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In the chiral bag the fermionic vacuum is polarized by an external meson field. A method
is described for evaluation of physical effects due to the vacuum polarization in spherical
chiral bags. We apply our method to the calculation of the vacuum baryon number. The
possibility is discussed that the vacuum in chiral bags can be non-trivial with respect to other
quantum numbers.
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1. Introduction

During the last fifteen years quantum chromodynamics (QCD) has become established
as the theory of strong interactions. Apart from aesthetical reasons like the beauty of gauge
theories QCD is a very attractive theory because it is renormalizable and asymptoticaily
free. The theory agrees with experiment for all processes for which we are able to work out
its predictions, hard processes at the CERN SppS collider being a newest example. There
is little doubt that the new generation of experiments at SLC, LEP and HERA exploring
the energy regions where the perturbative approach becomes a good approximation to QCD
will strengthen our confidence in this theory. On the other hand attempts to describe the
low- and intermediate-energy physics of hadrons are still not satisfactory. It is commonly
believed that this is not a failure of QCD but only a consequence of our inability to deal
with this theory when all its complexity becomes essential. Such a situation stimulates
progress in theoretical physics and we believe that sooner or later the non-perturbative
aspects of QCD will be understood quantitatively. A promising program is to use com-
puters for solving QCD on a lattice. Another idea is to develop phenomenological models.
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QCD, when already solved, will serve as a microscopic theory enabling calculation of
phenomenological parameters from fundamental constants.

Two phenomenological models of this kind describe well the low energy properties
of baryons. The first one is the MIT bag model [1] where quarks are confined inside a spheri-
cal cavity immersed in a non-perturbative medium. The second attempt describes baryons
as topological solitons of a non-linear sigma model [2, 3]. Striking similarities between
the results of these very different approaches suggest that some kind of duality exists
relating these descriptions. The above idea is realized in the so-called hybrid (or chiral) bags
[4]. In this model the bag is surrounded by a pion cloud, and the classical configuration of
the pion field has a topologically non-trivial ‘hedgehog’ shape first considered by Skyrme [2].
The picn field polarizes the fermionic vacuum in the bag which becomes a complicated
object carrying a non-zero baryon number [4] and probably other quantum numbers
as well.

In the present paper we describe a method for systematic evaluation of the effects
coming from the vacuum polarization in chiral bags [5-12]. We give a detailed presenta-
tion of this method (Chapter 3), and then we describe the results obtained so far (Chapter 4).
In Chapter 5 we discuss an idea that the vacuum in chiral bags may have non-zero spin,
isospin and other quantum numbers. Our results are summarized in Chapter 6.

2. Skyrmions and chiral bags

We start with a brief description of skyrmions and chiral bags. Our aim is to introduce
some notions and results which we use in the following chapters, and not to review the
vast literature on these subjects. For a comprehensive list of references and a much more
complete account of recent developments, including those which are not closely related
to our main topic and are not mentioned at all, the reader is referred to review articles on
bags [13], skyrmions [14-16] and chiral bags [17-20], see also [21, 22].

In remarkable papers {2] Skyrme put forward the idea that baryons can be considered
as solitons of a strongly interacting meson field. In {23-27] it has been shown that such
solitons can carry half-integer spin and fulfill the Fermi-Dirac statistics, and in [3] the static
properties of baryons in the Skyrme model have been calculated.

For two flavours the Skyrme lagrangian describes an isospin one pion field:

2

F I
Lo =16 Tr@QUIUD+ 5 T (D)UY, (2. OUTY, (2.1)
e

where U is an SU, matrix, F, = 186 MeV is the pion decay constant, and e is a dimension-
less parameter. Apart from standard harmonic excitations, i.e. pions, the spectrum of the
model contains also solitons which we identify with baryons. (The second term in the lagran-
gian (2.1) was introduced by Skyrme to stabilize these solitons). We find soliton solutions
looking for stationary configurations Uy(r) of finite energy. Thus, for jri - oo U, tends
to a constant matrix, and we can choose

Uo(lr| » ) =1 2.2
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because F, is invariant under global SU, x SU, transformations. Therefore U, is defined
on $* = R?+ {00} and the set of maps

Uo(r): 8* - SU,

splits into homotopy classes not continuously deformable into each other and numbered
by an integer number, the so-called winding number. The winding number of the configura-
tion U, has been identified by Skyrme with the baryon number. In order to find a solution
corresponding to a single baryon we substitute into (2.1) the Skyrme ansatz (‘hedgehog’
static configuration):

Uy(r) = exp {i0(X)7 - n}, (2.3)
where a dimensionless variable

X = eF,r (2.4)

is used. Then we solve the resulting variational equation [3]

x? X0 sin20  sin® O sin 20
T 42sin?0)8"'+ — +sin 20, 07— - - = 2.5
(4 +2sin ) 5 sin ) X (2.5)

for the boundary conditions

00) = —x (2.6a)
f(c0) = 0. (2.6b)

The radial density of baryon number is [3]
oa(r) = 3}%—9 % @7

and Egs. (2.6) imply that the baryon number of the solution (skyrmion) is equal to one.

The chiral bag is a bubble, within which quarks propagate freely, surrounded by
4 pion cloud in ‘hedgehog’ configuration. Chodos and Thorn {28] were the first who consid-
ered this object in their attempt to restore chiral symmetry in bag models. In bag models
the surface of the bag is a source of explicit chiral symmetry breaking. However, it is possible
to restore chiral symmetry when quarks are coupled chirally to the external pion field
at bag surface. Thus, the action S of the system consists of three terms corresponding to the
Dirac lagrangian for fermions in the bag, the Skyrme lagrangian for the pion cloud outside
the bag, and the interaction between fermionic and bosonic fields at the surface of the bag:

S = j d*x(ipéy—B)+ | d*x Ly jfdz‘ssurf(‘ﬁk Uyr+7LUTyy). (2.8)
mn out sur

In the presence of a soliton the fermionic vacuum becomes non-trivial [29]. For the chiral

bags the interaction with the pion field modifies the MIT boundary condition for quarks

in the bag in such a way that the energy levels of quarks are not degenerate with the levels



36

of antiquarks. Consequently, contributions from virtual quarks to some quantities are not
canceled by contributions from virtual antiquarks, and the vacuum expectation values
of these quantities are non-zero.

3. Spectral asymmetry for quarks in chiral bags

3.1. Massless quark in a spherical cavity [5, 9]

In the chiral bag model the quark wave function inside the bag satisfies the free particle
Dirac equation and the boundary condition is

—i7 - n¥(r) = exp (iO7 - nys)¥(r). (3.1)

For a spherical bag of radius R this condition applies at {r| = R and the unit
vector n, which is the external normal to the bag surface, reduces to r/R. Under isospin
transformations the Dirac bispinors ¥ transform as a doublet. This corresponds to the
inclusion of u and d quarks only. The components of the vector 7 are the Pauli matrices
acting in isospin space. The parameter @ is a real number describing the strength of the
classical pion field at the surface of the bag.

For a Dirac isodoublet particle in a spherically symmetric and isospin independent
potential the following (good) quantum numbers correspond to the operators commuting
with the Hamiltonian: the sign of eigenenergy x = + 1, total angular momentum J and its
projection on the z-axis m, parity P, and the third component of isospin a. In order to
define an energy level unambiguously it is necessary to add another quantum number, say
n, which labels radial excitations, just like the principal quantum number in the hydrogen
atom case. The above set of quantum numbers defines uniquely a given solution.

In our problem the boundary condition (3.1) involves the operator 7 -m which
is invariant neither with respect to rotations in ordinary space nor with respect to
isospin rotations. Simultaneous rotations in space and isospace, however, leave 7-n and
more generally the condition (3.1) unchanged. Thus, for © # 2zk (k =0, +1, ...) the sym-
metry of our problem is reduced to SU,, the diagonal subgroup of SU, ,.ce X SUj isospace-
Introducing the operator

K=1I+J=I+L+S, (3.2)

we can replace J, m and o by the good quantum numbers: K — such that the eigenvalue
of K2 is K(K+1), M, the eigenvalue of Kj, and e. The quantum number (or label) & is nec-
essary in order to obtain a one to one correspondence between sets of indices and eigen-
states. For the states of K = 0 we define ¢ = 1, whereas for K > 0 we have ¢ = +1.
Since the operators on both sides of the condition (3.1) are even under inversion in ordinary
space parity P remains a good quantum number. Therefore, the quantum numbers which
can be used to label the energy levels are: n, K, M, k, P and ¢. The energy levels are degener-
ate with respect to M as a consequence of the symmetry of the problem with respect
to SU, rotations in K-space.
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Let us derive explicit expressions for the wave functions and energy levels!. The
building blocks for the quark wave function include: spherical harmonics Y;,(€2),? the
cigenfunctions of the z-component of spin

Y12 = (é) A-1/2 = ((1)) (3.3)

and 4,, the eigenfunctions of 7, seemingly identical with y, but defined in isospin space.
‘Besides the usual spin-angular functions

¢jlm = Z <19 m-—ao, 1/2a alj, nl>Yl,m~aZ0 (34)

g=+%

where {j;, m,; j;, m; | j, m> denote the Clebsch-Gordan coefficients, we shall need also
the isospin-spin-angular functions

Yijm = }: <1/2,U;j,M-UIKM>'1«¢jl,M—a- (3.5)

o= +1

We use the Dirac representation [33]
{1t 0y - (03 {01
=0 1) "T\-5 0/ T o
and define eight families of free particle solutions of the massless Dirac equation [34]:

x x Jk(IElr)¥x K+1/2,KM )
¥ = y;¥5 = . : ’ K=01,.. 3.6
! 7s¥3 (—KJK+1([E\")‘I'K,K+1/2,K+1,M (3.6)

[

e (T Y ksl

4 = . .
_KJK—l(EE“‘)lPK,K~ 1/2,K-1,M

We choose the phase convention for the space parity in such a way that P = (— DF for
" and W5 whereas P = —(— 1)* for ¥5 and 5. Since P and k are good quantum numbers
the wave functions must be of the form:

¥ = C,¥Y{+C,¥75, (3.8a)
vE = C,PF+C, W5 (3.8b)

In each of the four classes (x = +1, P = +1) we expect two families of solutions cor-
responding to ¢ = +1 and in each family an infinity of solutions (n = 1,2, ...). K=0
is an exception because according to (3.7)

C,=Cy=0 for K=0 (3.9)

1 See also [30, 31].
2 Qur conventions for spherical harmonics, Clebsch-Gordan coefficients, 6/ symbols etc. are taken
from [32].
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and only one family of solutions (¢ = +1) exists. Our task is considerably simplified
by relations between solutions for different combinations of P and . Let ¥(O) be a solu-
tion of positive energy and parity P = (—1)*. We can ecasily check that ys¥I(@+n)
is also a solution of positive eneigy, but its parity is opposite. Thus,

YI(0) = 3, ¥T(O+7). (3.10)
Similarly, using the identity
exp (iO7 - nys) = cos @ +i1 - nyssin O, (3.1
we find that, in self-explanatory notation,
Y(0) = 1, PH(~O+n), (3.12)
Y2 (0) = yo7s¥Y (—0O). (3.13)

The above relations imply relations between the energy levels and the coefficients C,. For
example it follows from (3.10) that

Ci+2(6. K) = C‘(O“{"n- I\'), (3.14)

etc. As for the energy levels we have:

E*(©) = EXO+n), (3.152)
EZ (@) = —EX—0O+n), (3.15b)
EZ(@) = —E*(—0). (3.15¢)

Thus, we can limit our further study to one family of solutions, let them be ¥, and then
we can extend our results using the above symmetry relations.
In order to derive equations for energy levels we will need the identities:

i;- ' ';q’K,lil/Z,lM =F Y]K,lj: 1/2,1£1,M> (3.16)
it e =Y (Kijli j 1P xjemo (3.17)
i
where the only nonvanishing coefficients are

1
(K; K+1/2, K; K412, K+1) = (K: K=1/2, K; K=1/2, K=1) = - (3.182)

+1
. 2VK(K+1)
(K; K+1/2, K; K=1/2, K1) = (K; K+1/2, K+ 1, K=1/2, K) = — — =
(3.18b)
and those which can be obtained from them using the relation:
(K jlj'l) = —(K; j'I's jb). G.19)

A derivation of the formulae (3.16-3.19) is given in the Appendix A.
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Using (3.8a, 3.11) and (3.16-3.19) we reduce the boundary condition for ¥ to the
following system of two linear equations for the coefficients C; and C,:

o sin@) o 2VK(E+D)
Ci ik {1+ K41 —jk+1(X)cos @ +C2]K(x)sm@~—2~K—+1— =0, (3.20a)

0 2VKEK+D , sin@\
C,jx(x)sin @ — Kl +C, 1 jx(x) 1—2K+V1 +jg-1(x)cos @ | =0, (3.20b)

where
x = |EIR. 3.21)

For K = 0 the coefficient C, must be equal to zero, cf. (3.9), and Eq. (3.20b) is trivially
fulfilled. Expressing the spherical Bessel functions j, and j; in terms of elementary functions
[35] we derive from (3.20a) the following transcendental equation for the energy levels:

sin x+cos (@ —x)—sin x cos O/x = 0. (3.22)

For K > 0 the system (3.20a-b) has non-zero solutions for C; and C, only if the principal
determinant vanishes, i.e.:

Lik-1()jk+1(x) “f}zf(x)] 08 O —jg(x) g 1) —jx+1(X)]

sin @
2K +1

Jr() [jg-1() +jg1(x)] = 0. (3.23)

Using identities between Bessel functions [35] we can rewrite (3.23) in a simpler form:

(22 +1—v2/x*) cos O +2F,+sin @/x = 0, (3.24)
where
v = K+1/2, (3.25)
and
2, = J ) (). (3.26)

J, is the ordinary Bessel function of order v and J, its detivative. Another equivalent
form is

cos OF,(x) = eF (O, x)—1, (3.27)

where

F (0, x) = 1 —(1—v?[x?) cos® @ —sin 20/(2x). (3.28)

Thus, we see once again that for K > O there are two families of solutions labelled by
&= +1.
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Let us consider now normalization of wave functions. The bispinors ¥} defined by
(3.5) and (3.6) are orthogonal. In particular

[dQPTYs = [ dQPstYT =0, (3.29a)
whereas
[ AQPTHPY = ji(ax)+jk41(ax) (3.29b)
| dQWPstYs = ji(ax)+jx-(ax), (3.29¢)
where
a=—. (3.30)
R

Let x, (n = 1, 2, ...) be n-th positive solution of (3.22). The corresponding (normalized)
wave function is

_ o) (3.31)
Y= R —sin? x %) '
VAnR*(1 —sin® x,/x;)

We shall need also expressions for the radial density

N 1 sin 2ax, sin® ax,
2,(r) = rzj dQyly, = —— | [1— + 5 ] (3.32)

sin® x,, ax, a‘x
R{l1— ——5—
xn

“n

and its second moment

R

m»

1 1 sin 2x,
MP = wv,j drite(r) = 3+ -5y - [%-%—:5; cos 2x, — :I . (3.33)
- X, —sin” x, 2

n

0o

The above formulae can be derived by elementary integrations, after j, and /j, are expressed

in terms of elementary functions. The formulae for the other moments are given in the
Appendix B.

In the case K > 0 the formulae analogous to (3.32-3.33) are more complicated.
Let x,,. (n = 1,2, ...) be n-th positive solution of (3.27). The corresponding wave function is

Yoo = C1 ¥ (X)) + C2P3(X000)- (3.34)
Let

QVIVE = r2 j‘ qu’Z\'sq’nva (3'35)
and

R
ME = R dri®g,., (336)
]
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Using relations between Bessel functions and recurrence relations between integrals of
Bessel functions we obtain the following expression for the radial density

a - >~ ~ o, 5 -~ ~
Cmve(r) = RL(x..) {Jf(r)+§' [JC+1(;r)+Jf«1(r)]+~2 [Jv“(r)—Jf-l(r)]}, (3.37)

where r = r|E|,

1 v, )
Lyx) = A+ —JJ)— 5 J2 (3.38)
X x
o, = I (1 —vExH)J? (3.39)
and
ci-¢? e in ©
g= o2 B (VCOST SO (3.40)
CI + CZ g‘:v(@’ xnvs) Xm*s 2v
For the second moment we obtain
M) = () LX) (3.41)
where
2\, JJL R A
L}(X) = (1 + ‘;2—> ”3" + VB‘x.A + (\'2(‘,—}-%) xé‘"" - (3.42)

For a derivation of the above formulae see Appendix B where recurrence formulae for the
even moments are also given. Eq. (3.40) can be easily derived from (3.20a-b) and (3.27).

3.2. Calculation of spectral asymmetries

The fermion number of the vacuum is defined by [4, 36]

Fe=—5 lim (Y "= ¥ €F), (3.43)

t—0+ E>0 E<0O
where the summation extends over all single particle eigenstates. It is obvious from (3.43)
that F . vanishes if the spectrum is CP symmetric because in this case each positive energy
level is matched by a negative energy level with the same (E’ 3, However, in some systems
like an electron interacting with a point magnetic monopole [37-39] or chiral bags [4]
F... can be different from zero. In the case of chiral bags CP symmetry is broken by the

k
boundary condition (3.1) for @ # 27~t-

Let us remark that the definition (3.43) follows from a regulated version of the fer-
mionic charge | d°x } [y'(x), w(x)], where v is a quantum fermion field. More generally,

3 We assume that there are no zero-energy levels in the spectrum.
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we shall consider the vacuum expectation value of a symmetrized operator % [yt, Oy]:

Qvac = “% Z KQ(E)‘
{E}
The series in the above definition can be divergent, however, we will assume that it is sum-
mable by the Poisson method, i.e.

Qvac = "; lim Z KQ(E) CXP(“‘tiE) (344)

1~ 0+ (£}

is well defined. We shall assume also that
QEYy=0(1) for E - . (3.45)

In the present Section we describe a method which can be used in calculations of spectral
asymmetries. The general idea is to divide the sum in the r.h.s. of (3.44) into two terms,
the sums of two series &/ (O, t) and Z(O, t). We call these terms the ‘anomalous part’
and the ‘remainder’, respectively. The first sum is not well defined at 7 = 0 and, conse-
quently, it is discontinuous for ¢ — 0*. However, o/ can be chosen in such a way that
for t > 0 the sum of the series can be calculated analytically as well as its limit for t — 0+,
In order to find &/, one can derive asymptotic expansions for the energy levels and Q(E).
Substituting into (3.44) the corresponding asymptotic expansions for these quantities one
finds a finite number of terms which are not continuous for ¢ — 0*. &/, can be defined
as the sum of such terms. Both o/, and % are absolutely convergent for ¢ > 0. It follows
from the definition of o/ that for some ordering {E}* of energy levels the sum of %,
is well defined at r = 0 and continuous for r — 0+, Thus,

Quac = lim Y A O, 1)+ Y RH(O,0) = A(O)+R(O). (3.46)
t-0*(E) {E}*
The first term above is a well defined analytical expression, whereas the second term,
the sum of a convergent series, can be calculated numerically.

We are interested in spectral asymmetries for quarks in chiral bags, so, we use the
classification of energy levels given in the preceding Section. The dependence of the energies
of single particle states on the quantum numbers P, x and ¢ will play a crucial role in our
further considerations. In order to simplify our formulae, and calculations as well, we
introduce a special symbol for the average

LY pekQ(, Pe) if K >0
% ZKPKQ(Ka P) lf K = 0

for any expression Q. Let us note that according to (3.10, 3.12-3.13) the average over
x and P can be replaced by the average over +© and n + 6.

It is convenient to consider separately the contributions to Q,,. from the states of
K=0and K> 0:

Q= { (3.47)

Qvac = QK=0+QK>0' (348)
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Assuming that the expectation values of O do not depend on M we obtain

Qx-0(0) = =2 11131 ; {Q.(O) exp (—1x,)> (3.49a)
and
QK>O(@) = —8 'lilgl+ Z <invs(0) €xXp (“txnva)>' (349b)

Let us assume now that

Qn = q0+ gni +Qm (350)
where
0,=00n"?% for n- (3.51)
and
{qgo> =<q1> = 0. (3.52)

From (3.22) we can easily derive the following asymptotic expansion for energy levels:

e s 1—sin @ -2
X(0) =nn+ — — — — +0(n""). (3.53)
2 4 2nn
We define
%.(0) ©_r (3.54)
X = —_—— .
| nw+ 5 P

and observe that replacing #x, by X, in the r.h.s. of (3.492) we make an error which vanishes
when ¢ tends to 0+ because

exp (—tx,)—exp (—tX,) = exp (—tx%,)0(tn" ") (3.55)

and

i exp (—tnm)O(tn™ ') = O(t In 1). (3.56)

n=1

Thus, using (3.50) we obtain

oc
QK=O - _2 Ilm ((qoet(x/tt-'eﬂ)) Z e-—trm:
t=0+ n=1

z : 1 z : ~ g
+<qlel‘(n/4-8/2)> s e~—tmt+ <Qne—txn>) . (3.57)
n
n=1 ne=1
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The third term above is convergent for ¢ = 0, so, the limit 7 — 0% is trivial for it. The
second term drops out because of (3.52) and (3.56). Expanding e"/*~%2 in powers
of 1, summing the geometrical series, and noting that <0,> = {Q,> we obtain:

9 oOc
QOx-o = -<-~7f-°> ~2 Z Q> (3.58)

Obviously, the first term in (3.58) gives a contribution to the anomalous part, whereas
the second term to the remainder.

Before we calculate Q. let us describe some properties of the positive solutions
of Eq. (3.27) for haif-integer v > 1/2. There is no such solution in the region x,,, << v.

Each solution can be uniquely related to fy(n, v), 0 < B, < 7/2, the only solution of the
equation

v(tan B, —Bo) = nx. (3.59)
Using the Debye expansion [35] of Bessel functions* which is valid for x,,,> 1 and

v

0< < 1l-n, (3.60)
xnve
where n = O(v~?/?), we can calculate the coefficients in the asymptotic expansions for
energy levels x,.,,:
' z: €0
Xpep ~ o + Q‘E(&’_:. ; ,,? (3.61)
cos flg v
k=0
or, equivalently, for
, 8,0
B = arccos (v/x,,,) ~ Bo+ E ﬂé&lf-—-» —) (3.62)
l
k=1

Substituting in (3.24) the corresponding asymptotic series for J,(x,.) and Ji(x,,.) we
obtain, see Appendix C,

12
B = (—232& [(21 +Dn+e (alcsm (sin B, cos @) — —Z—)] (3.63a)
L ot o PL 3.63
b= 20 cot” fo sin 2f, (3.63b)
&2 eft CO* /30 4B, ﬁz 4ﬂ (1+2sin’ ﬁo)
=72 sO— » .63
bs = 2C cot® o+ 4C? sin ﬁo cos © sin2f,  3sin? 2B, (3.63c)

4 See also Appendix C.
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etc. In Eqgs. (3.63)

C = /1—sin? B, cos® @ (3.64)
and /, is an integer,
1 +eC . 2 .
fi = cot Posin @—C“p, —eCd_+f; cos B, cos @ (3.65a)
i +a

&fy
J2 = B, cos By cos @ — ——— B sin @ — ac cos B, sin 20
(1]

n’ By
+ % ¢ sin By cos @ +4 (2, —P_ +8C ) cos By sin 20 +9. (3.65b)

In the above formulae

L= b (3.662)
2sin? B,
cot Bo(1+2 sin® By) (3.66b)
h 12 sin* g,
and
(8> = (&8> = 0. (3.66¢)

An apparent ambiguity in 8, can be removed in a natural way. Solving Eq. (3.24) numeri-
cally for given v, ¢ and O, and using as a starting point

R = g, 0 bo | (3.67)
cos Bo cos fiy

we can fix /, demanding that for large »
lxnva_)?nvel < L.
The above condition implies

I, = —1. (3.68)

However, cf. [9], other choices of /, can be also useful, so, below we treat /, as a free integer
parameter.
Let us now derive a sufficient condition for the finiteness of Q.. We rewrite (3.49b):

Qx>0 = >0+ &x>o = —8 lim [Z {VQ,e (717 — gtV e0s Boyy,

t—0+

+ X KvQype” e l] (3.69)
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and assume that for both series the limit # — O+ exists. The first series in the above formula
contributes to the anomalous part and the second term contributes to the remainder and
to the anomalous part. Let

€L

Qe ~ Z mi(Fo. €3 6) (3.70)

vl
j=0
and
{myd = {m;y ={my> =0 (3.71a)
ni2
dp, tan” fodm;) = 0. (3.71b)
0

If these conditions are fulfilled the remainder is well defined at ¢ = O:
'@K>O = —8 Z v<anz>‘ (3.72)

In order to calculate the anomalous part we expand exp {—#(x,,.,— v/cos fio)} in powers
of t, then we replace x,,, and Q,,. by the corresponding asymptotic expansions (3.61)
and (3.70). In this way we obtain

Hxro = —8 lim T 7P T T o (B es Ot I (3.73)
=0 k=1

t—=07* nv

A sufficient condition for the finiteness of /. is
=0 for k+j <2 (3.74)

Using the Euler-MacLaurin formula we replace the summation over n by integration,
cf. (3.59):

w2
v or
-;- oo — | dfytan® B, ..., (3.75)
Y1
n o]
then we calculate the sums over v using
FY vre ko = plcos? I Bo* TP+ O(1*7P),  p =0, (3.76)

and, finally, we obtain

n/2

g "
Hgso = . J‘ dp, sin’ Bol({myag) +<mya; > +{moaz))/cos fo—{meaoa,
)

—{my) In cos fo/cos? Bo] 3.77
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The last term in the above formula is the contribution coming from #.,. The lower
limit of the integral in (3.77) corresponds to § well into the transition region |x,,, — v/

= O(v'’?). In the transition region the asymptotic expansion which we are using breaks
down. Indeed, one can easily check that

ﬂmin = O(V-l/?’)’ (378)

where f,;, is the solution of (3.59) for n = |. So, from (3.61) we deduce that

Xpe—V = 0('3), (3.79)

The same leading v-dependence can be obtained from the asymptotic expansions of Bessel
functions in the series of Airy functions which is valid in the transition region. More
generally, we expect that the v-dependence of the leading contributions to spectral asym-
metries, but not their magnitude, can be obtained from the Debye expansion. This con-
Jjecture has been confirmed by explicit calculations for the baryon number of the vacuum
and for the second moment of ifs distribution. Thus, if our conjecture is true, the con-
vergence of the integral in (3.77) implies that the contribution of the transition region to the
anomalous parts of spectral asymmetries vanishes in the limit # —» 0*, whereas (3.71a-b)
imply that the remainder is convergent for ¢ = 0.

We have seen that the summability of the series in (3.14) is of vital importance for
our method based on the Debye expansion. We can ignore the contribution to spectral
asymmetries from the transition regions only if series are summable. In this case it does
not matter that the information about the transition region is rather poor, because the
contribution from this region is negligible anyway. However, when we consider series
which are not summable the contribution of the transition region may be important
and, consequently, results derived from the Debye expansion need not be true. Calcula-
tion of the Casimir energy for fermions in the chiral bag is an important example of this
phenomenon [40-42].

Let us now review briefly other calculational methods. Our aim is to illustrate and
compare different approaches rather than to give a complete list of relevant papers. For
some quantities like the total baryon number of the vacuum [36], the Casimir energy,
or the flux of the axial current through the surface of the bag [40, 31] one can express the
corresponding spectral asymmetry in terms of fermionic propagators or their derivatives.
Then, one can use cither the multiple reflection method [43] or the Debye expansion of the
confined propagator [44, 40] in order to calculate the leading behaviour of the quantity
of interest for 7 — 0+. For the total baryon number of the vacuum one can obtain the exact
result in this way [36]. However, these methods are applicable for a very limited class of
problems. Perhaps the most radical idea has been developed by the Stony Brook group
[41, 42, 45]. They abandon analytical methods, evaluate spectral asymmetries numerically
for a few positive ¢, and from these data they extract the limit when ¢ tends to 0t. Obviously,
this method has a few advantages. It is simple and applicable to any finite quantity.
Moreover, it is free from all possible errors or misprints of analytical approaches. Unfortu-
nately, this method has also some problems. It is difficult to estimate the accuracy of the
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method, and, moreover, the accuracy of numerical manipulations may seriously reduce
the precision of the results for rapidly oscillating quantities. The above-mentioned difficul-
ties are much less serious for the ‘analytically improved’ numerical calculations described
in our paper.

We close this section with a remark about the regularization-dependence of the results
for spectral asymmetries. In [12] it has been shown that the result for the baryon number
of the vacuum remains unchanged when the regulator of the Poisson method exp (—tE})
is replaced by another one from a broad class of regulators. The considerations of {12]
can be trivially extended to the case of the summable series discussed in our paper.

4. Applications

4.1. Baryon numbers of empty chiral bags [5]

Calculation of the baryon number of the vacuum in a spherical chiral bag is the simplest
application of the method described in the preceding chapter. We start from the observa-
tion that the baryon number of a quark is equal to its fermion number divided by N,
the number of colours. On the other hand for N_ colours we have an N_-fold degeneracy
of energy levels. Thus, the baryon number of the vacuum is equal to the fermion number
F,,. calculated for N, = 1:

B = —% liI;l ;xexp(—-tiEj). 4.1
=0t E
Consequently,
QE) =1 4.2)
and
go = mg = 1, 4.3)
whereas all other coefficients ¢, and m, are equal to zero. From (3.58) and (3.77) we obtain
1r/3
B, = —? + % J dfo sin? Bo (;‘;2;0 ——(aoa;>>. (4.4)

After some algebra, using (3.61-3.63) and the definition (3.47), we derive the following
expressions for the averages:

: {+cos® @) cos®
{az> =sin@cos@< cos " o ( 0s” @) co /o)

4C7 sin* Bo h 8C?*sin? B,
2 2 2 4
cos” fio cos” By cos” @ cos ﬂ0>
+sac (0, _— : 4.5)
¢ BO)( 4Csin* B,  8Csin’ B, + 8C? sin? B, (
and
cos B,
Capa,) = sac(0, B,) (4.6)

8Csin? f,
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where

arcsin (sin f§, cos @
sac (O, fy) = sin @ — - ( ,L )
sin fo

and C is defined by (3.64). Substituting these expressions in (4.4) and integrating by parts
the difference of two singular terms (~ sin2 f§;) we can express the resulting integral
in terms of elementary functions:

(4.7)

@ —sin O cos @ n ,
B,.(©) = RS CARRS ER 4.8)
The above result can be extended to other values of @ # (k+3)r. The symmetry relations
(3.15a-c) imply that
B,.(0)= —-B,(—0) =B, (0+n). (4.9)

For the ‘magic’ angles (k + 1) there exists a zero energy level in the spectrum of fermions.
in spite of the fact that in these cases the spectrum is CP symmetric, B, is non-zero and
fractional (+1). A comprehensive discussion of this phenomenon is given in the review
article [46].

I is noteworthy that the sum of the baryon number of the vacuum and the topological
charge of the bosonic field outside the bag is an integer number. This number changes
when the strength of the bosonic field at the surface of the bag crosses any of the ‘magic’
values. The change is exactly compensated by the change of the baryon numbers of valence
quarks and antiquarks in the bag. Thus, the total baryon number of the system
is a homotopy invariant as in the case of the pure skyrmion. Let us remark that none of the
contributions enjoys this property when considered separately from the others. For example,
the outside of the bag is topologically equivalent to a non-compact three-dimensional
Euclidean space which admits only the trivial homotopy class for the configurations of the
bosonic field.

4.2. Massive quarks [6]

In the preceding section we demonstrated that the baryon numbers of the Dirac
vacuum in the bag and the Skyrme soliton outside the bag add to an integer number. The
baryon number of the soliton is of topological origin, and, therefore, it does not depend
on mass parameters explicitly. The question naturally arises whether the baryon number
of the Dirac vacuum in the bag depends on quark masses. More generally, one can ask
about the dependence of B, on such ‘dynamical details’ of the model like the gauge interac-
tions between quarks or deformations of the surface of the bag. In our opinion the con-
sistency of the model requires that there is no such dependence, because the bosonic contri-
bution does not depend on these ‘details’. It is known [36] that continuous deformations
of the surface of the bag do not change B,,. for massless quarks. However, the above-
-mentioned conjecture is still to be proven. Such a general statement is out of reach for
our formalism. However, we can show that for spherical bags there is indeed no dependence
of B,,. on quark masses>.

5 See also [47).
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We consider solutions of mass m of the Dirac equation satisfying the boundary condi-
tion (3.1) at the surface of the bag. These solutions can be labelled in the same way as those
in the massless case. Let us introduce dimensionless quantities x = |E|R, i = mR and
y = \/;i_;,,;t.z. For k = 1 and P = (— )X the energy levels can be obtained by solving
the transcendental equations:

\/1 + §(1+sin @jo(y) = \/1 —Eeos 9j,(») (4.10)
X
for K = 0, and
1 v oo v
[(1-—- —)@3():)-{-] — 5 + —<1+ —2>:|COS o
x y X y
[ 2 sin @
- —z<2@v(y)+ ) =0 - @D
X y

for K > 0; cf. (3.20a) and (3.24), respectively. Replacing a solution ¥ by y; ¥, y,¥ and
1075 ¥ one casily derives the following relations, cf. (3.15a—)

EXNO,m) = EX(O+7, —m) (4.12a)
EJ(O,m) = ~E}(—O+n, —m) (4.12b)
EZ(O,m) = —Ef(~0, m). (4.12¢)

Thus, for the baryon number of the vacuum we obtain the following generalization of (4.9):
B,.(®,m) = —B,(—0,m) = B, (O0+n, —m). (4.13)

1t is easy to see that there is no mass dependent contribution to B,,, from the levels for
K = 0. As is evident from (4.10) the mass-dependent shifts of energy levels are of order
it/n. However, such shifts-do not contribute to B, cf. (3.56-3.58). For K > 0 the non-
-zero contribution to B,,, comes from the region x,,, > v and x,,, > 1 where we can use

nve

the Debye expansion of Bessel functions. We define f and B, such that

cos f = — (4.14)
y
and
v(tan By —fy) = nn. (4.15)
Let us introduce also the following decomposition:
A(Bo. ©, 1) = A(Bo, @)+35A4(Bo, O, 1) (4.16a)
A(Bo, ©) = A(fo, ©,0) (4.16b)

for any quantity of interest A.
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As already explained, only a few coefficients in the asymptotic expansion

e

v a(fo, &; O,
Xy~ e E (o “ # (4.17)
€os fiy v

k=0

for the energy levels contribute to B,,., cf. (3.77) or (4.4). Repeating calculations described
in Sect. 3.2 we obtain

nf2

(Oaz) ) . (4.18)

6B¥‘ac(69 }”) = —“8— J\ dﬁo Sinz ﬂo( "’(5(00“1)>
K
0

cos fig

Calculation of the averages in (4.18) greatly simplifies when one notices that:

1. each factor u *costs’ the factor v!, so, only terms linear and quadratic in u can
contribute

2. the averages must be odd functions of O.

These two conditions limit very strongly the form of the averages in (4.18): they must
be proportional to u sin @ f{cos? @). An explicit calculation, see Appendix D, shows that

(bayy = {¥agqay)y = 0. (4.19)
Therefore,
@ —sin @ cos O n
B, (O, m) = —— e O] < 5 (4.20)
7

4.3. Distribution of baryon number [7]

The method described in Section 3.2 is not directly applicable in the calculation of the
distribution of baryon number in chiral bags. When calculating the corresponding spectral
asymmetry we have to consider contributions from various asymptotics of Bessel functions.
In particular we have to cross the transition region

x = v4+2v'’3, 4.2D

where the Debye expansion used in Section 3.2 is not valid. From the calculational point
of view the problem is more complicated because the distribution of the baryon number
is given by a spectral asymmetry apparently ‘less convergent’ than that for the baryon
number. Conscquently, one has to calculate the asymptotic expansion for the energy
levels up to the order v-3, i.e., one order higher than for the baryon number of the vacuum.

We can avoid the above-mentioned difficulties by considering the normalized moments
of the baryon number distribution:

R
i '
MPe = T lim E K exp (—IEE?)jdrr”” fd()?’?l’E (4.22)
E 0
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cf. (3.32), (3.35)-(3.37) and the Appendix B. We write the radial density of the vacuum
baryon number in the following form;

Quac(r) = R7'B,(0)2,,.(a), (4.23)

where a = r/R and
1

§ dag,(a) = L. (4.24)
0
We can assume that ém(a) is an even function of ¢e(—1,1) and
Ouda) = (1—=a®*"'? Z dPCXNa), (4.25)

where C§? are the ultraspherical (Gegenbauer) polynomials [35]. Of course, the coefficients
dy) can be expressed as known linear combinations of the ratios u,, (p << n), where

A{,vac
Mmc *

w, = (4.26)

The parameter o > - 1/2 is to be chosen in such a way that the coefficients d5 tend to zero
for large n as fast as possible. If this goal is achieved we can gain a fairly precise informa-
tion about g, calculating a finite number of the even moments.

It is convenient to write M, as a sum of two terms

MP©) = MELo+MEL,, (4.27)

where M), denotes the contribution of K = 0 states and M{), is the contribution of the
other states. It follows that

MLy = =2 lim ¥ (M{Pe ™™, (4.28)

t—=0+ n=1

cf. (B.1) and (3.49a). Using (B.2) and (3.58) we obtain

MLy = Lo+ RELo, (4.29)
where
o
B, = 4.30
K=o = ST (4.30)
and
ALy = =2 3 (MP. 431)
n=1

Similarly, cf. (3.69), (3.77) and the Appendix B,

MEZy = AL+ AL, (4.32)



where
wf2
FED = — | dp, sin® Bo[((MmFPay) + (mPPa,)
V]
+{mPa,) cos™! ,80—m§,2")<a0m>}
and
ALY = —8 lim ¥ (yMEPye™"e0sbo,
t—>0% nv

The coefficients m{*? are defined by the asymptotic expansion

as
2 .
MEPD o E mP(Bo, &5 O)
nve vk .

k=0
From the recurrence formulae (B.14-B.16) we obtain, see Appendix E,

i ‘)
(zpy _
m + ——— W, (cos ﬂ

° 2p+1  2p+1 20 o)

P cos® B, dW,(cos Bo)

A0p+1)C Sint pod(cos fy “20(@:Fo)

mPPad = —
p -
+ @:—T) {Cot“ Bo(Wy,(cos Bo)—1) (1+C~?)

2p+1
+ 2

cot? BoW,(cos Bo)+cot? BoV2(cos /30)} sin @ cos O,

(mPPay> = P { cos® Bo dW, (cos Bo)

42p+1)C | sin?B,  d(cos Bo)
.2

— (Wy,(cos Bo)—1) (smcz(a

+cos? B, cos” @) cot® B,

2p+1
C2
where C is defined by (3.64) and sac (6, §,) by (4.7),
p~1
2p—2)!! @Ck+DY Ln
(2p—bHHt Ck+1) 2k

W,,(cos Bo) sin® @+ C*V,,(cos B,) cotzﬂo} sac (@, Bo),

W2p(x) =

p—1
@p=N N Gk L,
2p-n!! 2kt

k=0

V2p(x) =

53

(4.33)

(4.34)

(4.35)

(4.36a)

(4.36b)

(4.36¢c)

(4.37)

(4.38)
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and <a,), {aya,) are given by (4.5)-(4.6). Thus, calculating the integral in (4.33) numeri-
cally we obtain the ‘anomalous parts’ of the even moments. The ‘remainders’ can be com-

puted numerically from (4.34).
The results of this work as well as further details will be published elsewhere.

4.4. Isoscalar charge radius

The moment M3, cf. (4.22), gives the contribution of the fermionic vacuum to the
isoscalar charge radius of the baryon. For p = 1 the formulae (4.36a—) simplify consid-
erably. We obtain

me? = 1-%sin’ fo (4.39a)
cos* B )
mPa,y = o siﬁ?o (sin @ cos @ —C sac (O, B,)) (4.39b)
2
COS
(m$Pagy = — (1)—20!;9 (C? cot? By +2 sin? @) sac (O, Bo). (4.39%c)

From these expressions and (4.33) performing integration we derive

D) . i _- 1y—5 gj —2i
K>0 = — {2 tan O(1—{y tan @) — % sin 20 — % sin OB(y)}, (4.40)
where y == arcsin (cos @) and

¥

&(y) = j vduu (4.41)

sin u
o

We can also calculate the average

(m® = sin® @ cos® Py(1 +sin’ fo)
34T 12C% sin? B,
cos® B, sin® O cos’ B,

sin @ cos O
6C*sin* B,  2C*sin® B, }

cos® B, sin? @ cos® Bo(1 +sin® o)
6C sin* B, 6C* sin® B,

cos?@cos’ B, sin®20 cos’ B,
12C? sin® B, 8C®

YD (4.4
and the integral

s
9B, 09) = g dBo tan® BomS7(Bo, €; ©))
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1—-u . 1—u*—usin’® 1—u
= sin @ <cos @ 5y +
6 1—u®cos” @ 2u

u+wmmem@% sin’ @ Lﬂvl (4.43)
— = f’ ’

J1-utcoss @ \l—u?cos’@ = 2u?
where 1 = sin . Derivation of the above formulae is rather lengthy and we will not repro-
duce it here. Let us remark, however, that the formulae (4.42)-(4.43) match very well the

results of numerical calculations [9] int he regions where the Debye expansion used in Sec-
tion 3.2 is valid. Moreover, it follows from (4.43) that

Y(n)2, ©) = 0, (4.44)

i.e. the condition (3.71b) for the finiteness of #¢2, is fulfilled. Since (m{>) is a rather
complicated expression this condition provides also a fairly non-trivial cross check of
(4.42)-(4.43).

Let us show now that #), is finite. Let f,;, be the zeroth order approximation
of x,,., the first energy level for given v and ¢, and let v be large. When we are using the
Debye expansion f,;, is the solution of (3.59) for n = 1, and, cf. (3.78),

(m§(Bo, &5 ©)) = O(Bmin) = O(V*). (4.45)
Using the Euler-MacLaurin formula we estimate
/2

2 dmPy = % J dfo tan® BodmP> +L (mP(Bo, &5 O + ... = O(V*/?) (4.46)

Brain

and

Y WMEy = o(v™*?). (4.47)

Thus, the remainder #'2), is finite, and it can be rewritten in the following simple form,
cf. (3.72),

Ro(0) = — Y, 8V I AMED. (4.48)

v>1/2 n

Moreover, we can simplify the numerical task writing

—8y Y (MED & —8v Y (MUD +din(©), (4.49)
n n<N
where
an 8 f 2) v
KN & — ;5 12 <my (Byys 85 O)) — ; g(ﬁNv, 0) (4.50)

and By, is the solution of (3.59) for n = N, N> 1. In Fig. 1 we show the result for ZE
given in [9].
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Fig. 2. Second moment of the baryon number radial distribution in the vacuum: M*¥(0) (solid line,
Mgio (dashed line) and M}flo (dashed-dotted line)
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Numerical evaluation of the sum in Eq. (4.31) leads to the result which can be well approxi-
mated by the following formula:

o o\
23, = 0.298 — —0.128 (?> +9, (4.51)

where 8/22,! < 0.01.

In Fig. 2 M3 is plotted as a function of the chiral angle @ for 0 << @ < ; The

terms M, and M), are also shown. Symmetry relations:
M~ 0) = — M) (4.52a)
MPS(O+1) = M¥*(0) (4.52b)

provide an extension of these results for all values of @ # (k+)n.
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Fig. 3. The ratios MY2o/MK2e (solid line) and ME2o/MKLo (dashed line) as functions of 6

2o/ M o and M) o/ M), are shown. For the uniform distribu-
tion such a ratio would be equal to 3. Calculating higher moments and inverting them
as described in the preceding section we can check [7] that the contribution of the K = 0
states is nearly uniform. The curves plotted in Fig. 3 suggest that the same may be true

for the contribution of the other states.

In Fig. 3 the ratios M-

5. Other charges

5.1. Motivation: Cheshire cat hypothesis

The more sophisticated bag models of hadrons become, the less precisely they seem
to determine the bag radius. This observation put forward in {48] has led the authors
of this paper to the so-called Cheshire cat models (CCM). In CCM the bag in an unphysical
concept, having mainly to do with the fact that the effective mesonic theory, say, given
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by the Skyrme lagrangian, may be not accurate enough. According to this idea for exact
bag models the physics should be completely independent of changes in the size or shape
of the bag. Thus, fitting the bag radius in a particular model one minimizes the effects of the
errors of this model. A model without errors should lead to an undefined bag radius. In
141 space-time dimensions this remarkable idea can be realized in models for which boson-
ization is known to be exact®, In 3+ 1 dimensions the situation is much less clear. However,
one may still hope that CCM is a good approximation of reality.

Coming back from the heavens to our harsh world we have to choose a model with
tractable bosonic and fermionic sectors and check whether the results are indeed insensitive
to the bag radius, at least for some range of this parameter. A natural idea is to consider
non-interacting quarks in the bag surrounded by the hedgehog configuration of the pion
field. Then, the requirement of chiral invariance can be fulfilled if an interaction between
pions and quarks is added at the surface of the bag [28]. The form of this interaction is fixed
by the chiral symmetry and the boundary condition (3.1) follows from the lagrangian
obtained in this way. According to CCM the physical quantities should not depend on the
bag radius R, so outside the bag the strength of the pion field, or in other words the chiral
angle 8(X), should be the same as in the pure soliton case. Thus, the function 6(X) is the
solution of the Euler-Lagrange equations originating from the Skyrme lagrangian for the
boundary conditions 6(0) = —n, 8() = 0, cf. Chapter 2. The CCM implies that

O = 0(R), (5.1

where
d = ¢eF, 5.2)
R = dR. (5.3)

In Fig. 4 we show the result for the second moment of the baryon number distribution
in the proton which follows from the model described above [8]. In this figure the contribu-
tions from the soliton, the vacuum, and the valence quarks to

Yoo = M5+ RAME+ MY (5:4)

are shown. In (5.4) {r2),., denotes the square of the isoscalar charge radius. The two scales
drawn for the figure (i.e. the bottom scale @ and the top scale R) are related by the condi-
tion (5.1).

In the region —n << @ = —n/2, where there are no valence quarks in the baryons,
M3 (dashed line) is equal to zero. For ©® > —n/2 the valence quarks occupy the lowest
energy level in the bag. Their contribution to {r*),_, increases like R? for large R and
becomes dominant for large bags. M}* does not vanish when © tends to — /2 from above.
Thus, M3 is discontinuous at @ = — /2. However, the total contribution of the fermions
in the bag, i.e. the sum of M3 and M}, is continuous.

As we see, for our simple chiral bag the Cheshire cat hyphotesis works reasonably

6 See e.g. [49] and the references quoted therein.
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well for R < 2.5. In particular for 1 < R < 2.5 we can see some indications for the CCM
because M; falls while the fermionic contribution rises, and they roughly compensate.
In the region R > 2.5 the valence quarks take over. The contribution of the pion cloud
is already small in this region and its variation cannot compensate the increase coming
from the valence quarks. This is not surprising because we have switched off the gauge
interactions between quarks, and this approximation is rather poor when the bag radius

- e
. .
Ot—-—rme— e — '/‘, \<
7
1 { H L~ § 1
- -7/ 0

Fig. 4. Contributions to d2{r?)y=, (solid line) from: soliton——Mf (dotted line), vacuum -— RZM;’“
(dashed-dotted line), and valence quarks — RZM;”ll (dashed line)

becomes comparable with the confinement scale. Therefore, it is plausible that the Cheshire
cat principle can be applied to the chiral bags discussed in our paper and the approxima-
tion obtained in this way is reasonably accurate. Taking this seriously we are immediately
led to the conclusion that the vacuum in the chiral bag carries not only baryon number
but also other quantum numbers like spin’, isospin and strangeness in the SU;¢y,.0., Case.
In particular for —n << ® < —n/2 the variations with R of the skyrmion contributions
to these quantities must be compensated by the variations of the vacuum contributions
if CCM is to work.

In order to prove the conjecture that it is possible to obtain non-zero contributions
from the vacuum polarization not only to baryon numbers but to other quantities as well
one has to calculate appropriate averages over single particle energy levels. In principle
such calculation is similar to the calculation of spectral asymmetries for the baryon number,

7 Induced fractional angular momentum has been found in (2 + 1)-dimensional QED [50].
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as described in the preceding sections. However, such work is still to be done. In what
follows we show that there exists a coupling between the modes of collective motion and
the single particle energy levels for quarks in chiral bags. Spin, isospin, and other internal
quantum numbers are related to the collective motion of the bag. Therefore, such a coupling
is mecessary if the vacuum is to contribute to these quantities.

5.2. Spin and isospin [10]

Let ¥y, be a solution of the Dirac equation for massless quarks and the chiral boun-
dary condition (3.1) for given X and M, cf. 3.1. The action S for the chiral bag, see (2.8)
remains unchanged by the following global rotations:

U-U=AUyA™’ (5.5)
You— P = ADPW, (5.6)

where A is an SU, matrix acting in isospin space, and D™ is a matrix from (2K+1)-
-dimensional representation of rotations in K-space. Thus, the system posses zero modes
which have to be treated by the method of collective coordinates.

Following [3] we consider 4 and D™ as time dependent operators and write:

A = ag+iaT, = ag+ia - 7T, 5.7
where
aa, = ag+a-a =1 (5.8)

and 7, are the Pauli matrices acting in isospace. Rotations in K-space are parametrized
in a similar way: a transformation of ¥y, is specified by the transformation of the funda-
mental representation, i.e. by some SU, matrix B:

B = by+ib- G, (5.9
where
b,b, = 1. (5.10)

The lagrangian of the collective motion reads:

Lot = 2hiyd,+ L, (5.11)
where
Lo = i | Pr¥iyDFNDM + ATADT) Py, (5.12)
and [3]
PR jdXXzsinz 9(X){1+4(8'2+ Sinzze)}. (5.13)
6e’F, X
R
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Calculating the matrix elements in (5.12) we obtain:

1—a, )
gcf — _2]\/[1/ (ba’ ba) — ~§;<-—~ 'iﬁj(lla, dz)fj(b1)~ (514)
where
Wby, b,) = bohy—bybo+b by—byb, (5.15)
YV {ay, d,) = agd;—ajdo+e;pd,d, (5.16)
.g’-j(ba) = ."W{(b(z)—bkbk)éj_x+2bjb3_8jr3b0br}' (517)

In order to derive the formula for the rotational shifts of energy levels we perform canonical
quantization of the system [51]%. We calculate the canonical momenta

agcoll
P = —/— (5]83)
éa,
agcoll (5 lgb)
T, = —— .
" ob,
and the hamiltonian of the collective motion
3
. (AN t—a, 7\
'%pCoH = pzaa+n:ba—jcoli = g Pt 1K jj ‘(gd‘_ﬂ-( . (519)

a=0

We see that the n’s do not depend on the generalized velocities. Thus, Egs. (5.18b) should
be considered as the following set of primary constraints:
¢ +2M on” 0 (5.20)
. = T, — = 0, .
db,
These constraints are all second class because the matrix of Poisson brackets for constraints
has a non-vanishing determinant. Following the standard procedure we calculate the
canonical Dirac brackets and obtain the following canonical commutation relations:

[év ﬁﬁ} = i(sa[i (5213)

PN A i
[bla bz] = [bo, b3] = m (5.21b)
[#1, 2] = [Ro, #5] = iM (5.21¢)
[Btz’ ﬁﬁ] = é'éaﬂa (5.21d)

whereas all other independent commutators vanish.

8 For a recent pedagogical review see [52].



In order to write the hamiltonian in a form in which its symmetries become explicit
we define three sets of operators:

Sjo= %((?jﬁO_‘}Oﬁj+£jlrtndlﬁpn) (5.22)
P = Y(dop;— a;Po+jumliPm) (5.23)

and j’j define by (5.17). It follows from the commutation relations (5.21) that the commu-
tators of the operators from the different sets vanish and each set forms an SU, algebra.
In our method of quantization the constraints (5.8), (5.10) limit the Hilbert space of states
to the subspace of physical states H,, . For a physical state

PubalPonysy = 2AF2+ L) iy (5.24)

and
T Hbopysy = (MP=2) [pnyed- (5.25)

where £ = 4 i £ ; et c. The quantum hamiltonian acting in H ., can be written as follows:

phys

4P N—a, . 5 (1-a)’ 72

'#coll = - N T i%
44 4.K

A

S 5.26
7t 32iK* (5.26)

The shifts of quark energy levels depend on both © and the modes of the collective motion
of the whole system. Thus, the spectral asymmetries corresponding to the vacuum expecta-
tion values of spin and isospin may be non-zero.

5.3. Strangeness

A lot of studies have been devoted to the problem of other flavours; for a review see
[53]. In spite of interesting results concerning quantization of skyrmions in this case [27,
54}, the outcome of the studies for pure skyrmions is unsuccessful from the phenomeno-
logical point of view. Ass hown in [55] the pattern of energy levels for the lowest octet and
decuplet of baryons resembiles the experimental data but the overall scale of energy splittings
1s too small; however, see also [56]. Since this scale factor is related to well establish param-
eters like F, and the masses of pseudoscalar mesons we have to conclude that the Skyrme
model is unable to describe the spectrum of baryons for more than two flavours. It is possible
that for chiral bags the situation may look better but calculations are still to be done.

Callan and Klebanov [57] have argued that baryons carrying heavy flavours can be
described by bound states of the corresponding heavy measons in the background field
of the basic SU, skyrmion. In particular hyperons can be considered as bound kaon-
-skyrmion systems. They have shown that the bound states exist in the channels needed
to reproduce the quark model quantum numbers of strange baryons. Moreover, model-
-independent mass relations derived within this approach work very well. From a more
theoretical point of view one can show that the baryonic current is conserved, despite
a defect of the bound state wave function at the center of the soliton [58].
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In {59] it has been shown that the distribution of the baryon number in hyperons
resulting from the model of [57] is not spherically symmetric and reads:

1 ’ .2 ) .2 Q . y 6
o(r, 9, ¢) = -~ b {9' (sm“ O cos* : +1sin’ y cos® o+ sin* - cos* - - cos’ IJ)

“ft

¥

@ ~
+7' sin O cos? Y siny (c052 —:~ +sin? %-cosz 9)% (5.27a)

for the ground states and

., O
sin® ——
2 {. P I o B
or, 3, ) = =55 0" | 1 +(1 +2cos @) cos y+4sin” —sin” — cos” 3
nr 2 2
+2 cos O sin* g) ~7'sin @ sin y (cos2 —iy— +sin? -z— cos? 9)} (5.27b)

for the odd-parity excited states. The function y gives the strength of the kaon field for the
bound state, cf. [59]. If follows from (5.27a) that the ground states of hyperons are larger
than the ground states of non-strange baryons [60]. However, (5.27b) implies the opposite,
i.e. the odd-parity excited states are smaller than the ground states of non-strange baryons.
This result is indeed unexpected.

The lack of spherical symmetry for hyperons in the Callan-Klebanov approach should
be manifest for the corresponding chiral bags as well. Consequently, the wave functions
of quarks in the bag are not K-symmetric and degeneracy of the energy levels with respect
to M disappears. Thus, the calculation of spectral asymmetries becomes nearly impossible
in this case.

6. Summary

The fermionic vacuum in the chiral bag carries a non-zero baryon number. The sum
of the baryon numbers of the vacuum, valence quarks, and the pion field outside the bag
is an integer number which does not depend on quark masses and at least in the massless
case on the shape of the bag as well. We give arguments showing that the baryon number
of the whole system is a homotopy invariant which should not depend on ‘dynamical details’
like for example gauge interactions between quarks.

The effects due to the vacuum polarization by a topologically non-trivial configura-
tion of pion field can be described in terms of spectral asymmetries for corresponding
operators. A convenient method for calculation of these spectral asymmetries for spherical
chiral bags is to use the Poisson method, or equivalently the point splitting regularization
technique, for summation of the corresponding summable series. Then, using the Debye
expansion of Bessel functions we can express the spectral asymmetry under study as a sum
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of two pieces: an ‘anomalous’ one which can be calculated analytically and a ‘remainder’
which is convergent without any regularization and can be evaluated numerically. The
method allows calculation of the vacuum baryon number as well as of its distribution in
chiral bags. The calculations performed so far support the Cheshire cat hypothesis for
chiral angles @ near the ‘'magic’ value —n/2. It follows from the Cheshire cat principle
that the vacuum in chiral bags should carry other quantum numbers like spin and isospin.
Considering the collective motion of chiral bags we have derived the quantum hamiltonian
of the collective motion which may result in non-zero vacuum expectation values for these .
quantities. Extension of the chiral bag model to more than two flavours turns out to be
difficult from the calculational point of view. In particular a recent proposal to consider
strange baryons as bound states of SU, skyrmions and kaons results in a non-spherical
distribution of hadronic matter in hyperons. A corresponding chiral bag would be also
non-spherical, if the Cheshire cat principle is applicable in SU, case. Thus, the calculation
of spectral asymmetries for more than two flavours becomes very difficult.

I would like to thank Professor Kacper Zalewski for a lot of discussions during our
work on problems discussed in this report, as well as for an encouragement afterwards.
1 have benefited from discussions and collaboration with Krzysztof Heller, Pawel Mazur,
Michat Praszalowicz, Maciek A. Nowak and last but not least Mannque Rho. 1 thank
also many other colleagues from the Institute of Nuclear Physics and the Jagellonian Uni-
versity in Cracow, the Max-Planck-Institut in Munich and the Theory Division in CEN
Saclay. In particular I am indebted to Hans Kithn and William Thacker for helpful remarks
about the manuscript and to the Authors of Ref. [61] for their work which was of much
help in the course of preparation of the present paper.

APPENDIX A

In this Appendix we specify our conventions for the spherical harmonics, 6/ symbols
etc., and we give a derivation of Eqs. (3.16)-(3.19).

Our conventions for spherical harmonics and addition of angular momenta are taken
from [32, 34]. The spherical harmonics Y;,, are defined as follows

m+{miy/2 . (2[—%1)({—””;)’ 12 m im
Yl,m(’ga ‘P) = (_1)( *l 1)’211[: 4n(ﬁ]imi‘_)~"~ Pt1 I(COS 9)3 Sy (AI)

where the associated Legendre polynomials are defined by

1 l+m
P'(cos 9) = —sin™ 9 - —— - (cos® §—1)\. A2
(08 8) = Zqp S0 8 cos gy (907971 (A.2)
In particular for ¢ = 0 we have
214+1

Yim(As) = ' [ = Gpo (A3)
4r
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The spin-angular functions ¢, see (3.4), read:

J+m \/j—m
= Yymetjz+ —212Ym A.da
¢t+1/2,1 \/ 2 K2 dym—1/2 2 X-12X1m+1)2 ( )
j*—m+1 \/]T“m-i—_l
_ w=— .J— Yimetippt J———— 112 Yim . A.4b
& 1/2,1 \/ 2+2 X2 dim—-1y2 2%+2 X-12Xm+1/2 ( )

The formula (3.16) follows immediately from

ig n¢li1/2,1m = T—d’zil/z,tix,m (A.5)

because the operator & - 1 acts trivially on the isospin eigenfunctions A,. In order to prove
(A.5) we note that - n does not change the total angular momentum

J=L+S (A.6)

of a state and changes its spatial parity. So, the |.h.s. and r.h.s. of (A.5) must be proportional.

Due to rotational symmetry the proportionality constant cannot depend on m, and its

modulus is equal to one because (7 - n)> = 1. Then, comparing the phases of b1:1,2,1m and

Gi51/2,161,m at & = 0 (i.e. for n = n,) and using (A.3)~(A.4), we fix the phase in (A.5).
In order to prove (3.17) we introduce an operator

T=1+L, (A7)
its eigenfunctions
Ctlm = Z <1/2a o, I, m-—aglt, m>)“aYl,m—a (A8)
e=14
and define
éKth = —Zi} <ts M—'O', 1/23 GIKM>CH,M—6X¢ (A9)
which are the eigenfunctions of
K=T+S, (A.10)

cf. (3.2). Using a relation between the Clebsch-Gordan coefficients
o M3 dz, molj,my = (=17 172y, mys iy, mylj, m), (A.11)
we deduce from (A.5) that

it - ';Cl:tl/z,lm = iCu:x/z,lt 1,m (A~12)

and, consequently,

T mkis120m = Téxar1/2051.M (A.13)
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The two sets of eigenfunctions of K, ¥y, and £y, are related by an orthogonal transfor-
mation, see [32]:

2 — It
Yom = (— A+l+1 /(2]+I)(2t+l) 1~ K j} Exums (A.149)
where { } denote 6 symbols. The relation inverse to (A.14) reads:

Cxum = Z (- DXt \/(21"‘;%-1)(2t+1~){
i

Now, we rewrite the Lh.s. of (3.17): we use (A.14), then (A.13), and then (A.15). In this
way we obtain the following identity:

I 1t
K j} Wy (A.15)

(S SEY

T n%isiom = — % Y BRIFE+DVQIET+1) QU+28+7+1)
f=%1 y=+1
B B
11 I+3 5 1+B l+—2—
o [ Pxiraraarsom (A.16)
3+ K I1+$ T K l+ﬁ+-

All 6j symbols which appear in (A.16) can be evaluated from the formulae [32]:

a b c _ i (s—2b) (s—2c+1) T?

{% c—3 b+—12-}—(_1) [(2b+1)(2b+2)2c(2c+1)] (A.17a)
’ 1/2
{a ’ 1 : 1}*(— )‘[ ~(5+Q~(i:@] (A.17b)
3 ¢—3 b—3 2b(2b +1)2¢(2c +1)

and the symmetries of 6j symbols: permutations of columns and simultaneous transposi-
tions of upper and lower elements for any pair of columns do not change their values.
In(A.17) s = a+b+c. Substituting the numerical values for 6f symbols in (A.16) we obtain
(3.18-3.19).

APPENDIX B

Moments of the radial distribution of fermion number

For the states of K = 0 the p-th moment is defined by

MP = R~ "f drrfo(r), (B.1)

where g, is given by (3.32). Thus,
M® =1 (B.2a)



67

Cin (2x,)—sin® x,

M =1 .
n= 2(x2 —sin” x,) (B.2b)
1 1 1 N
W=t _xp —3 sin 2
P+l (x,—sin“x,)| 2(p—1) 27xP 2
p—1
sin? x,  cos 2x, —2)!' cos (2x,+kn/2
in” X, P (r—2) (2%, ! /2) (B.20)
p+1 2 2 (p—k—-1)! (2x,)
k=1

In the case X > 0 we start from Egs. (3.29) and express the spherical Bessel functions
in terms of the ordinary Bessel functions:

, n
in(@) = [ 5 1@ (B.3)
In this way we obtain (3.37), where

Li(x) = xlz j duu {Jf(u)—}—% [J3 ) +JT2 0]+ ?[Jfﬂ(u)—Jf_l(u)]}. (B.4)
(1]

Let us consider the following expressions, 4 > 1

- SN
LA(") =1 (")'*’ [I +1(“)+I 0]+ _2'[Iv+1(x)"15—1(x)]s (B.5)
where
IXx) = x7 771 | duutTH(u). (B.6)
11}
Integrating by parts and using the Bessel equation we derive the formulae:
A-1[ v (A=1)? o,  i—1 (A-D?
It = — e (AT g e 2 B.
! Y [xz 4z? :, + % T I a7 (B.7)
2
Y v .
By = Ui+ — II72F W)t (B.8)
X X
where &/, is defined by (3.39), and
y 1 Agr2
U; = duu*J “(u)
x
0
-1 VT, JJdy A
= I T lpre 9
[ 2x¢ X2 X 2x? J (B-9)

X

1 A
w} = J duw’J (WI(u) = 1J —iﬁ“. (B.10)

0

~l
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Putting everything together we obtain:

24 =12 o, JJ, (v, 11

In particular, for A = 1 we obtain (3.38), and, as it follows from (B.7),

Il =

v

il B.12
5 (B.12)

so, from (B.11)-(B.12) we derive (3.42). Obviously, the p-th moment defined by (3.36)
can be written as

L’i+l
M) = —[‘_ (B.13)
so, using (B.7), (B.11), we can calculate an arbitrary even moment. Thus,
@ _ 1 . L 2 va, +% 2
"t 2p+1l L) 2p+1 x* T
I B A (R (B.14)
' 2p+1 x* 2\ 21 /] )
where
o, JJ, Jf
1274 = w (v¥x?, x'z)?- —v, (Vx?, x7%) 2,,1 +u(vix? x~ ) (B.15)
and
( 22 (g b Dy (3 D)+ e (B.162)
, Z)w z . .16a
we(y, 2) = FraTitan P D)W, 1(y, prl
( 2 (9 b D0y sly, D+ b (8.16b)
y 2 z)v , Z .
"’y’2+1y" et B el
2 2
Uy, 2) = o—— (y =P’ D4y, 2)+ (B.16c)

2p+1 2p4+1°
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APPENDIX C

Asymptotic expansions for energy levels

In this Appendix we give a derivation of Egs. (3.63a~c). Then, we discuss relations
between asymptotic expansions in various regions in the plane (v, x,,,). From the Debye
expansion of Bessel functions [35]

2 ) - uy(icotp)y . . Uz +1(i cOt B)
I ~ \/nx sin ﬁ{cos i Z T Tismy R (€

k=0 k=0

2si - *axld cot =, i cot
J(x) ~ \/ :: ﬂ{——sin p Z raud s 2 —icosy Z f}ﬁ;’;{;l—@} »  (C2)

where

v
Ccos ﬂ = “J_C_ (C'3)

p = v(tan f—f) — —Z-, (C.4)

and the equation (3.24) for the energy levels we obtain:

sin @

1
sin 2y = cos & sin B+ —{ (14cos2yp)cot B
v
ﬂ —cos 20 B(1+2sin® B)
g Y T oand

3cot? f+5cos* B

4 +D,(f)cos ©

1
+ -3 {sin O sin 2y
v
+D,(B) cos @ cos 2+ D;(B) sin 21,0}+0(v~ 3. (C.5)

The functions D; in the above equation do not contribute to the ‘anomalous parts’ of the
quantities discussed in the present paper, so we do not give explicit expressions for them.
Writing

fl(ﬁ()a ﬂl) f2(ﬁ0’ ﬂls ﬂZ)

sin 29 = sin B, cos @ + + 5 + .. (C.6a)
v v

s
cos 2y = E{C ixlﬁ_o.cos

Ji(Bo, Bi)+ .. } (C.6b)
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where C is defined by (3.64), and putting (3.62), (C.6) into the r.h.s. of (C.5) we derive
an asymptotic expansion for sin 2y. Then, we calculate sin 2y from the definition (C.4)
replacing B by the asymptotic expansion (3.62) and using (3.59):

2eC i
sin 2y = sin (28, tan® fo—m/2)+ — {ﬂz tan® f, + 2 .Sﬁls'g_"}
v cos” f,

sin ﬁo

cos? B,

1+2sin® g
+B3 °]

3cos* B,

+ V—Z{zsc [ﬂ3 tan? B,+2B.5,

. 2
—2cos @ sin f, [ﬂz tan® B, + B3 sin fo ] } +0(v™). (C.7)

cos® B,

Comparing coefficients in these two expansions we derive (3.63a—c).
In the transition region
Xpe = VE2zV? (C.8)
the expansions (C.1)-(C.2) break down. We can use another Debye’s expansion in this

region [35] and express the Bessel functions in terms of the Airy function and its deriva-
tive. Let

©

Z
ZNZ;’?%. (C.g)

k=0
From this expansion and (3.28) we obtain
Ai(=2"%2z)) =0 for e=1, (C.10a)
Ai' (=2"725) =0 for &= —1. (C.10b)
Thus, for the solutions of the equation for the energy levels
25 > 0. (C.11)

Using the asymptotic formula for the n-th zero of the Airy function (or the zero of its
derivative), cf. [35], we obtain

3n(4n—1)
zo & 273 [Jc(—g“-)] , (C.12a)

to be compared with

3 2/3
CLLONSIRVEIE (C.12b)

Xpye = V+

the result obtained from (3.59) for n fixed and v — . We see that the v-dependence of
|X,. —v| obtained from the expansions (C.1-C.2) is the same as those derived from the
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expansion valid in the transition region (C.8). 1t is noteworthy that this observation seems
to be more general. For example, from (4.5) we obtain for fixed » and v> 1:

Y

v 2

ey = + .= 00" %sin"2 By) = O(v™*3), (C.13)

whereas the first non-vanishing average of the coefficients z, is {zs).
Let us consider the region x,,, < v, v>» |. In this region

exp {v(tanh a—a)}.

J(v/cosha) ~ —— i + .. (C.142)
v 2nvtanh o
sinh 2a
J'(vjcosh a) ~ ﬂ‘;—i‘f exp {v(tanh a— o)} + ... (C.14b)
vy

Substituting these expansions for J, and J, into (3.24) we find that there is no energy level
for large v > x,,, outside the transition region (C.8). Thus, taking into account (C.11)
we conclude that there is no solution of Eq. (3.24) for x,,, <<v and v > 1. Solving (3.24)
numerically we check that there is no solution in the region x,,, << v for v = 3/2.

APPENDIX D

In this Appendix we give a derivation of Egs. (4.19). Let us introduce the asymptotic
expansion

v b, b,
P~ dot -+ 5 (D.1)
0s fo v v
Bx
B = arccos (v/y) ~ — (D.2)
v
k=0
where B, is defined by (3.59). One can easily check that
sin B
= D.3
0 = Cos? Bo by (D3a)
2C 2
ay = b+ % bo (D.3b)
% cos?
ay = by~ 1% Po (D.3c)
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. . 2
by = ;é?;ﬁl% Bs+ %;Sg? fﬂf—" BiBs+ 5%2£°)- ; (D.3¢)
and, cf. (4.16a-b),
Bo = Bos (D.4a)
By = B, (D.4b)
dg = dg. (D.dc)
It follows from (D.3b-c) that
{az) = <by), (D.53)
{agay = {agh,). (D.5b)
Let us rewrite (4.11) as follows:
sin 2y = F (B, O)+F2(/3, o, u, (D.6)
where
F (B, 0) = C;):ﬁ"-’ {(@f-}-sinz B) cos @ +2(2, +sin § tan )+ Sjﬂ%cﬁsf } (D.7)

2
. Cos
Fy(B, 0, 1) = — w{ﬁcos O(1 +cos® f—2?7)
sin f {x

+ (\/ I- % ~1> (29v+ S~in~~e—vco—5/-})} (D.8)

and 9, is defined by (3.26). We introduce asymptotic expansions

=2}

I = 3 s ;@5
Fi(B,0) ~ Fi({B.), ©) = Fy({B, 0)+ Z 8l 210019 (D.9)
k=2
and
ol ;€5 0,
Fy(B,0, ) ~ Z iuj?—fk °.n (D.10)

k=1
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Comparing the coefficients in (C.7) and (D.9, D.10) we see that

8p; = Z—hécot’ Bo (D.11)
is an even function of @. Thus,
(8(aph,)) = 2’2’0 {agdpy> = 0. (D.12)
As for f3; we have:
(B3> = 2ﬁ" C”" (cos @B,h,>. (D.13)

From (D.8), (3.63b) we easily obtain:

Ccos Ofh,> = Z sin © cos? @ cot* Bo(1+cos? fy) (D.142)
Cehy> B in @ cos? @ 5 Po (D14.b)
en = - - Sln COS™ e .
? 2C sin By

When calculating {eg,> we notice that the coefficient g, can be obtained from the r.h.s.
of (C.5). Moreover, only the term

1
-——sin O cos 2y cot f§
2y

contributes to the average of interest, and

c
Cog2y = = #E sin © cos @ g:_ﬂ%" (D.14c)
From (D.11), (D.14) and (D.13) we obtain
B3> =0 (D.15)
and, consequently,
{éby) = 0. (D.16)

Equations (D.12), (D.16) and (D.5) imply (4.19).

APPENDIX E

In this Appendix we give a derivation of Egs. (4.36). In order to calculate the averages
which appear in these equations we have to calculate the first three coefficients in the
asymptotic expansion (4.35). Qur task is even simpler because we know that the averages
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in (4.36) must be odd and periodic functions of ® with period n. Moreover, the results
must be proportional to sin @. These observations reduce seriously the number of those
terms in the expressions for the coefficients m{*”’ which can contribute to the averages in
(4.36)°. For example, when calculating <m(2"’ao> we have to know only the part of m{*?
antisymmetric in @ because a, is an even function of @, cf. (D.3a). Then, for the terms

1
which depend only on § the leading order in -— does not depend on @ because f, does
v

not depend on @. The next-to-leading order is proportional to fi, and, consequently, it is an
even function of @. A non-zero antisymmetric part appears in the second-to-leading order.
However, it is periodic with period 27. Therefore, when calculating m§*”, m®? and m$*?
from (B.14) we can replace I2*™! by

o, JJ, co;ﬁ
177! = %,_,(cos® B) ——-——up , (cos? B) ~; ------ ; (E.1)

where
Wy(3) = wy(y,0) (E.2)

etc., cf. (B.15), (B.16). Then, we use Eq. (3.24) for the energy levels in order to eliminate
J,J, in (3.38) and (B.14), cf. (3.39),

I A, 9+sin9cosﬂ£ E3
Wy = — —— | COS —“"'—.'"""/v’ .
2 2y sin’ B (E.3)
where
c 2 012
sin” J;
. = B . (E.4)
B4

Yy

In this way we obtain:

I = o {l_i(cos@cosﬂ
v A4 2

1
+cot’ fu, B ) 57 sin @ cot? ﬂgav} (E.5)
v v

and

1 2
M =+ Py (cos )

2p+1  2p+1
+ 1] 2 cot? B(W,,— 1), B, + pW, o, + P cos BV,,cos @
v |2p+1 F P 2p 4 F
+ 1y » cot® BV,,®#, sin @ +even (@) + ..., (E.6)
vi |2p+1 i

? This reduction is even more important when one calculates (m{??).



75

where
sz(y) = )’zwp—x()’z) (E.7a)
Vo) = 32 [%pe i 07 +8,-, 0] (E.7b)

The asymptotic expansions for #, and «, read'¢

14+¢eC  sin B, cos Og

A,
2 v

1 ; ~ -~ .
+ — {~hsin By cos @ —eCg’ + ¢, g sin® B, cos® O +even (O)} + ... (E.8)
v

in? @
e (sin @+ 2sin B, cos OF,)

&
o, = Ecosﬁo cos O —

in? © 3sin2
- E.S_l;a_?- {[,‘2 sin fi, cos O + %@ﬁﬁ‘ sin @ cos? (~)+6} + ..., (E.9)
v .
where (0) = <{&é> = 0, and
- +C
g = £4C cot B, sin @ + %BCL cos fBy cos @ (E.10)
2 sin B, 1+2sin? B,
h = B, tan* 5. E.11
ﬁ3 an :BO+ 53 ﬂo ﬂlﬁz'*‘ 3COS4 ﬂo ﬁl ( )

As we see, in the leading order 4, is an even function of @. This is why in (E.1) we can
neglect the term proportional to u,_,. From (E.6)-(E.10) and (3.63) we can easily
derive (4.36).
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