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Assuming a kL singularity for the infrared behaviour of the gluon propagator,
it is shown that for L > 3 in Abelian gauge theories the quark propagator is an entire function
of p2 in the infrared region corresponding to a confining potential. An improved equation
is solved for L = 4 and the solution is still regular on the mass shell. The four quark Green’s
function is studied for L = 4 in a Bloch-Nordsieck type model and it is shown that the cross
section of quark-quark scattering vanishes even if an arbitrary number of soft gluonsis in-
cluded, a phenomenon we interpret as an evidence of confinement.

PACS numbers: 11.15.Tk

1. Introduction

The absolute confinement of quarks can manifest itself in the lack of singularities of
the quark propagator in the infrared limit. In various gauges and approximations it
has been shown that the quark propagator is vanishing on the mass shell (e.g. [1-6]),
while in other approaches the quark propagator is the free one in the infrared limit [7, 8].

In all of these considerations the infrared behaviour of the gluon propagator was
described by a more singular term than k-2, namely in several cases a k~* behaviour was
used corresponding to a linear confining potential. The infrared behaviour of the gluon
propagator (a possible k—* term) was extensively studied by solving the Dyson-Schwinger
equations in QCD {3, 9, 10].

The vanishing of the cross section of quark-quark scattering (even including an arbi-
trary number of soft gluons) is another manifestation of the confinement [11, 12].

As examples other confining theories which are much simpler than a four-dimensional
NAGT the three-dimensional QED and the two-dimensional QCD have been studied
[13, 14, 15].

In this paper we calculate the infrared asymptotics of the unrenormalized quark
propagator Sf by functional methods [16] (Section 2). Our approximation corresponds
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to a resummation of quark lines with many dressed gluon propagators, both ends of which
are attached to the quark line. For the gluon propagator a k™% singularity (L > 0) was
assumed. This approximation can be interpreted as a result of an effective bilinear Lagran-
gian with an inverse propagator of the type k"

We show that for L > 3 the mass shell singularities of the quark propagator are can-
celled. These values of L correspond to confining potentials. (Our treatment contains the
well known results for three-dimensional QED [12])

In Section 3 we improve the equation for the operator U used in Section 2 resumming
further corrections with small momenta. Looking at L = 4 we argue that the quark prop-
agator remains an entire function of p® in the infrared region.

In Section 4 we examine the expectation that the cross section of quark-quark scatter-
ing vanishes, if the quarks are confined [11, 12]. Assuming a &~* singularity for the infrared
behaviour of the gluon propagator it is shown that the four quark Green’s function vanishes
on the mass shell. The discussion is carried out for a Bloch-Nordsieck-type model in
covariant gauges. Similar conclusions are valid for the Green’s function with an arbitrary
number of soft gluons.

Section 5 contains a discussion of the results.

2. Infrared limit of the quark propagator

We are working in axial gauges n* # 0 [17] where ghost loops are absent. In the infra-
red limit effects of quark loops are neglected. The quark propagator can be expressed by
functional derivatives in the following form

Sex—y) =N [G (x, y i é") Z(J)] , 2.1
i 6J =0
where
Z(J) = ex iJ‘d"xL b i)
- e I\ e
X exp ['- %jd“x [d“yf,m(X) Slb(x—y)va(y)] (2.2)
and

N7'= [Z(J)]J=0' 2.3)

The Lagrangian L, contains the self-couplings of gluons, J{(x) is an external colour
current, Gho(x—) is the free gluon propagator in axial gauge, and G(x, y | 4) means
the Green’s function of the quark moving in the external gluon field 4. Under the above
assumptions (2.1) is exact in QCD which can be verified by solving the Schwinger’s
equations for the vacuum functional by functional derivatives (see e.g. [16]). It is also trivial
to get (2.1) from the well-known functional integral representation of Sg. Clearly, (2.1)
reproduces the perturbation series of Sg expanding in g. While (2.1) is exact in axial gauges
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in the infrared limit for massive quarks, it is only an approximation in covariant gauges
where ghosts contribute to Sp. However, in order to get a feeling what can happen in
covariant gauges in the infrared limit of Sg, and also because of technical complexities
we neglect ghosts in S; in Landau and Feynman-type gauges.

The dressed gluon Green’s functions are given by the functional derivatives of Z(J)
at J = 0 multiplied by N.

The Green’s function G(x, y | 4) satisfies the equation

[iy,, (8{: —ig /:2" Af,‘(x)) - m] G(x, viA) = ¥ (x—y), (2.4)

m means the mass parameter of the quark, 4, is the colour matrix. Let us introduce the
functional H(x, y | A) by the definition

o
G(x, y|A) = [iyu (Eﬂ—ig 2— A’;(x)) +m:| H(x, y|A) (2.5)
and from (2.4) we get
[— 8i—m*+ig %‘3 V0GR ANX) +igl,

2

A (x)0%+ %(niaz‘iﬁ(x))z] H(x, yj4) = 6(x~y). (2-6)

The Fourier transform of H(x, y | A), H(p, q | A) determines the quark propagator in mo-
mentum space as follows

(2n)*S(p)s Y (p—gq) = S'+ 5",

S' = ((up*+m) (H(p, gl AINZ)); =0,

g - I Ty ’
s' = 2y I ( J.d“q Al(qHH(p—d, qIA)NZ(J)>J=o’ 2.7

here 4%(q’) is the Fourier transform of Ah(x) —» —

and H satisfies the equation
i 6J,(x

(p*—m®)H(p, q|A)+ Jd“k [gfl.,p“Aau(k) g (guv+wm)k"A"(k)

1
@2n)*

4(2 a2ny 4 }bfd“k ALK ) Ak —k )] H(p—k, q14) = 2n)*6®(p—q). (2.8)

Following Ref. [13] (the fifth parameter method of Fock) we represent H(p, q | A)
as the integral

H(p, qid) = —i [ dvU(p, q; vi4) exp [i(p> —m* +ie)v], 2.9)
0
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where the new functional U(p, q; v | A) obeys the normalisation
U(p, 4;014) = 2n)*6"(p—q). (2.10)

This can be shown by taking the Fourier transform of (2.6) in x—y and writing the cor-
responding Fourier transform of H as the integral of the exponental function of its inverse
with respect to v.

Substituting (2.9) into (2.8), using (2.10), leads to the definition equation of U(p, g; v 1 4)

~ - 2
~ /g . ~vy
d4k [g)'ap“Aau(k)_ g ?Z— k”(g;n"*‘ lO'!”,)A;(l\‘)-‘}- —gw~

d | ) i
— U(p, q; vi4)— — TR

dv @2n)*

o

~

X y;lyv/'a/‘b

d4k'2;;(k')2;;(k~k’)] exp [i(k* =2k, v, U(, =k, g; vid) = 0. (2.11)

We need the functional U for p*’s around m?2. Since 4 (k) and the bracket in the integral

act as gluon operators in the gluon Green’s function in S', " we can approximate the

integrand in (2.11) by its value at k — 0. Actually, assuming 4,,(k) = k™%, L < 4, for

k — 0 the most singular term is p4 at k¥ < p @ m in the bracket. Finally, we replace (2.11)
in the infrared limit as follows

1
i i U(p. 43 v A+ g7,p A, (2p0U(p, g v/ A) = 0. (2.12)
ay

(Corrections to (2.12) will be studied in Section 3.) (2.12) has the usual time ordered operator
solution, which making use of (2.7), (2.9), (2.10) yields

S'= —i2n)*s“(p—q) (,p" +m) j dvexp [i(p* —m’ +ie)v]
0

Vi~

x[1+ ¥ (ig) H),aip”fgd\'l o § dvKTA,,Q2pvy) ... A, (2Pv)0o],  (2.13)
n=1 i=1 O
where A4,,(2pv) is the interacting gluon field.
For S" one obtains in the above approximation

a0
n

io I
s’ = — _?3 j dvexp [i(p*> —m?* +ie)v] J d*xy, 2, exp [i(p—q)x]
0

X[CALDo+ T ()" [] 2" [ dvy oo | dvdT A ()

H=

X Agu(2PV1) - Ap(2PV)00]. (2.14)

Now we calculate (2.13) and (2.14) in such an approximation where gluons starting
from the quark line are absorbed by the same line corresponding to keeping the propa-
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gators in the dressed gluon Green’s function in (2.13), (2.14). (This is the only possibility
in QED.)

For a k~-*-type gluon propagator, the summation has been carried out for the SU(2)
gauge group [5], and also for SU(3) [6]. The result is that in the presence of the colour
factors Sy has a confining behaviour similar to the Abelian case with a k~*-type gluon
propagator. The summation of the remaining colour factors is extremely complicated
even for an SU(2) gauge group in case of an arbitrary L, therefore we confine ourselves
to an Abelian gauge group. Hence

an d*qS' = —i(y,pt4m) j dvexp [i{pz—mz—i—ia)v—igZJ dv, J dv, f(vi—v)],
0 0 0
(2.15)
N PP &
~-~~4J d*qS" = i 7~V dvexp [i(p®—m*+ie)v]
(2m) )
O
x [ 7"p"G,(2pvo)dve exp [ —ig® | dv, f_ dva f(vi—vy)]. (2.16)
0 0 0

where f{v,—v,) = pngG:)ﬁ(?.p\‘lv—vaz).

A similar type of exponential v dependence has been shown with a dipole gluon field
too [18].

In covariant and axial gauges one has for G¥(k) in d dimensions

L—2 axpp YN
GEk) = — e B l‘i +o I_{._IL (2.17)
Oc¢ kL g kz kz ’ .
Qb2 kn® +k‘8 R 4R nn?
Oa(l\) = - I gaﬁ 5 n +(1 +5) 4 d) - T3 N (218)
k kn (A 1) n

where iGY(x~)) = (TA"(X)A’(»)>o: « = 0 (1) corresponds to the Landau (Feynman)
gauge. 2 is a constant and § is a parameter. The choice § = 0 is used in [8], § = —1
reproduces the usual axial gauge. f(v, —v,) can be calculated in general covariant (f,) and
axial (f,) gauges with the result

L—-2

1e1 @ _
Jvi—vy) = "(—])Lhﬂ 572 [2("1*"’2)]" e
8n
Lr / 2o~ —1/2 ,
Xr(d‘—L)[ (L/z 3_§i (g_}LFLLiz 1 )] (P ')L12+1-—d;2’ (2]9)
2r(L241)

L L-d

] Lz QI(d-L 3

T4lvy -—vL)_;Q (vi—v)t~ dS ) LF(L/Z 3/ ) ( )(P) -

8n% 1 2 JnI(L2+1)
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3 (pz)L_;g

2 — —_—
8 I:p2+(1+6) (4—d) (pz__ (pn) )J _ I(@d2-L2) (L—d+1)

I(L/2)

2
[2F<1 df2- L/2,2,(p) )+2 oy (pz (p)> (d2—=LJ2)
pn p’n n

xF(Z, d/2—L/2+1;§;@2—'%)]}, (2.20)
pn

where F(a, b; c; z) is the hypergeometric function [19]. For [ dv,y"p'G,,(2pv,) in S" one
0

obtains

v

dvey'p’G,,(2pv —IiB -
f oV P'G(2pve) = L_d+1’

L-d+1

221
0
with
L/2 QL2 L-d 4Liz-d2
B, = (-1D)"*("p) —=s-(p) 2 [(d—L) ———
(=D"*("p) 8732 (r%) (a )2F(L/2+1)

x [LI(L{2—3/2)+ 2(a— DI(L]2—1/2)] (2.22)

B 3 QL 2 4L/2 d/( I)L/ZLF(L/Z 3/2) (p )L/Z d/2
47 8 { 2 /nI(L2+1)

I(dj2—=Lj2) (pH)L2~d2
xI(d—L) [(yp)+(1 +8) (4—d) (( p)— (V")I(’”’)ﬂ _ I /F(L//2 )) )

x[((yp) (nv)(p)(L d+ 1)t (mZ(lp) )

( d/2—L[2;3[2; (P ) )+ (L— d)((pnf(py)

pPn?

2
—(np)* ;f?) (2 an—Lp+1;32; &8 n) >]} (2.23)

In the above approximation S' and S" become entire functions of p? in the infrared
region if 2 > L—d+2 > 0 in covariant and 3 > L—d+2 > 0 in axial gauges. The upper
bounds come from the existence of (2.15), (2.16). For instance in covariant gauges the viola-
tion of 0 < L—d can induce both regular (vanishing or nonvanishing) and singular S de-
pending on the value of L.

In covariant gauges at d — 4 S = 0 for L = 3, 4; otherwise for 4 > L > 2§y is non-
vanishing and regular.
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For these values of d and L the infrared singularities of the quark propagator are
cancelled, thus no quark can appear asymptotically. These results contain the well known
result for the three-dimensional QED [12].

A static potential can be defined from the gluon propagator Q' 2/k" by the equation

~ QL2
V(x) = f dxofddk exp(-—ikx)[— iz ] (2.24)

One can carry out the integrations [20] and gets

[(L/2)I(d[2—L[2) |x]4"E1

V(x) = Q' *z° if d—L—1#0,

V(x)oclnlx] if d—L—1=0. (2.25)

Hence L—d+1 >0 leads to confining potential.

In four dimensions and in axial (covariant) gauges 5> L >3 (4 > L == 3) Sy is regular
in the infrared region so it corresponds to confining static potentials.

In both gauges for 3 > L > 2 (nonconfining potentials) the singularities of Sg are
verified to depend on the regularization chosen.

For L = 2 one obtains the well-known result of QED, independently of the regulari-
zation. For L < 25 is singular and these L’s lead to nonconfining potentials.

3 Corrections of small momenta
Instead of (2.12) let the definition of U be
i
(2n)*

d -

5, U, a5 vl4)— Id“kglap,.ALf(k) exp [i(k* —2pkWw]U(p—k, g, v|4) = 0. (3.1)
v

Using (3.1), (2.13) and (2.14) become

1
en’*

fcl"’qS’ = —i(y,p"+m) Jdvo exp [i(p> —m* +ig)]
o

vi-t

x {1+ i [ﬁ jd‘*kjig(p—kZ kD, Jf dv; exp [(klz-—2
=1 j=1 =1 0
i-1
xX(p— ’Z,lkt)kj)i"j] _f d4xj €Xp (iijj)] <TAZf(x1) Aﬁ:(x,,»o}, (3.2)

1
2n)*

jdﬁ'qs" = = %g- Jdvo exp [ivo(p® —m” +ie)]y,4,{<45 (00
o]
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j—1

0 n J Vi-1 j—1
+ 21 [I_Il ~[d"'kjig(P— IZ ki, .[) dv;exp[(kj—2(p 121 kp)k;)iv;]
n= j= =

=1
x [ d*x;exp (iky;)] (TAY0)AL (xy) ... Al(x,)>0)- (3.3)

Examine now the L = 4, d = 4+ case (linearly confining potential). Following the
approximation of Section 2, one sees that in covariant gauges S¢ does not change as com-
pared to the result on the uncorrected U.

In axial gauge we apply another approximation, namely

j=1

(p— Y, kAl ~ pAL. (3.4)
1=1

In the present case one can carry out the integrations for an SU(2) gauge group [18].
The formulas for S', S" are complicated but still entire functions of p? in the infrared
region. The correction terms with small momenta do not influence the conclusions of
Section 2. Thus assuming a A—* singularity for the infrared behaviour of the gluon prop-
agator, the quark propagator is an entire function of p? in the infrared region.

4. Quark-guark scattering in a Bloch-Nordsieck type model

We examine the four-quark Green’s function in a Bloch-Nordsieck type model

Gaxy, Xg, X3, X4) = {TP(x JP(x2)P(x3)P(x4)D0- “.1n

It is known that for the four-quark Green’s function for the case of an external gluon
field 4 is

Ga(x s X3, X3, X4 A) = Go(xy, XgiA)Ga(X3, X314) — Go(xy, x3/4)G (X3, X4]A4) 4.2)

| )
(4.2) provides (4.1) in the same manner as G (x, y l m?;j) determines Sg(x— ).
i

Let us introduce U(v, x | A) by the definition
Gap, x) = —i j dvU(v, xid) exp |~ iv(im—up—ie)], 4.3)
9]

where G,(p, x) means the Fourier transform of G(x, y) with respect to x —y. For U(v, x | A)
we obtain
U(0, x[4) = 1,

-

d
[i — +u, (i&"’—}- g %a A:;’(x)>] Uy, xi4) = 0. 4.9

avy

As it is known [20] this model corresponds to taking the Dirac matrices as ¢ numbers u,,
1? = 1, and we may assume 1, > 0. Then it follows that contributions of closed quark
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loops are vanishing. Fourier transforming (4.1) and using (4.2) we get
Ga(Py. 2. P3. Pa) = [ exp [ix(p, = p3)]Ga(ps, X)dx

x [ exp [ix'(py — p)]Go(pas XVIX'NZ(J) oo — {3 > 4} (4.5)

where N and Z are given in (2.2) and in (2.3). {3 <> 4} means the interchange of the third
and fourth variables in the first term. Being the gluon Green’s function translation invariant,
we can take U(v, x [ 4) at x—uv = 0. (4.4) has the usual time ordered operator solution
which making use of (4.3) and (4.5) yields for an Abelian theory (motivated by eliminating
the extremely complicated colour summations and still keeping a confining Sg)

Gu(Pyr. P2 P2 ) = — Jexp [ix(p,—p3)]dx § exp [ix"(p; — py)]dx’ | dv

6]

x exp [ —iv(m —up;—ic)] j dviexp [ —iv'(m—up,—ig')]
4]

i n*m i IV
: (e ntm! _[( !
cdv, [ dvy o dvn K TB(x —uv+uvy) ... B(x—uv+uv,)B(x’
0
—wv' +uvi) B =y uv,)yo — {3+ 41, {4.6)

A, = B. One can carry out the resummation

s
[SSRIN

where u,

¥

. 1 :
> oy o o1 [ Lo o),
nint.
0

g g
= exp (—g*bw') [exp (— £ via— > v'za') - 1} s “.n

where (B()B(j)>o = a, {B(i")B(j"))o = a', (B()B(i"))o = b, i = x—uv+uv, j=x—uvtuv,
= x—w'tuy, j =X —u +uv.

It turns out that if we add up all the virtual gluon exchanges (minimum one gluon
exchange) combined with the terms where gluons starting from the quark line are absorbed
by the same line the result exponentiates. Assuming a k~* singularity for the infrared
behaviour of the gluon propagator we get for a, @’ and b in covariant gauges

2

?

a=a =b

oz Gl (4.8)
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where the dimension number is d = 4+{. For G, we have
64(171, P2, P3, Pa) = —(2m)°*6V(p, ~p3)6(p,—ps) j dv
0
x exp[—iv(m—up;s—ie)] [ dv'exp [—iv'(m—up,—ic')]
o2
X exp [— % b(v2+v'2)j| [exp (—g?bw')—1]—{3 > 4}. (4.9)

The Taylor expansion of the integral is

Ga(py, P2y P3s Pa) = — (2036 (p, — p3)6 N (p,— pa) (B2 —m)+ B>

X [)”H"]+ﬂ2 I:(4/3-—n) (),2_*_)/2)_*_ (%__ _i_) w,:l +ﬁ5/2 \/7_r

x 323 +9"H+120" 3y +99)]+ ..} - {34}, (4.10)
where
47® ,
p= coTEy s Y= moupe @.11)

G, is proportional to the constant f(2—r), as y and y’ — 0. On the mass-shell only the
pole term survives.

G, vanishes as d - 4 ({ — 0).

This is not surprising we encounter a similar result in QED: one cannot observe
the charged particles separated from their long range electromagnetic field. In QED,
however, the probability of observing charged particles plus an indefinite number of soft
photons is nonvanishing [22]. What can we say about the cross section of soft gluon emission
in quark-quark scattering?

Let us calculate the Green’s function of four quarks plus a definite () number of
outgoing soft gluons.

h

S VA O 19
G = {N f oy exp [iSo(y)] | G, (7 3}) H T8I (S)

j=

1 6 1 4
x So (—i— 5) exp [iS, (-lf EI)] exp (—i/2JGod)s =0 (4.12)

where Sy, J, G,, N were given in Section 2. 5§ is a term containing exclusively closed quark
lIoop effects.
The physical gluon emission is correlated with the amputated Green’s function

é(Pn P2, P3> Pas Ky . kh)gul(kl) syh(kh)k% k;" (4.13)
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where k; is the momentum and ¢,, is the polarisation vector of the i*® outgoing gluon.
Using the properties of U we can calculate G.(p1, p2, Ps, Pa> k1, ... k)

h h w0
G(p1s P2> P3> Pas Ky - k) = — _[exp (i z kjyj) H dijj' dv
i=1 i=1

1
dv'exp [—iv(im—up;—ig)]exp [—ivi(m—up,—ie')]
nlm!
x {dvy ... dvdvy ... dvidTA(yy) ... A (y)B(1)
< BB(1') ... B(m')50(2m)*6(p, — p3)0Y(p, — ps)— {3 > 4}. (4.14)

If we add up all the gluon exchanges (minimum one) combined with terms where gluons
starting from the quark line are absorbed by the same line, for a fix number of outgoing
gluons the result exponentiates

o0

2
G(pla pZa p37 Pa, k]a kh) o H CiJ.dVdvl {CXP [" 'g_2' a(v+v,)2}

0

o
—exp [— 5 a(»? +v'2)]} , (4.15)

where a is given above and

C = <A(i)B(j)>o-

The on-shell Green’s function is
(zn)85(4)(P1 - P3)5(4)(P2 —P4) 1_1 [5(4)(1‘2)01"(128;:.-(]‘1') (275)4]

x[BR-m)+ 2 Jn(p+7)+ .. ]- {34}

(4.17) vanishes for a fix number of outgoing gluons. Hence the cross section of quark-
-quark scattering is zero even if the emission due to an indefinite number of soft gluons
is taken into account. This is in accordance with the theorem of Kinoshita, Lee and Neuen-
berg [23, 24].

5. Discussion

In the present paper we have calculated the quark propagator in the infrared limit
by functional methods for different types of (k™ %) infrared gluon propagators. Using
the same approximation in different gauges it was shown, that special values of L corre-
spond to confining quark propagators (in four dimensions and in axial gauge for
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5> L > 3 S¢ is regular in the infrared region). For L > 5(4) and d = 4 in axial (covariant)
gauge the method does not work because the integrals do not exist (4 > 0).

For L = 4 an improved equation was examined. Under the v integrals in (2.15) and
(2.16) exclusively analytic expression of g? take place. After the v integration this is no
longer true, S cannot be expanded around g? = 0.

It has been argued that the cross section of quark-quark scattering vanishes even
including an indefinite number of soft gluons. We interpret this result as a signal that
quarks and gluons are never produced in asymptotic states, i.e. for confinement.

Due to algebraic complications mainly an Abelian or in Sect. 3 for L = 4 an SU(2)
gauge group and in Sect. 4 a Bloch-Nordsieck-type model was assumed.
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