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The schematic model of pure hard core neutron matter proposed by Dabrowski et al.
is generalized to finite temperature, where the attractive part of nuclear forces is treated as
a perturbation. We calculate the potential energy, the energy per neutron, the volume and
symmetry pressure, the magnetic susceptibility, the effective mass and the velocity of sound
as a function of temperature. Our results are compared with previous calculations.

PACS numbers: 21.65.4-f

1. Introduction

It is a matter of interest to study the interior of pulsars which are objects emitting
electromagnetic pulses at regular intervals between 0.03 and 4 sec. It was pointed out [1]
that the most probable candidate to explain pulsars was a rotating neutron star. Today most
of our understanding of the structure of neutron stars comes from the study of theoretical
models. Neutron matter is one of these models which was studied using different potentials
with different techniques. Neutron matter is an infinite homogeneous system of interacting
neutrons at densities ¢ > g, where ¢, is the typical nuclear matter particle density of
nucleons in ordinary nuclei. Neutron stars are considered to consist, to a large extent,
of neutrons at densities ranging from g, to 20g,. As a first approximation the neutron
star matter should be neutron matter. The thermal and dynamical properties of neutron
matter are of interest for the discussion of heavy and super heavy nuclei as well as for the
calculation of equilibrium states of neutron stars.

Some of the first energy calculations for neutron matter were done [2] by using the
reaction matrix theory at small densities. It was found that neutron matter is unbouynd.
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This has been confirmed by all later calculations. The dynamical properties of neutron
matter at finite temperature were studied by Walecka [3] and Toki et al. [4]. In their work,
Toki et al. calculated the equation of state for pion condensed neutron matter. The equation
of state was studied at temperatures up to 50 MeV by using the ¢ modgl of Campbell et al.
{5]. Most of the studies of neutron matter were done at zero temperature. However, in the
center of supernova at the point where neutron star is formed, temperature is of the order
of T ~ 10 MeV. Also in high energy heavy ion collisions temperature can be greater
than 50 MeV. That makes the calculation of the thermal properties of neutron matter
a matter of interest.

In this work we study the thermal properties of neutron matter by generalizing the
model of pure hard core neutron matter developed by Dabrowski et al. [6] to finite tempera-
tures and considering the attractive part as a perturbation [7-10]. Dabrowski et al. [6]
have recommended the model of pure hard core neutron matter because of the fact that
at sufficiently high densities, where the short range repulsion is the decisive part of nuclear
forces [11, 12], the hard core model should approximately describe real neutron matter.
This method has been applied by Hassan and Montasser [13} in the case of nuclear matter
with neutron excess.

In Sect. 2, we explain the theory where we show how the eniropy, the pressure, the
effective mass, the magnetic susceptibility and the velocity of sound can be calculated.
In Sect. 3, the computational procedure is explained together with the result and discussion
of our work.

2. Theory

The binding energy of neutron matter with pure hard cote interaction with spin-up
excess is given by [6, 12]

Ex/N = E,IN+1(E/N)?, M
where
v =" 2y omoxie (2 vootes) x2 e
AN =S =3+ =Xt s n)Xc+ {5 +0. | )
E/N.."Zkfz" 1o x - 22 2l x2 03185 X2 3
ST am | 3T 45t c i
Xc‘—:kFrc,

r. is the hard core radius and kg is the Fermi momentum for nucleons in the neutron matter.
kg is related to the density of nucleons ¢ by

ki = 3’0, (4)
« is the spin-up excess parameter, i.e.

a = (Ny—N))/N, &)
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where N, and N, are the number of neutrons with spin up and spin down respectively, and
N = N,+N, (6)

We will use for the attractive part of the interaction the form

—La+pPMY, f << b,
VA={ s (1+ PV, or r, <y r.+ )

0 for r>r.+b.

PM is the Majorana exchange operator. The intrinsic range & is determined from the
relation [t4]

2r.+b = 2.7 fm. (8)
The potential depth V, is fixed by the relation [14]

2
MYV, b2 i3

h2 = :{ . (9)

The contribution of the attractive part to the binding energy in the first order is

=3V
4

E\/N = [ (Xb Xg)?fyz'*'kﬂ’f'}’; rL:Ia (10)

retb

where I, = [ drj(kr)j,(Ar), Xy = ke(re+b), & =ypke, A=1yks, 7= (1+a)'/?

and y, = (1 —a)l’3,

The above model has been generalized in the case of nuclear matter to finite tempera-
ture by Stocker [I5]. This generalization was extended to include nuclear matter with
neutron excess by Hassan and Montasser [13] and for polarized nuclear matter by Hassan
et al. [16]. For neutron matter with spin up excess we use the method discussed by Kiipper
et al. [17]. Keeping terms up to T, we get for the entropy per neutron [18]

S(T,o) _ b -
S S48, = ﬂﬂ"( 2) (KT)? [& ﬁ‘]

4 4rp-3 —3
2”3,[("5 ( ) (KT) [ﬁt +ﬂ; N ]’ (11

+

where
B, = mimf, B, =mim} and p, = h*ki2m, (12)

m} and m] are the effective masses of neutrons with spin up and spin down respectively
and m is the non-interacting neutron mass. T is the absolute temperature (in MeV) and
K is Boltzmann’s constant.

By calculating the single particle potential for neutrons with spin up and spin down,
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taking into account the above potential and the first order K-matrix (see Appendix), we get

2m (1 W33 3 3 Vol
_ . I, 2 3. 3.
ﬁ, =1+ 7}5 {37! ‘;1“ [« +3 4 ]+ 67'{1(2 [Xblz('}ﬁXb)—X:Jz(}’;Xc)]} > (13)
2m (1 W) VoK
. C A 2 .3 V] 3: 0. .
B, =1+ W {3_7r e [A+3 <]+ 671;}3: [Xblz(/exb)—Xflz(}%Xc)]} , (14)
where j, is the spherical Bessel function of the second degree. The internal and free energies

per neutron can be calculated using Eq. (I1) and the known expression for the specific
heat per unit volume C,, namely

A
C = QT“ﬁ = o(S,+353)
ie.,
1
e(Ta Q) = 3(0, Q)+ - vadT = e(oa Q)+}f SIT+% SZT’ (15)
F(T, @) = e(0,9)—TS = (0, 9)~%+ §,T—% S,T. (16)

The pressure can be obtained from the relation

- o(2)
=0 . (17)
do Jr

If we expand the entropy per particle up to second order in a?, we get
S = Siy+ 53+ 7 (Si+S)0’. (18)

Therefore, the internal energy and the pressure per neutron can be written as

e(T, 0) = e(T, @)+ a’e(T, o), (19)
P(T, 0) = P(T, o)+ «*P(T, o), (20)
where
) T
e(T, 0) = &0, 90+ - Su+3S,,T, 2D
T 3
e(T, 0) = ¢(0, 9+ 5~ S, +3 ST, (22)

W2 10 4 ,
ev(O, Q) = Ev(kF) = g—")’?“ 1+ —9—7{ Xc+ 2*1—71:—2(11 -2 1n 2)Xc

Xb
10 3 "'
+ (—9—; +0.275) Xi]‘— »4—73 [{; (Xo—XD+ J jf(X)dX], (23)

c
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, Pk 2 16 )
e(0,0) = Efkg) =5 —|1- —X.— —5 Q+In2)X{
2m n 15n

3e
+0-062Xi] - :‘;0 [—45 (Xo— XD +35 {XpjolXp) — X jol X1, (24)

ofX) and j,(X) are the spherical Bessel functions of the zero and first degree, respectively,
e(T, o) is the total energy per neutron in the case of « = 0 and e (7, ¢) is the spin symmetry
energy per neutron of the neutron matter.

The magnetic susceptibility of neutron matter can be written in terms of e(T, )
as [19]

AT, 0) = uzeleT, o), (25)
where u, is the neutron magnetic moment.

It is more convenient to introduce the ratio of y to the magnetic susceptibility yy of
the Fermi gas of non-interacting neutron which is

xr = 3[2udo/uo. (26)
This ratio can be written as
e(T, 0)
Xeld = 3 . 7
Ho

The sound velocity v, in neutron matter at zero temperature can be calculated by using
the formula [20]

v, = V(dP/do). (28)

3. Computational procedure and results

The potential energy per neutron E

voilkp)/ N ata = 0 and T = 0 can be calculated
from the relation

h2klk

Epolke)/N = E,JN—% ;
pot( F). / 5 2}71

(29)

where E,/N can be obtained from Eqs (2) and (10).

We calculated E,,(0)/N at different r, and we found that o, (the value of ¢ which gives
minimum E,,(¢)/N) varies with r_. The value of r. = 0.3 fm gives ¢,, = 0.3 fm3 (see Fig. 1).
This value is comparable with other calculations (see for example Ref. [21]). For this reason
we choose the value of r, = 0.3 fm for the rest of our computations.

The energy per neutron at « = 0 and 7 = 0 namely E,/N was calculated as discussed
before and the results are shown in Fig. 2 together with some of the previous calculations
[22-24]. From this figure we notice that our calculations are in reasonable agreement with
that of Owen [22] and Friedman and Pandharipande [23] till ¢ >~ 1.8 fm-3. Above that
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Fig. 1. The potential energy per neutron Epu/N as a function of density ¢ at r. = 0.3 fm
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Fig. 2. The binding energy per neutron E,/N at & = 0 as a function of density ¢ together with the results
of the previous calculations (a [24], b [22] and ¢ [23])

density all other results are more repulsive than ours. This can be attributed to the fact
that our calculation is reliable only for ¢ < 1.25. Above this value ¢ makes ker, > 1
which is in contradiction with the validity of the expansion used in our calculations for the
repulsive part of the binding energy.

The volume and symmetry pressure P,(¢, T) and P g, T) can be calculated using Eqs
(16), (17) and (20). The results of these calculations are shown in Fig. 3 for P (¢, T) together
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Fig. 5. The ratio yg/x (see text) as a function of kr together with the result of the previous calculations
(a [25}, b [26], ¢ {271, d {28] and g [20]).
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Fig. 6. Temperature dependence of xp/y as a function of density ¢
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with that of Toki et al. [4] and in Fig. 4 for P,(¢, T). From Fig. 3 we can see that, unlike
that of Toki et al., our results do not give any sign of phase transition since it gives always
a positive compressibility. The symmetry pressure P (g, T) has a similar behaviour as that
of the volume pressure where it increases monotonically with ¢ and 7.

The ratio y¢/y, Eq. (27) is displayed as a function of kg in Fig. 5 together with some
of the previous calculations [20, 25-28]. We notice that ours show similar behaviour as that
of Holinde [28] except for a gap of about 0.7 between them. The behaviour of yg/y as
a function of ki and T is displayed in Fig. 6. It can be shown that yg/y decreases with
increasing temperature.
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Fig. 7. The effective mass m*/n ratio as a function of kg together with the result of two of the previous
calculations (a [25] and b [20])

The effective mass ratio of the nucleons m*/m for equal number of protons and neutrons
has been calculated using Eqs (13) and (14) and putting « = 0, The result of this calculation
is shown in Fig. 7 together with that of Behara [25] and Nitsch [20]. We can see that our
results have the same behaviour as the others except for the minimum value at kg = 1.7 fm.
This minimum feature was reproduced by Horowitz [29].

We calculate the sound velocity in neutron matter as a function of kg at zero tempera-
ture (almost zero temperature) by using Eq. (28) and taking % = 0. The result is shown
in Fig. 8 together with that of Nitsch [20]. We can see that our results are near to that of
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Fig. &. The velocity of sound in neutron matter as a function of the density o together with that of Nitsch {20]

Nitsch at lower k but have smaller values at higher k. We can notice also that the velocity
of sound in neutron matter is near to the velocity of light. It is therefore recommended
to use a relativistic approach to deal with it (see for example Kistler et al. [30] and Friedman
and Pandharipande [23)). ’

In conclusion, we believe that in spite of its simplicity the model we used can give
plenty of information about the neutron matter at finite temperature. However, the
agreement between our results and those of previous calculations can be improved by
including higher order terms in the attractive part of the potential.

One of the authors (S. Ramadan) would like to thank Professor Abdus Salam, Professor
L. Fonda, Professor H. Dalafi, the International Atomic Energy Agency and UNESCO
for hospitality at the International Centre for Theoretical Physics, Trieste, Italy.

APPENDIX
Single particle potential energy

The single particle potential energy can be written as

b’(n—il) = Z (’ﬁliﬁZ;K“ﬁlfﬁz “lﬁzrﬁl),

ma

where

K ~ V,+K.
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K, is the repulsive reaction matrix which can be approximated by the free space repulsive
eaction matrix K. The matrix element of the latter [31] is
(mym3iKJ|mymy) = S (k'K 1k),
K =4 (my+my), K= (m+n,), K =(m)+n}) and

(k' IKlk),+ (K | K2 k),

where k = L (m,—ni,),

(k' |K2IK) =

4n h? 4 h? . .

g__u+ H%+Q K%, for K=+
m

The matrix element for V, is
(mymy|Vylmym,) = (mym,|Vylmym,)

re+b

[0 o it
[zha+dmzmﬂm

J
re

Keeping terms up to m} the single particle potential for spin up particle can then

be written as
2
A 2 K3 3[~ i3+ K ]}

U1('ﬁl) = g

l’o 213 3 3 2 m% 3
- {; [+ b) —r]+2 f ryGir)dr — ;Jr jlur)dr}.

Putting
1('_7:11') = U01(';11)+ U]t(;hl)’n%
we have
i 2m -
B, = m’ /mT 1+ 5T Uy (m,),
where
. hZ 3
Uyy(m,) = 3im 3]"’ J"Sjl(l”)dr-

Solving the integral in the above equation we can get Eq. (3). Eq. (14) can be obtained

in the similar manner.
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