside the horizon the evolution of a perturbation is kinematical, independent
of scale, and gaug® dependent. There is a gauge independent quantity (= {) which remains
constant while the perturbation is outside the horizon, and which at horizon crossing
(t = t; and ty) is given by

Ciho'rizon crossing > 50/(0'*‘17),_
Uty = {tw),
= [59/(Q+ P)]tfzm = [59/(9+P)]r=t1 (46)

(see Refs [56] and [62] for more details). When the perturbation crosses back inside the
horizon: (¢+p) = no(n = 4/3, radiation-dominated; n = 1, matter-dominated) so that
up to a numerical factor (6¢/@)l,,, =~ [8¢/(¢ +p)]l,, During inflation, however, ¢+p = 9
<@ ~ M*so that (3g/0)l,, = ($*M*) [6¢/¢(+Pp)]l,,. Note, M*/¢$? is typically a very large
number. Egs (45, 46) then imply

(B0iQdn = (60/@)=uy = (M*]§7) (Be/@):, = H/[$. (47)

Note that in the approximation that ¢ and H are constant during inflation the ampli-
tude of Jg/g at horizon crossing (= (d¢/9)y) is independent of scale. This fact is traceable
to the time-translation invariance of the nearly-deSitter inflationary epoch and the scale-
-independent evolution of (dg/g) while the perturbation is outside the horizon. The so-
-called scale-invariant or Zel’dovich spectrum of density perturbations was first discussed,
albeit in another context, by Harrison [63] and Zel’dovich [64]. Scale-invariant adiabatic
density perturbations are a generic prediction of inflation. (Because H and ¢ are not precisely
constant during inflation, the spectrum is not quite scale-invariant. However the scales
of astrophysical iaterest, say 4 ~ 0.1 Mpc — 100 Mpc, cross outside the horizon during
a very short interval, AN ~ 6.9, during which H, ¢, and ¢ are very nearly constant. For
most models of inflation the deviations are not expected to be significant; for further discus-
sion see Refs [65, 66).) Although the details of structure formation are not presently suffi-
ciently well understood to say what the initial spectrum of perturbations must have been,
the Zel’dovich with an amplitude of about 10~4-10-° is certainly a viable possibility.
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- Before moving on, let me be very precise about the amplitude of the inflation-produced
adiabatic density perturbations. Perturbations which re-enter the horizon while the Universe
is still radiation-dominated (4 < 4., =~ 134~2 Mpc), do so as a sound wave in the phiotons
and baryons with amplitude

(Ge/o)u = K*218,1/(2m)*? = H?[(n**$). (48a)

Perturbations in non-interacting, relic particles (such as massive neutrinos, axions, etc.),
which by the equivalence principle must have the same amplitude at horizon crossing,
do not oscillate, but instead grow slowly (oc In R). By the epoch of matter-radiation equiv-
alence they have an amplitude of 2-3 times that of the initial baryon-photon sound
wave, or

(Be/Qdwp = (2-3) (3¢/0)n = (2=NH?/(n**$). (48b)

It is this amplitude which must be of order 10-°-~10-* for successful galaxy formation.
Perturbations which re-enter the horizon when the Universe is already matter-domi-
nated (scales 4 > 4., ~ 1342 Mpc) do so with amplitude

B/ = k*2|5,1/(2n)*"* =~ (H?[10)[(n*?§). 49)

Once inside the horizon they continue to grow (as t3/? since the Universe is matter-domi-
nated).

When the structure formation problem is viewed as an initial data problem, it is the
spectrum of density perturbations at the epoch of matter domination which is the relevant
input spectrum. The shape of this spectrum has been carefully computed by the authors
of Ref. [67]. Roughly speaking, on scales less than A, the spectrum is almost flat, varying
as A-3/4 oc M—1/4 for scales around the galaxy scale (~ 1 Mpc). On scales much greater
than 4., (S¢fe) oc A~2 oc M-2/> (in the synchronous gauge where adiabatic perturba-
tions grow as ¢"; n = 2/3 matter dominated, n =1 radiation dominated. Since these scales
have yet to re-enter the horizon they have not yet achieved their horizon-crossing ampli-
tude).

In order to compute the amplitude of the inflation-produced adiabatic density perturba-
tions we need to evaluate H2/¢ when the astrophysically-relevant scales crossed outside
the horizon. Recall, in the previous Section we computed when the comoving scale cor-
responding to the present Hubble radius crossed outside the horizon during inflation —
up to ‘In terms’ N =~ 53 or so e-folds before the end of inflation, cf., Eq. (39). The present
Hubble radius corresponds to a scale of about 3000 Mpc; therefore the scale 4 must have
crossed the horizon In (3000 Mpc/A) e-folds later:

N, = Nyog—8+In (A/Mpc) = 45+1n (A/Mpc)
+% In (M/10** GeV)+1 In (Tpy/10*° GeV).

Typically H?/¢) depends upon N, to some power [65]; since N, only varies logarithmically
(AN/N =~ 0.14 in going from 0.1 Mpc to 3000 Mpc), the scale dependence of the spectrum
is almost always very minimal.
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As mentioned earlier, a generic prediction of the inflationary Universe is that today Q
should be equal to one to a high degree of precision. Equivalently, that means

i(k/R*)/(87Goj3)! < |
since

Q = 1/[1-(k/R*)[(8nGg/3)].

Therefore one might conclude that an accurate measurement of 2 would have to yield
1 to extremely high precision. However, because of the adiabatic density perturbations
produced during inflation that is not the case. Adiabatic density fluctuations correspond
to fluctuations in the local curvature

dofe = o(k/R*)/(8nGo/3).

This means that should we bé able to very accurately probe the value of Q (equivalently
the curvature of space) on the scale of our Hubble volume, say by using the Hubble dia-
gram, we would necessarily obtain a value for Q which is dominated by the curvature
fluctuations on the scale of the present horizon,

Qe = 1+6(k/R)|(81Go[3) ~ 1+0(107*~107%),

and so we would obtain a value different from 1 by about a part in 10* or 10°.
Finally, let me briefly mention that isothermal density perturbations can also arise
during inflation. (Isothermal density perturbations are characterized by do = 0, but
3(ny/n,) # 0 in some components. They correspond to spatial fluctuations in the local
pressure due to spatial fluctuations in the local equation of state.) Such perturbations can
arise from the deSitter produced fluctuations in other quantum fields in the theory.
The simplest example occurs in the axion-dominated Universe [68, 69, 70]. Suppose
that Peccei-Quinn symmetry breaking occurs before or during inflation. Until instanton
effects become important (T" ~ few 100 MeV) the axion field a = £,0 is massless and 6 is in
general not aligned with the minimum of its potential: 8 = 6, # 0 (I have taken the mini-
mum of the axion potential to be § = 0). Once the axion develops a mass (equivalently,
its potential develops a minimum) @ begins to oscillate; these coherent oscillations cor-
respond to a condensate of very cold axions, with number density o 8% (For further
discussion of the coherent axion oscillations see Refs [71-73].) During inflation deSitter
space produced quantum fluctuations in the axion field gave rise to spatial fluctuationsin 6, :

80 =~ dalf, ~ H|f,.

Once the axion field begins to oscillate, these spatial fluctuations in the axion field cor-
respond to fluctuations in the local axion to photon ratio

6(n,/n,)[(nyfn,) ~ 2566/8, ~ 2H[(f,8,).
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More precisely

(6n/ny) = k>18a(k)|/(2n)** = H|(2n%/%f,0,), (50)

where f; is the expectation value of f, when the scale 4 leaves the horizon (in some models
the expectation value of the field which breaks PQ symmetry evolves as the Universe
is inflating so that f; can be < f,). It is possible that these isothermal axion fluctuations
can be important for galaxy formation in an axion-dominated, inflationary Universe [69].

7. Specific models — part 1. Interesting failures

(1) ‘0O1d inflation’

By old inflation I mean Guth’s original model of inflation. In his original model
the Universe inflated while trapped in the ¢ = 0 false vacuum state. In order to inflate
enough the vacuum had to be very metastable; however, that being the case, the bubble
nucleation probability was necessarily small — so small that the bubbles that did nucleate
never percolated, resulting in a Universe which resembled swiss cheese more than anything
else [36]. The interior of an individual bubble was not suitable for our present Universe
either. Because he was not considering flat potentials, essentially all of the original false
vacuum energy resided in bubble walls rather than in vacuum energy inside the bubbles
themselves. Although individual bubbles would grow to a very large size given enough
time, their interiors would contain very little entropy (compared to the 1082 in our observed
Universe). In sum, the Universe inflated all right, but did not ‘gracefully exit’ from inflation
back to a radiation-dominated Universe — close, Alan, but no cigar!

(2) Coleman-Weinberg SU(5)

The first model of new inflation studied was the Colcman—Wembcrg SU(S) GUT
[37, 38). In this model the field which inflates is the 24-dimensional Higgs which also
breaks SU(5) down to SU(3) x SU(2) x U(1). Let ¢ denote its magnitude in the SU(3)
x SU(2) x U(1) direction. The one-loop, zero-temperature Coleman-Weinberg [74] po-
tential is

V($) = 1/2 Ba* + Bo*{In (/%) —1/2},
B = 25aky7/16 ~ 1073,
o ~ 2x10"° GeV. (5D

Due to the absence of a mass term (m*$?), the potential is very flat near the origin (SSB
arises due to one-loop radiative corrections [74]); for ¢ < o:

V(¢) ~ Ba*[2—i¢*/4,
/. = |4B In (¢*/c®)] = O.1. (52)
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The finite temperature potential has a small temperature dependent barrier (height O(T*))
near the origin (¢ ~ O(T)). The critical temperature for this transition is 0(10'%-10'% GeV),
however the ¢ = 0 vacuum remains metastable. When the temperature of the Universe
drops to O(10° GeV) or so, the barrier becomes low enough that the finite temperature
action for bubble nucleation drops to order unity and the ¢ = O false vacuum becomes
unstable [38]. In analogy with solid state phenomenon it is expected that at this the tempera-
ture of the Universe will undergo ‘spinodal decomposition’, i.e., will break up into irregu-
larly shaped regions within which ¢ is approximately constant (so-called fluctuation regions).
Approximating the potential by Eq. (52) it is easy to solve for the evolution of ¢ in the slow-
-rolling regime [|V"'| < 9 H? for ¢* < ¢ = o*(no?/mf|In (¢3*/a?)])]

24
(Hip)* ~ 3 ¥, (53)
HE ~ 4n Bo* s

e
where N(¢) = | Hdr is the number of e-folds of inflation the Universe undergoes while
¢

¢ evolves from ¢ to ¢,. Clearly, the number of e-folds of inflation depends upon the initial
value of ¢(= ¢,); in order to get sufficient inflation ¢, ‘must be ~ O(H). Although one
might expect ¢, to be of this order in the fluctuation regions since H ~ 5x 10° GeV ~ (tem-
perature at which the ¢ = O false vacuum loses its metastability), there is a fundamental
difficulty. In using the semi-classical equations of motion to describe the evolation of ¢ one
is implicitly assuming

b = o+ 4dgm, Abom < P

The deSitter space produced quantum fluctuations in ¢ are of order H. More specifically,
it has been shown that [75, 76]

Apom = (H[2m) (HD'2.

Therein lies the difficulty — in order to achieve enough inflation the initial value of ¢ must
be of the order of the quantum fluctuations in ¢. At the very least this calls into question
the semiclassical approximation.

The situation gets worse when we look at the amplitude of the adiabatic density per-
turbations:

(Bl = (H?[n*?¢) (55)
= (3/n%) (H[44°), (56)
(Be/n = (2/m)**(4/3)! 12N>, (57

For galactic-scale perturbations N ~ 50, implying that (5¢/¢)y =~ 30! Again, it is clear
that the basic problem is traceable to the fact that during inflation ¢ < H.
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The decay width of the ¢ particle is of order ogyro =~ 10'* GeV which is much greater
than H (implying good reheating), and so the Universe reheats to a temperature of order
10'* GeV or so.

From Eq. (53, 57) it is clear that by reducing /. both problems could be remedied —
however A < 10-13 is necessary [56]. Of course, as long as the inflating field is a gauge non-
-singlet 4 is set by the gauge coupling strength. From this interesting failure it is clear
that one should focus on weakly-coupled, gauge singlet fields for inflation.

(3) Geometric hierarchy model

The first model proposed to address the difficulty mentioned above, was a super-
symmetric GUT [77, 78]. In this model ¢ is a scalar field whose potential at tree level
is absolutely flat, but due to radiative corrections develops curvature. In the model ¢ is also
responsible for the SSB of the GUT. The potential for ¢ is of the form

V(g) ~ ﬂé[‘ﬁ —c; In(g/ rnPl)]: (58)

where y ~ 10'2 GeV is the scale of supersymmetry breaking, and ¢, and ¢, are constants
which depend upon details of the theory. This form for the potential is only valid away
from its SSB minimum (6 =~ myp)) and for ¢ > u. The authors presume that higher order
effects will force the potential to develop a minimum for ¢ =~ my,. Since V' oc ¢! the
potential gets flatter for large ¢ — which already sounds good.

The inflationary scenario for this potential proceeds as follows. The shape of the po-
tential is not determined near ¢ = 0; depending on the shape ¢ gets to some initial value,
say ¢ = ¢,, either by bubble nucleation or spinodal decomposition. Then it begins to roll.
During slow roll which begins when [V”’| ~ 9H? and ¢, ~ (c,/24nc,) *my,

8

H? ~ gy cypt, (59a)
(1—¢%/mg) = (c;/4nc)N(9), (59b)
(Oe/Q)u = (H*n**¢), (60a)

= 8(8/3)"/%(c1?[co)u’ plma. (60b)

Note that during the slow roll (¢ > ¢,)
¢ ¢ ci* 1 my
) ~

H/H_c:1 871:;2_’

~ 103c3?/c, > 1,

thereby- avoiding the difficulty encountered in the Coleman-Weinberg where ¢ < H
was required to inflate. For ¢, ~ O(1), ¢, =~ 10-8 — acceptable values in the model,
(90/@)y ~ 10-° and N(¢,) = 4nc,/c, ~ 10°. The number of e-folds of inflation is very
large — 10°. This is quite typical of the very flat potentials required to achieve (dg/@)
~ 10-4-10-5.
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Now-for the bad news. In this model ¢ is very weakly coupled — it only couples
to ordinary particles through gravitational strength interactions. Its decay width is

I =~ o(u®img), (61)

which is much less than H (implying poor reheating) and leads to a reheat temperature of

Tau = O[(I'mp)'?], (62a)
=~ O(u’/mgy), (62b)
~ 10 MeV. (62¢)

Such a reheat temperature safely returns the Universe to being radiation-dominated before
primordial nucleosynthesis, and produces a smooth patch containing an enormous
entropy — for ca =~ 108, ¢, ~ 1, Sy, = (mp/12Tre)e®™ = 1035 exp (3 x 10%), but does
not reheat it to a high enough temperature for baryogenesis. Poor reheating is a problem
which plagues almost all potentially viable models of inflation. Achieving (6g/0)y < 10~
requires the scalar potential to be very flat, which necessarily means that ¢ is very weakly-
-coupled, and therefore Typ,u(oc I''/2) tends to be very low.

(4) CERN SUSY/SUGR models {79]

Early on members of the CERN theory group recognized that supersymmetry might
be of use in protecting the very small couplings necessary in inflationary potentials from
being overwhelmed by radiative corrections. They explored a variety of SUSY/SUGR
models [79] (and dubbed their brand of inflation ‘primordial inflation’). In the process,
they encountered a difficulty which plagues almost all supersymmetric models of inflation
based upon minimal supergravity theories.

_ It is usually assumed that at high temperatures the expectation value of an inflating
field is at the minimum of its finite temperature effective potential (near ¢ = 0);“then
as the Universe cools it becomes trapped there, and then eventually slowly evolves to the
low temperature minimum (during which time inflation takes place). In SUSY models
{¢>r is not necessarily zero at high temperatures. In fact in essentially all of their models
{¢>1 > 0 and the high temperature minimum smoothly evolves into the low temperature
minimum (as shown in Fig. 15) [80]. As a result the Universe in fact would never have
inflated!

There are two obvious remedies to this problem: (i) arrange the model so that {¢>; < 0
(as shown in Fig. 15), then ¢ necessarily gets trapped near ¢ = 0; or (if) assume that ¢ is
never in thérmal equilibrium before the phase transition so that ¢ is not constrained to be
in the high temperature minimum of its finite temperature potential at high temperatures.
Variants of the CERN models [79] based on these two remedies have been constructed
by Ovrut and Steinhardt [81] and Holman, Ramond, and Ross [82].
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8. Lessons learned — a prescription for successful new inflation

The unsuccessful models discussed above have proven to be very useful in that they
have allowed us to ‘write a prescription’ for the kind of potential that will successfully
implement inflation [65]). The following prescription incorporates these lessons, together
with other lessons which have been learned (sometimes painfully). As we will see all but
the last of the prescribed features, that the potential be part of a sensible particle physics
model, are relatively easy to arrange.

(1) The potential should have an interval which is sufficiently flat so that ¢ evolves slowly
(relative to the expansion timescale H-') — that is, flat enough so that a slow-rollover
transition ensues. As we have seen, that means an interval

[¢S’ ¢B]

where

WV <9H?,  [V'mp/V] < (48m)'2.

(2) The length of the interval where ¢ evolves slowly should be much greater than H/2nr,
the scale of the quantum fluctuations, so that the semi-classical approximation makes
sense. (Put another way the interval should be long enough so that quantum fluctuations
do not quickly drive ¢ across the interval) Quantitatively, this calls for

¢ —&,} > (HAn)'/*(H/2m),

where 47 is the time required for ¢ to evolve from ¢ = ¢, to ¢ = ¢,. (More precisely,
the semi-classical change in ¢ in a Hubble time, A@yuppe ~ — V'ms/87V, should be much
greater than the increase in ($2)gjs =~ H/2r, due to the addition of another quantum
mode; see Ref. [56].)

(3) In order to solve the flatness and homogeneity problems the time required for ¢ to roll
from ¢ = ¢, to ¢ = ¢, should be greater than about 60 Hubble times

¢e ¢¢
N = [ Hdt = { 3H?d¢/(-V') =~ 3H*/V"' > 60.
[N [N

The precise formula for the minimum value of N is given in Eq. (39).
(4) The scalar field ¢ should be smooth in a sufficiently large patch (say size L) so that
the energy density and pressure associated with the (V¢)* term is negligible:

1/2(V¢)* = ($o/L)* < V(do) =~ M*.

(Otherwise the (V@)? term will dominate ¢ and p, so that R(t) occ ¢t — that is, inflation
does not occur.) Usually this condition is easy to satisfy, as all it requires is that

L > ¢o/M? =~ (¢o/mpDH™";

since ¢, is usually < mp,, (¢po/mp)H-! < H-' — that is, ¢ only need be smooth on a patch
comparable to the physics horizon H-!. (I will discuss a case where it is not easy to satisfy —
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Fig. 15. In SUSY/SUGR models <{#>r is not necessarily equal to zero. If <@>r > 0, then there is the danger
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Linde’s chaotic inflation.) Once inflation does begin, any injtial inhomogeneities in ¢ are
rapidly smoothed by the exponential expansion.

(5a) In order to insure a viable scenario of galaxy formation (and microwave anisotropies
of an acceptable magnitude) the amplitude of the adiabatic density perturbations must
be of order 10-°-10~*. (In a Universe dominated by weakly-interacting relic particles
such-as neutrinos or axions, (6g/g)yp must be a few x 10-5)) This in turn results in the
constraint

few x 107° = (J¢/Qhwp = (2—3) (Bei@n = (2~3) (H*/7**$)cpiasys

(H2/¢)Galaxy = 10—4'
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In general, this is by far the most difficult of the constraints (other than sensible particle
physics) to satisfy and leads to the necessity of extremely flat potentials. I should add,
if one has another means of producing the density perturbations necessary for galaxy
formation (e.g., cosmic strings or isothermal perturbations), then it is sufficient to have

(Hz./qs)Galnxy < 10—4

(5b) Isothermal perturbations produced during inflation, e.g., as discussed for the case
of an axion-dominated Universe, also lead to microwave anisotropies and possibly structure
formation. The smoothness of the microwave background dictates that

(be/ehso S 10._4
while if they are to be relevant for structure formation
(60/@)so. ~ 107°—107*,

In the case of isothermal axion perturbations this is easy to arrange to have (5g/ekso < 10~
unless the scale of PQ symmetry is larger than about 10!8 GeV.

(6a) Sufficiently high reheat temperature so that the Universe is radiation-dominated
at the time’ of primordial nucleosynthesis (¢ ~ 10-2-10%sec, T ~ 10 MeV-0.1 MeV).
Only in the case of poor reheating is Ty likely to be anywhere as low as 10 MeV, in which
case Tpy =~ (I'mp)*’? and the condition ‘that Tgy be > 10 MeV then implies

I > 1072 GeV = (6.6 x 10™% sec) ™.

(6b) "_I‘he more stringent condition on the reheat temperature is that it be sufficiently high
for baryongenesis. If baryongenesis proceeds in the usual way [17], the out-of-equilibrium
decay of a supérmassive particle whose interactions violate B, C, P conservation, then
Tyy must be greater than about 1/10 the mass of the particle whose out-of-equilibrium
decays are responsible for producing the baryon asymimetry. Assuming that this particle
couples to ordinary quarks and leptons, its mass must be greatér than 10° GeV or so to
insure a sufficiently longlived proton, implying that the reheat temperature must be greater
than about 10® GeV (at the very least). On the other hand if the baryon asymmetry can be
produced by the decays of the ¢ particles themselves, then

ngf/s =~ (0.75) (Tru/my)e
and a very low reheat temperature may be tolerable
Ten = 107'% 'my,

where as usual ¢ is the net baryon number produced per ¢-decay.

(7) If ¢ is not a gauge singlet field, as in the case of the original Coleman-Weinberg SU(5)
model, one must be careful that ‘¢ rolls in the correct direction’. It was shown that for
the original Coleman-Weinberg SU(5) models "¢ might actually begin to roll toward
the SU(4) x U(1) minimum of the potential even though the global minimum of the poten-
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tial was the SU(3) x SU(2) x U(1) minimum [83]. This is because near ¢ = 0 the SU(4)
x U(1) direction is usually the direction of steepest descent. This is the so-called problem
of ‘competing phases’. As mentioned earlier, the extreme flatness required to obtain
sufficiently small density perturbations probably precludes the possibility that ¢ is a gauge
non-singlet, so the problem of competing phases does not usually arise. (Although
in SUSY/SUGR models ¢ is often complex and one has to make sure that it rolls in the
correct direction.)

(8) In addition to the scalar density perturbations discussed earlier, tensor or gravitational
wave perturbations also arise (these correspond to tensor perturbations in the metric
g,,) [84]. The amplitude of these perturbations is easy to estimate. The energy density
in a given gravitational wave mode (characterized by wavelength 2) is

ogw = mmh?ji?, 63)

where h is the dimensionless amplitude of the wave. As each gravitational wave mode
crosses outside the horizon during inflation deSitter space produced fluctuations lead to

(0owW)a~m-1 = H4, or h ~ Hm, (64)

While outside the horizon the dimensionless amplitude /4 remains constant (% behaves
like a minimally coupled scalar field), and so each mode enters the horizon with a dimension-
less amplitude

h ~ Himpy,. (65)

Gravitational wave perturbations with wavelength of order the present horizon lead
to a quadrupole anisotropy in the microwave temperature of amplitude 4. The upper
limit to the quadrupole anisotropy of the microwave background (37/T < 10*) leads
to the constraint

Himp <107%, M < 0(10'7 GeV).
In turn this leads to a constraint on the reheat temperature (using g, =~ 10°)
T < g, /*M < fewx10'® GeV.

(9) One has to be mindful of various particles which may be produced during the reheating
process. Of particular concern are stable or very long-lived, NR particles (including other
scalar fields which may be set into oscillation and thereafter behave like NR matter).
Since gng/0r ¢ R(?) and today gng/ex =~ 3 x 10* or so one has to be careful that gwa/ex
is sufficiently small at early times

3 x 10* today
onp/or <{107% T = 1GeV
1071 T = 10'° GeV

which is not always easy — just ask any experimentalist about suppressing some effect
by 18 orders-of-magnitude!
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Of particular concern in supersymmetric models are gravitinos which, if produced,

can decay shortly after nucleosynthesis and photodissociate the light elements produced
(particularly D and "Li) [85]. (In fact, the constraint that gravitinos not be overproduced
during the reheating process leads to the very restrictive bound: Ty < 10° GeV or $0.)
In supersymmetric models Where SUSY breaking is done ala Polonyi [86], the Polonyi
field can be set into oscillation [87] and these oscillations which behave like NR matter
can come to dominate the energy density of the Universe too early (leading to a Universe
which if far too youthful when it cools to 3 K) or even worse decay into dread gravitinos!
In sum, one has to be mindful of the weakly-interacting, longlived particles which may be
produced during reheating as they may eventually lead to an energy crisis.
(10) In SUSY/SUGR models where the scalar field responsibie for inflation is in thermal
equilibrium before the inflationary transition, one has to make sure that (¢); does not
smoothly evolve into the zero temperature minimum of the potential. A sure way of doing
this is to arrange to have

<¢>T < 0:

this is the so-called thermal constraint [80].
LKST BYT NOT LghoT !
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Fig. 16. Constraint (11) in “The Prescription for Successful Inflation”



856

(11) Last (in my probably incomplete list) but certainly not least, the scalar potential
necessary for successful inflation should be but a part of a ‘sensible, perhaps even elegant,
particle physics model’ (see Fig. 16). We do not want cosmology to be the tail that wags
the dog!

These conditions are spelled out in more detail in Ref. [65]. In general they lead
to a potential which is ‘short and squat’ and has a dimensionless coupling of order 105
somewhere. In order that radiative corrections not spoil the flatness, it is all but mandatory
that ¢ be a gauge singlet field which couples very weakly to other fields in the theory.

(Suppose that ¢ has a nice, flat potential which will successfully implement inflation
and has a ¢* term whose coefficient 4 ~ O(10-'%) (as is usually the case). Now suppose
that ¢ couples to another scalar field y or to a fermion field f through terms like: A'y?¢?
and Aff¢. One-loop corrections to the A¢* term in the scalar potential arise due to the
coupling of ¢ to y of f: (A'? In+Ah*In)¢*. In order that they not spoil the flatness of V{(¢)
by these l-loop corrections, the couplings A’ and 4 must be small: 1’ < In-1/241/2;
h< ln‘”‘}.‘/‘.)

To give an idea of the kind of potential which we are secking consider

V = Vo—ap*—bep> +1*.
The constraints discussed above are satisfied for the following sets of parameters

A<4x1071e

b~ 4x10"2*my,

SET1<{ a < H?/40 ~ 10%®*>m},

o~ 3x 1072 2my,

UM > V% >~ 3x1070 4 my = AM4e

V = N¢*—0*)? (b =0,a = 2i¢%, Vo = ic*)
G/myl = 1/2, 2, 3, 10
A=2x10"%*5%x1072°1071'5,2x107'% 3x107"®
M = jY%,

SET 2 4

"

9. Two simple models that work

To date a handful of models that satisfy the prescription for successful inflation have
been constructed {81, 82, 88-91, 95-97]. Here, I will discuss two particularly simple and
illustrative models. The first is an SU(5) GUT model proposed by Shafi and Vilenkin
[89] and refined by Pi {90]. (Note, there is nothing special about SU(5); it could just as
well be an E6 model.) I will discuss Pi’s version of the model. In her model the inflating
field  is a complex gauge singlet field whose potential is of the Coleman-Weinberg form [74]

V(¢) = B[¢* In($*/0*)+(a* ~¢*)/2]/4, (66)

where ¢ = |¢| and B arises due to 1-loop radiative corrections from other scalar fields
in the theory and is set to be 0(10-1%) in order to successfully implement inflation. (Note,
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in Eq. (66) I have only explicitly shown the part of the potential relevant for inflation.)
Since the 1-loop corrections due to other fields in the model are of order (42 In)¢* (1 is a typi-
cal quartic coupling, e.g., Ap*y?) the dimensionless couplings of ¢ to other fields in the
theory must be of order 107 or so. In her model, ¢ is the field responsible for Peccei—
~Quinn symmetry breakmg, the vacuum expectation value of |¢] breaks the PQ symmetry
and the argument of ¢ is the axion degree of freedom. In addition, the vacuum expecta-
tion value of l¢l induces SU(5) SSB as it leads to a negative mass-squared term for the
24-dimensional Higgs in the theory which breaks SU(S) down to SU(3) x SU(2) x U(1).
In order to have the correct SU(5) breaking scale, the vacuum expectation value of I$ | must
be of order 10'® GeV. In addition to the usual adiabatic density perturbations there are
isothermal axion fluctuations of a similar magnitude [69]. The model reheats (barely)
to a high enough temperature for baryogenesis. So far the model successfully implements
inflation, albeit at the cost of a very small number (B ~ 10-!#) whose origin is not explained
and whose value is not stabilized (e.g., by supersymmetry).

The second model is a SUSY/SUGR model proposed by Holman, Ramond, and
Ross [82] which is based on a very simple superpotential. They write the superpotential
for the full theory as

W =I+S+G, (67)

where I, S, G pieces are the inflation, SUSY, and GUT sectors respectively. For the 7 piece
of the superpotential they choose the very simple form

I = (4/M) (¢—M)’, (68)

where M = mp,/(87)!/%, 4 is an intermediate scale, and ¢ is the field responsible for infla-
tion. Their potential has one free parameter: the mass scale 4. This superpotential leads
to the following scalar potential

V($) = exp (19/M?) [i01/c¢ + $*1/M** - 3111*|M?]
= A% exp (§*/M?) [¢°/M® —4¢°|M® +7¢*M* — 4¢3 IM> — p*|M> +1].
Expanding the exponential one obtains

WP) = 4¥(1 - 4¢3 M3 +6.5¢*M* =83 M >+ ..), (692)
Vi = A%(—12¢*/M> + 264 |M* —409* /M5 + ). (69b)
It is sufficient to keep just the first two terms in V(@) to solve the equations of motion
/M = [12N(P)+1/3)]77, (70a)
H*|$ =~ (12 /3)7'(4/MY(@/M) 2 = (12//3) (4/M)*N*. (70b)

By choosing 4/M =~ 9x 10-> density perturbations of an acceptable magnitude result
(and about 2 x 10° e-folds of inflation!). Taking 4/M ~ 9 x 10~* corresponds to an inter-
mediate scale in the theory of about 4 ~ 2x 10'* GeV — a very suggestive value.
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The ¢ field couples to other fields in the theory only by gravitational strength interac-
tions and

I~ miiM?* ~ 45/M°, (71)

where m} ~ 8ed*/M?>.
The resulting reheat temperature is

Tau = (Fmp)*’? =~ (4/M*M ~ 10° GeV. (72)

The baryon asymmetry in this model is produced directly by ¢-decays (¢ - H,H,; HyH,
— q'sl’s; H; = color triplet Higgs

np/s =~ (0.75¢) Tpu/my
~ 107 'e(4/M).

Since 10~ 4/M ~ 103, a C, CP violation of about ¢ ~ 10~ is required to explain the
observed baryon asymmetry of the Universe (ng/s ~ 10-10).

Their model satisfies all the constraints for successful inflation except the thermal
constraint. They argue that the thermal constraint is not relevant as the interactions of the
¢ field are too weak to put it into thermal equilibrium at early times. They therefore must
take the initial value of ¢ (= ¢,) to be a free parameter and assume that in some regions
of the Universe ¢, is sufficiently far from the minimum so that inflation occurs
(¢o < 10-3 M). This model is somewhat ad hoc in that it contains a special sector'of the
theory. whose sole purpose is inflation. Once again the model contains a small dimensionless
coupling (the coefficient of the ¢*-term =~ 3 x 10-16) or equivalently, a small mass ratio

(A/M)* ~ 10716,

Since the model is supersymmetric that small number is stabilized against radiative cor-
rections. Although the small ratio is not explained in their model, its value when expressed
as a ratio of mass scales suggests that it might be related to one of the other small dimen-
sionless numbers in particle physics (which also ‘beg explanation)

(mgurime) = 1074,
(myfmp) = 10717,
g. =~ m,/300 GeV =~ 107°.

While neither of these models is particularly compelling and both have been somewhat
contrived to successfully implement inflation, they are at the very least ‘proof of existence’
models which demonstrate that it is possible to construct a simple model which satisfies
all the known constraints. Fair enough!
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10. Toward the inflationary paradigm

Guth’s original model of inflation was based upon a strongly, first order phase transi-
tion associated with SSB of the GUT. The first models of new inflation were based upon
Coleman-Weinberg potentials, which exhibit weakly-first order transitions. It now appears
that the key feature needed for inflation is a very flat potential and that even potentials
which lead to second order transitions (i.e., the ¢ = O state is never metastable) will work
just as well [92). Most of the models for inflation now do not involve SSB, at least directly,
they just involve the evolution of a scalar field which is initially displaced from the mini-
mum of its potential. (There is a downside to this; in many models inflation is a sector
of the theory all by itself.) Since the fields involved are very weakly coupled, thermal cor-
rections can no longer be relied upon to set the initial value of ¢. Inflation has become much
more than just a scenario — it has become an early Universe paradigm!

On the horizon now are models which inflate, but are even more far removed from
the original idea of a strongly-first order, GUT SSB phase transition; I'll discuss three
of them here. Inflation — that is the rapid growth of our three spatial dimensions, appears
to be a very generic phenomenon associated with early Universe microphysics.

(1) Chaotic inflation

Linde [92] has proposed the idea that inflation might result from a scalar field with
a very simple potential, say

V($) = ig*,

which due to ‘chaotic initial conditions’ (which thus far have not been well-defined) is dis-
placed from the minimum of its potential — in this case ¢ = 0 (see Fig. 17). With the initial
condition ¢ = ¢, this potential is very easy to analyze:

°
N(¢o) = «i‘.o Hdt ~ n(¢o/me)’,

(Se/en = (H?/§) = (32/3)' 22} /2N(¢)*™.

vi 4
At or mPop?

/

1 - .

few m,

Fig. 17. A potential for ‘chaotic inflation’, In Linde’s chaotic inflation, due to initial conditions, ¢ is displaced
from the minimum of its potential (# = 0) and inflation occurs as it evolves to ¢ = 0
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In order to obtain density perturbations of the:proper amplitude (dg/¢ ~ 10-%) i must
be very small

i~ 1071
— as usual! In order to obtain sufficient inflation, the initial value of ¢ must be
N(go) = ”(¢o/"’1pl)2 > 60 = ¢ > 4.4myp,.

Both of these two conditions are rather typical of potentials which successfully imple-
ment inflation. However, when one talks about truly chaotic initial conditions one wonders
if a large enough patch exists where ¢ is approximately constant. Remember the key
constraint is that the gradient energy density be small compared to the potential energy

(V9)*/2 < Ads.
Labeling the typical dimension of the patch L, the above requirement translates to
L > i7" (mp/do)mp’ ~ 2do/mp)H ™",

which requires that L be rather large compared to the Hubble radius, therefore seeming
to require rather special initial conditions. Still the simplicity of Linde’s idea is very
appealing.

(Note that the potential ¥ = 1 m?¢? (corresponding to a massive scalar field) is also
suitable for inflation. In this case

N(do) = 2n(go/ mm)zs (74a)
(d0/@)n = H*|$ ~ 4(n[3)"*(m[mp)N. (74b)

Sufficient inflation requires: ¢o 2 3myp, and density perturbations of an acceptable magni-
tude requires: (m/mp) ~ 10-%/(4N) =~ 4x 10~7. This potential has been analyzed by
I. Moss (private communication) and L. Jensen (private communication), and more recently
by the authors of Ref. [93].)

(2) Induced gravity inflation

Consider the Ginzburg-Landau theory of induced gravity baséd upon the effective
Lagrangian [94].

& = —e¢’R[2—08,00"¢/2— (> —v*)?[8, (75)

where ¢, A are dimensionless couplings, R is the Ricci scalar, and v = e-1/2(8nG)-'/2. The
equation of motion for ¢ is

G+3Hd+d*p+[V' -4V [$p]/(1+6¢) = 0 (76a)
supplemented by

H[1+Q2¢/¢)/H] = 3e¢®)™'[$*/2+ V)] (76b)
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Successful inflationary scenarios can be constructed for ¢, < v and for ¢ > v (¢ = the
initial value of ¢), so long as ¢ << 10~? and 4 ~ O(10-'2-10-19) {95, 96]. The small dimen-
sionless coupling constant required in the scalar potential is by now a very familiar condi-
tion.

(3) The compactification transition

Ever increasing numbers of physicists are pursuing the idea that unification of the
forces may require additional spatial dimensions (or as the optimist would say, unifica-
tion of the forces is evidence for extra dimensions!), e.g., Kaluza-Klein theories, super-
gravity theories, and most recently, superstring theories. We know experimentally that
these extra dimensions must be very small (< 10-'7 cm) and indeed in most theories the
extra dimensions form a compact manifold of characteristic size 10-*4 cm or so. If our
space-time is truly more than four dimensional, then we have yet another problem to add
to our list of puzzling cosmological facts — the extreme smallness of the extra spatial
dimensions, some 62 ~ log (10?® cm/10-3* cm) or so orders of magnitude smaller than the
more familiar three spatial dimensions. The possible use of inflation to explain this largeness
problem has not escaped the attention of researchers in this field.

In these theories there is a natural candidate for the ‘inflating field” (which is also
automatically a gauge singlet) — the radius of the extra dimensions. If there are extra
dimensions there must be some dynamics which determine their present, equilibrium size
(= b,,), and in principle one should be able to construct an effective potential associated
with the size of the extra dimensions

V(¢), ¢ =In(bjbe,)

(see Fig. 18). (The substitution ¢ = In (b/b,,) results in the usual kinetic term for ¢ when
the higher dimensional Einstein equations are written dqwn.) If the extra dimensions are

Vef f

Vage () 4
™~
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\\ ot ¢ In (b/bEQ)
\
\
\
\
o -w. - wo20ries with additional spatial dimensions there must be an effective potential associated with

the size of the extra dimensions (shown here schematically). One might expect that very early on

{1 < 10-%3 sec) the size of the extra dimensions is displaced from its equilibrium value (= beg), due to finite

temperature corrections, initial conditions, or whatever. It is speculated that inflation might occur as the

size of the extra dimensions evolves to its equilibrium value, thereby solving both the usual cosmological

puzzles and the puzzle of why the extra dimensions are so small compared to our three familiar spatial
dimensions
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displaced from their equilibrium value — an idea which seems not at all unreasonable
since very early on (¢ < 10~4? sec) one might expect all the dimensions to be on equal
footing, then while they are evolving to their equilibrium value (¢ = 0) the Universe will
be endowed with a large potential energy (and may very well inflate), thereby explaining
the largeness of our three spatial dimensions as well as the usual cosmological puzzles.
Inflationary models involving the compactification transition have already been investi-
gated and the results are encouraging [97].

11, Loose ends

Inflation offers the possibility of making the present state of the Universe (on scales
as large as our Hubble radius) insensitive to the initial data for the Universe. Since we have
little hope of ever knowing what the initial data were this is a very attractive proposition.
It has by no means yet achieved that lofty goal. There are a number of loose ends (and
perhaps even a loose thread which may unravel the entire tapestry). I will briefly mention
a few of them here.

() ‘Who is ¢?

Inflationary models exist in which the scalar field ¢ : effects SSB of the GUT [89, 90]
effects SSB of SUSY [81], induces Newton’s constant (in a LaI{dau-Ginzburg model
of induced gravity) [95, 96], is ~ In (rx/rxeq) (Where ry is the radius of compactified extra
dimensions) in theories with extra dimensions which become compactified [97], is cc (scalar
curvature)! éz in R? theories of gravity [98], is just some ‘random’ scalar field [92], or is merely
in the theory to effect inflation [79, 82]. Given the number of different kinds of inflationary
scenarios which exist, it seems as though inflation is generic to early Universe microphysics,
occlrring whenever a weakly-coupled scalar field finds itself displaced from the minimum
of its potential. Clearly, a key question at this point is just how ‘the inflation sector’ of the
theory fits into the Big Picture!

(i]) What determines the initial value of ¢?

One thing is certain, and that is that ¢ must be very weakly-coupled, as quantified
by its small dimensionless coupling constant. Because of this fact, it is almost certain that
¢ was not initially in thermal contact with the rest of the Universe and so the initial value
of ¢(= ¢,) is unlikely to be determined by thermal considerations (in the earliest models
of new inflation, ¢, was determined by thermal considerations, however these models
resulted in density perturbations of an unacceptably large amplitude). At present ¢, must
be taken as initial data. Some have argued that ¢, might be determined in an anthropic-
-like way, as regions of the Universe where ¢, is sufficiently far displaced from equilibrium
will undergo inflation and eventually occupy most of the physical volume of the Universe.
Perhaps the wave-function of the Universe approach will shed some light on the initial
distribution of the scalar field ¢. Or it could be that due to ‘as-of-yet unknown dynamics’
¢ was indeed in thermal equilibrium at a very early epoch. It goes without saying that it is
crucial that ¢ be initially displaced from its minimum.
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(i) Validity of the semi-classical equations of motion for ¢

While it may seem perfectly plausible that ¢ evolves according to its semi-classical
equations of motion, the validity of this assumption has troubled inflationists from the
‘dawn of new inflation’. While a full quantum field theory treatment of inflation is very
difficult and has not been effected, a number of specific issues have been addressed. Several
authors have studied the role of inhomogeneities in ¢, and have found that for the very
weakly-coupled fields one is dealing with, mode coupling is not important and the individual
modes are quickly smoothed by the exponential expansion of their physical wavelengths
[99]. 1 alre'ady mentioned the necessity of having ¢ smooth over a sufficiently large region
so that the gradient terms in the stress energy do not dominate.

The effect of quantum fluctuations on the evolution of ¢ has been studied in some
detail by Guth and Pi {91], Fischler et al. {98], Linde [75], Vilenkin and Ford [76], Seme-
noff .and Weiss [101], and Evans and McCarthy [102]. The basic conclusion that one
draws from the work of these authors is that the use of the semi-classical equations of
motion is valid so long as ¢, > Apgy = N*/2 Hj2n, which is almost always satisfied for
the very flat potentials of interest to inflationists (at least for the last 50 or so e-folds which
affect our present Hubble volume). (More precisely, the semiclassical change in
¢ in a Hubble time, ddy,py. = — V/3H? ~ — V'm}/(87V), should be much greater
than the increase in (452)2{,&, ~ H/2n, due to the addition of another quantum mode;
see Bardeen et al. [S6]. At present the validity of the semi-classical equations of motion
seems to be reasonably well established.

(iv) No hair conjectures

While inflation has been touted from the very beginning as making the present state
of the Universe insensitive to the initial spacetime geometry, not much has been done to
justify this claim until very recently. As I mentioned earlier, inflation is nearly always
analyzed in the context of a flat, FRW cosmological model, making such a claim somewhat
dubious. However, it has now been shown that all of the homogeneous models (with the
exception of the highly-closed models) undergo inflation, isotropize and remain isotropic
to the present epoch providing that the model would have inflated the requisite 60 or so
e-folds in the absence of anisotropy [103].

The proof of this result involves three parts. First, Wald [104] demonstrated that
all homogeneous models with a positive cosmological term asymptotically approach deSitter
(less the aforementioned highly-closed models which recollapse before the cosmological
term becomes relevant). Wald’s result follows because all forms of ‘anisotropy energy
density’ decrease with increasing proper volume element, whereas the cosmological term
remains constant, and so eventually triumphs. Of course, inflationary models do not, in the
strictest sense, have a cosmological term, rather they have a positive vacuum energy as
long as the scalar field is displaced from the minimum of its potential. Thus the dynamics
of the scalar field comes into play: does ¢ stay displaced from the minimum of its potential
long enough so that the vacuum energy comes to dominate ? Due to the presence of anisot-
ropy the expansion rate is greater than if there were only vacuum energy density, and so the
friction felt by ¢ as it tries to roll (the 3H¢ term) is greater and it takes ¢ longer to evolve
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to its minimum than without anisotropy. For this reason the Universe does become vacuum
dominated before the vacuum energy disappears, and in fact the Universe inflates slightly
longer in the presence of anisotropy (one or two e-folds) [105]. Finally, is the anisotropy
reduced sufficiently so that the Universe today is still nearly isotropic? As it turns out,
the requisite 60 or so e-folds needed to solve the other conundrums reduces the growing
modes of anisotropy sufficiently to render them small today.

-Allowing for inhomogeneous initial spacetimes makes matters much more difficult.
Jensen and Stein-Schabes [106] and Starobinskii [107] have proven the analogue of Wald’s
theorem for spacetimes which are negatively-curved. Jensen and Stein-Schabes [1'06]
have gone on to conjecture that spacetimes which have sufficiently large regions of negative
curvature will undergo inflation, resulting in'a Universe today which although not globally
homogeneous, at least contains smooth volumes as large as our current Hubble volume.

Does this improve the situation that Collins and Hawking [13] discussed in 19737
While the work of Jensen and Stein-Schabes [106] seems to indicate that many inho-
mogeneous spacetimes undergo inflation and even leads one to speculate that the measure
of the set of initial spacetimes which eventually inflate is non-zero, it is not possible to draw
a definite conclusion without first defining a measure on the space of initial data. In fact,
as Penrose [25] pointed out there is at least one way of defining the measure such that this
is not the case. Consider the set of all Cauchy data at the present epoch; intuitively it is clear
that those spacetime slices which are highly irregular are the rule, and those which are
smooth in regions much larger than our current Hubble volume are the exception. Defining
the measure today, it seems very reasonable that the smooth spacetime slices are a set of
measure zero. Now evolve the spacetimes back to some initial epoch (for example
t = 1043 sec). Using the seemingly very reasonable measure defined today and the mapping
back to ‘initial’ spacetimes, one could argue that the set of initial data which inflate is still
of measure zero. While I believe that this argument is technically correct, I also believe
that it is silly. First, upon close examination of all of those initial spacetimes which led to
spacetimes today without smooth regions as large as our present Hubble volume, one would
presumably find that the scalar field responsible for inflation would be very close to the
minimum of its potential (in order that they not inflate) — not a very generic initial condi-
tion. Secondly, if one adopts the point-of-view of an evolving Universe which has an ‘initial
epoch’ (and not everyone does), then there is a preferred epoch at which one would define
a measure — the ‘initial epoch’, and at that epoch I believe any reasonably defined measure
would lead to the set of initial spacetimes which inflate being of non-zero measure.

“Although it is not possible yet to claim rigorously that inflation has resolved the
problem of the seemingly special initial data required to reproduce the Universe we see
today (at least within our Hubble volume), I think that any fairminded person would
admit that it has improved the situation dramatically. Extrapolating from the solid results
that exist, it seems to me that starting with a general inhomogeneous spacetime, there
will exist regions which undergo inflation and which today are much larger than our present
Hubble volume, thereby accounting for the smooth region we find ourselves in. From
a more global perspective, one might expect that on scales » H-! the Universe would
be highly irregular. (The evolution of a model universe which is isotropic and homogeneous
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except for one spherically-symmetric region of false vacuum (where ¢ # o) has been studied
by the authors of Ref. [108]. The results are interesting in that they begin to address the
problem of general initial conditions. The vacuum-dominated bubble becomes causally
detached from the rest of the spacetime, becoming a ‘child Universe’ spawned by infla-
tion.)

(v) The present vanishingly small value of the cosmological constant

Inflation has shed no light on this difficult and very fundamental puzzle (nor has
anything else for that matter!). In fact, since inflation runs on vacuum energy so to speak,
the fate of inflation hinges upon the resolution of this puzzle. For example, suppose there
were a grand principle that dictated that the vacuum energy of the Universe is always
zero, or that there were an axion-like mechanism which operated and ensured that any
cosmological constant rapidly relaxed to zero; either would be a disaster to inflation,
shorting out its source of power-vacuum energy. (Another possibility which has received
a great deal of attention recently is the possibility that deSitter space might be quantum
mechanically unstable [109] — of course, if its lifetime were at least 60 some e-folds that
would not necessarily adversely affect inflation.)

12. Inflation confronts observation

No matter how appealing a theory may be, it must meet and pass the test of experi-
mental verification. Experiment and/or observation is the final arbiter. One of the few
blemishes on early Universe physics is the lack, thus far, of experimental/observational
tests of the many beautiful and exciting predictions. That situation is beginning to change
as the field starts to mature. Inflation is one of the early Universe theories which is becom-
ing amenable to verification or falsification. Inflation makes the following very definite
predictions (postdictions?):

() @ = 1.0 (more precisely, R_,,, = R(t) |k|-/? = H-Y/|Q—-1}?» H-,
(ii) Harrison-Zel’dovich spectrum of constant curvature perturbations (and possxbly iso-
curvature perturbations as well) and tensor mode gravitational wave mode perturbations.

The prediction of Q = 1.0 together with the primordial nucleosynthesis constraint
on the baryonic contribution, 0.014 S Qph? < 0.035 S 0.15 (Ref. [6]), suggests that most
of the matter in the Universe must be nonbaryonic. The simplest and most plausible possibil-
ity is that it exists in the form of relic WIMPs (Weakly-Interacting Massive Particles,
e.g., axions, photinos, neutrinos; for a review, see Ref. [110]). Going a step further, these
two original predictions then lead to testable consequences:

(iii) Hoto, = 2/3 (providing that the bulk of the matter in the Universe today is in the form
of NR particles) ,

The observational data on both H, and ¢, are far from being definitive: H, =~ 40
-100 km sec~! Mpc! and o > 12-20 Gyr, implying only that Hofo = 0.5-2.0.

(iv) 2 = 1.0.

All of the dynamical observations suggest that the fraction of critical density contri-
buted by matter which is clumped on scales < 10-30 Mpc is only about: Q<30 = 0.24+0.1
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(+0.Lis not meant to be a formal error estimate, but indicates the spread in the observa-
tions) (see Ref. [8]). If inflation is not to be falsified, that leaves but two options: (1) the
observations are somehow misleading or wrong; or (2) there exists a component of energy
density which is smoothly distributed on scales $10-30 Mpc (and therefore would not
be reflected in the dynamical determinations). Candidates for the smooth component
include: relic, light neutrinos, which by virtue of the large length scale (4, ~ 13 A~2 Mpc)
on which neutrino perturbations are damped by freestreaming, would likely still be smooth_
on these scales; relic relativistic particles produced by the recent decay of an unstable
WIMP species [111]; a relic cosmological term [112]; ‘failed galaxies’, referring to a popula-
tion of galaxies which have the same mix of dark matter to baryons, but are more smoothly
distributed and are too faint to observe (at least thus far) [113]; relic population of light
strings — either fast moving non-intercommuting strings or a tangled network of non-
-Abelian strings [114]. All of these smooth component scenarios have testable consequences
[115) — their predictions for Hyt, differ from 2/3; the growth of perturbations is different;
the evolution of the cosmic scale factor R(t) is different from the matter-dominated model
and various kinematic tests (magnitude-redshift, angular size-redshift, lookback time-red-
shift, proper volyme element-redshift, etc.) can in principle differentiate between them.
(v) Microwave fluctuations

Both the scalar and tensor metric perturbations lead to fluctuations in the CMBR
on large angular scales (> 1°). On such large scales causal microphysical processes (such
as reionization) cannot have erased the primordial fluctuations, and so if ever present,
they must still be there. The scalar perturbations (if they have anything to do with structure
formation) must be of amplitude 2 few x 10-%, which is within a factor of 10 or less of the
current upper limits on these scales.
(vi) Two detailed stories of structure formation

 The simplest possibility, namely that most of the mass density is in relic WIMPs

(Qune = 1.0— 025 =~ 0.9) leads to two very detailed scenarios of structure formation:
hot dark matter (the case where the dark matter is neutrinos) and cold dark matter (essen-
tially any other WIMP as dark matter). At present, the numerical simulations of these
scenarios are sufficiently definite that it is possible to falsify them — and in fact, both
of these simplest scenarios have difficulties (see the recent review by White [116]). In the
hot dark matter case it is forming galaxies early enough. The large-scale structure which
evolves in this case (voids, superclusters, froth) qualitatively agrees with what is observed;
however, in order to get agreement with the galaxy-galaxy correlation function, galaxies
must form very recently (redshifts 51) in contradiction to all the galaxies (redshifts as large
as 3.2) and QSO’s (redshifts as large as 4.0) which are seen at redshifts 2 1.

With cold dark matter the simulations can nicely reproduce galaxy clustering, most
of the observed properties of galaxies (masses and densities, rotation curves, etc.) [117].
However, the simulations do not seem to be able to produce sufficient large-scale structure.
In particular, they fail to account for the amplitude of the cluster-cluster correlation func-
tion (by a factor of about 3), large amplitude, large-scale peculiar velocities, and voids.
(In fairness I should mention that our knowledge of large-scale structure of the Universe
is still very fragmentary, with the first moderate sized (~ 10%), 3-dimensional surveys having



867

just recently been completed.) In order to account for 2 = 1.0, galaxy formation must
be biased (i.e., only density-averaged peaks greater than some threshold, typically 2-30,
are assumed to evolve into galaxies which we see today, the more typical 1o peaks resulting
in ‘failed galaxies’ for some reason or another; see Ref. [113]).

(The situation with respect to large scale structure is becoming more interesting every
moment. Several groups have now reported large-amplitude (6001000 km sec—!) peculiar
velocities on large scales (~ 50k~ Mpc) (Burstein et al. [118]; Collins et al. [119]). Such
large peculiar velocities are very difficult, if not impossible, to reconcile with either hot
or cold dark matter (or even smooth component models) and the Zel’dovich spectrum
(see Ref. [120]). If these data hold up they may pose an almost insurmountable obstacle
to any scenario with the Zel’dovich spectrum of density perturbations. The frothy structure
observed in the galaxy distribution by de Lapparent et al. [121], galaxies distributed on the
surfaces on large (~304— Mpc), empty bubbles, although somewhat more qualitative,
also seems difficult to reconcile with cold dark matter.)

There are a number of observations/experiments which can and will be done in the
next few years and which should really put the inflationary scenario to the test. They include
improved sensitivity measurements of the CMBR anisotropy. The microwave background
anisotropies predicted in the hot dark matter scenario are very close to the observational
upper limits on angular scales of both 5 or so arcminutes and 2 few degrees [12]. With
cold dark matter, the predictions are a factor of 3-10 away from the observational limits
(for the isocurvature spectrum, the quadrupole upper limit may actually rule out this
possibility; see, Efstathiou and Bond [122]). An improvement in sensttivity to microwave
anisotropies of the order of 3-10 could either begin to confirm one of the scenarios or rule
them both out, and is definitely within the realm of experimental reality (Wilkinson in
Ref. [S]).

The relic WIMP hypothesis for the dark matter can also be tested. While it was once
almost universally believed that all WIMP dark matter .candidates were, in spite of their
large abundance, essentially impossible to detect because of the feebleness of their interac-
tions, a number of clever ideas have recently been suggested (and are being experimentally
implemented) for detecting axions [123], photinos, sneutrinos, heavy neutrinos, etc. [124].
Results and/or limits will be forth coming soon. With the coming online of the Tevatron
at Fermilab, the SLC at SLAC, and hopefully the SSC it is possible that one of the candi-
dates may be directly produced in the lab. Experiments to detect neutrino masses in the
eV mass range also continue.

A geometric measurement of the curvature of the Universe (which uses the depend-
ence of the comoving volume element as a function of redshift) has recently been made
by Loh and Spillar [125). Their preliminary results indicate 2 = 0.933:7 (95% confidence)
(for a matter-dominated model). This technique appears to have great cosmological leverage
and looks very promising (especially the value!) — far more promising than the traditional
approach of determining the density of the Universe through the deceleration parameter go.

Another area with great potential for improvement is 3d surveys of the distribution
of galaxies. The largest redshift surveys at present contain only a few 1000 galaxies, yet
have been very tantalizing, indicating evidence of voids and froth-like structure to the
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galaxy distribution [12]1]. The large, automated surveys which are likely to be done in
the next decade could very well lead to a quantum leap in our understanding of the large
scale features of the Universe and help to provide hints as to how they evolved.

The peculiar velocity field of the Universe is potentially a very valuable and direct
probe of the density field of the Universe:

6o = id/ki (= (AH[2m)é, for Q =1), an

(8v/c); = (A/10*h ™" Mpc) (d¢/0);, (78)

where 6, and dv, are the k-th Fourier components of dg/¢ and dv/c, respectively. The
very recent measurements which indicate large amplitude peculiar velocities on scales
of ~50h~~! Mpc are surprising in that they indicate substantial power on these scales, and
are problematic to almost every scenario of structure formation. Should they be confirmed
they will provide a very acute test of structure formation in inflationary models.

Of course, theorists are very accommodating and have already started suggesting
alternatives to the simplest scenarios for structure formation. As I mentioned earlier,
scenarios with a smooth component to the energy density have been put forward to solve
the Q problem. Cosmic strings present a radically different approach to structure formation
with their non-gaussian spectrum of density fluctuations (for further discussion see Ref.
[131]). (It is interesting to note that cosmic strings of the right ‘weight’ (Gu ~ 10-° or so,
where u is the string tension) seem to be somewhat incompatible with inflation, as they
must necessarily ke produced after inflation and require reheating to a temperature
2z u'’? ~ 10'¢ GeV which seems difficult.) Somewhat immodestly I mention a proposal
Silk and I recently made: ‘double inflation’ [126}. While the Harrison-Zel’dovich spectrum
is a beautiful prediction both because of its geometric simplicity and its definiteness, it may
well be in conflict with observation because it does not seem to allow enough power on
large scales to account for the recent observations of froth and large amplitude peculiar
velocities. In the variant we have proposed there are two (or more) episodes of inflation,
with the final episode lasting only about 40 e-folds or so, so that the amplitudes of perturba-
tions on large scales are set by the first episode and those on small scales by the second
episode. That there might be multiple episodes of inflation seems quite plausible given
the number of different microphysical scenarios which result in inflation. Arranging the
most recent episode to last for only 40 or so e-folds so that some of the scales within our
present Hubble volume crossed outside the horizon during an earlier episode of inflation
is a more formidable task — but not an impossible or implausible one! If this can be ar-
ranged then it is possible to have very large amplitude perturbations on small scales (of order
10-1) and larger than usual amplitude perturbations on large scales (nearly saturating the
large scale microwave limits), thereby providing enough power for the large scale structure
which the recent redshift surveys and peculiar velocity measurements indicate. The large
amplitude perturbations on small scales allow for very early galaxy formation (and reioniza-
tion of the Universe, thereby erasing the CMBR fluctuations on small angular scales).
If the second episode of inflation proceeds via the nucleation of bubbles, they might directly
explain the froth-like structure recently reported by de Lapparent et al. [121].
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13. Epilogue

Despite the absence of a compelling model which successfully implements the inflation-
ary paradigm, inflation remains a very attractive means of accounting for a number of
very fundamental cosmological facts by microphysics that we have some understanding
of : namely, scalar field dynamics at sub-Planck energies. The lack of a compelling model
at present must be viewed in the light of the fact that at present we have no compelling,
detailed model for the ‘Theory of Everything’ and the fact that despite vigorous scrutiny
there has yet to be a No-Go Theorem for inflation unearthed. It is my belief that the undoing
of inflation (if it should come) will involve observations and not theory. At the very least-
The Inflationary Paradigm is still worthy of further consideration — and I hope that I have
convinced you of that fact!

Due to space/time limitations my review of inflation has necessarily been incomplete,
for which T apologize. I refer the interested reader to the more complete reviews by Linde
[127]; by Abbott and Pi [128]; by Steinhardt [129]; by Brandenberger [130]; by Bonometto
and Masiero [138]; and by Blau and Guth [132]. My prescription for successfully implement-
ing inflation borrows heavily from the paper written by Steinhardt and myself [65]. This
work was supported in part by the DoE (at Chicago) and by my Alfred P. Sloan Fellowship.

Editorial note. This article was proofread by the editors only, not by the author.
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