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Some physical aspects of the previously introduced Finslerian structure based on the
(generalized) Finsler metric g x(x, ¥) = yax(x)+ h,.(x, y) are considered.
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1. Introduction

In the previous paper [1], we have introduced the following new (generalized) Finsler
metric:

Zx(X; ¥) = ya(®)+ hylx, ¥),

where y,,(x) (x, A = 1, 2, 3, 4) denotes the Riemann metric of the external (x)-field, while
h.(x, ) is the (generalized) Finsler metric induced from the Riemann metric h,(y) (i, j
= 1, 2, 3, 4) of the internal (y)-field by means of the mapping process of the (y)-field on the
(x)L-field (see Section 1 of [1]). This mapping process has been called the N-mapping.
The word ““generalized” means that the Finsler metrics 4, and g,, do not satisfy the ordinary
homogeneity conditions with respect to y (cf. [2, 3].

Hitherto, we have completely determined the metrical Finsler connection Dg;, = 0
by taking account of the intrinsic behaviour of y (i.e., éy), where Kawaguchi’s theorem
[4] plays the most important role in regard to the relation Dg;, = 0 and dg;, # 0 (see
Section 4 of [1]).

In this paper, which is a continuation of [1), we shall consider some physical aspects
of this Finslerian structure.

2. On the Finslerian structure

In this Section, in order to recall our situations and to make this paper consistent,
we shall summarize the essential points of our theory developed in the previous paper [1}.
In our case, the vector y(= )*; i = 1, 2, 3, 4) is attached, as the internal variable,
to each point x(= x*; xk = 1, 2, 3, 4), so that there appear two fields: One is the external
(x)-field spanned by points {x}, which is nothing but the gravitational field in Einstein’s
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sense, and the other is the internal (y)-field spanned by vectors {y}, which is likened to the
so-called internal space. The former is governed by the Riemann metric y,,(x), while the
latter is assumed to be governed by the Riemann metric /;;(y), in general.

From a vector bundle-like viewpoint [2, 5], the (y)-field may be regarded as a fibre
at the point x of the base (x)-field and the total space with 8-dimensional Riemannian
structure may be considered. a unified field between the (x)- and- (¥)-fields. This unified
field is governed by the unified Riemann metric G ,5(X), where X(= X4 = (x*,)"); 4, B =1,
2, ..., 8) is the unified coordinate (see Sect’on 1 of [1]).

At this stage, in order to set the base and dual base in the unified field, we must, first
of all, geometrize the intrinsic behaviour of y such as thc nonlinear gauge transformation
[617 =K Jf(x, ¥)¥. The result is represented in the form of intrinsic connection (or parallel-
ism) of y as follows (cf. [7]):

8y' = dy'+ K} yldx* + L} ydy*
= Pidy*+Qldx", 2.1)
oK}, . 9K
ax*’ TRT k0
Next, by use of (2.1), the connection relation in the unified field is given by, e.g.,

where K}, = — P, =S¢ +Ljy and Q) = K,y
DV* = dV*+ T,V dx*+ 5 Vidy'
= dV*+F Vdx"+ 0" V'dy' (2.2)

where F,*, = I';*,— N[, and @5, = (P~ Y "(Ni = (P~")i0}). (The quantity N, plays
the role of nonlinear connection (cf. [2, 3, 5]). P} is assumed to be non-singular.) From
(2.2), the covariant derivatives arc defined by, e.g.,

ov"

Vi = 5o HEAV
V" .
Vi%=— +05V", 2.3)
8y
é a ; 0 S —1yy 0 5 ) he bas
wher o = par -N"a_y‘ and 57, =(P"") 5;’ Therefore, from (2.2) and (2.3), the base

6 9O
(ﬁ , 5—i> and the dual base (dx*, 6y) can be set (see Section 2 of [1]).
Y
The above-introduced base and dual base are prescribed by such decomposition

) 0 . )
processes as i Af ek 8y' = BidX*, etc., so that the following decomposition factors
4, B can be determined:
A=, Ny, 45 =05 0,

B =(0, (P™H), Bl = (Q}, P). Q4
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By use of (2.4), G, is decomposed as, e.g.,
8i(X, y) = ATA}G 45
= Gu—=NyGyi—= N;Gic+ NiN{Gy;. (2.5

In this casc, if it is assumed that G,, = 7,(x), G = Gy, = 0 and G;; = h;(), as in the
vacuum state without fluctuations in the sense of generalized Kaluza-Klein theory of gravity
(cf. [8], see Section 3 of [1]), then (2.5) is reduced to g,(x, ) = 73, () + NiNih(»).

Under these conditions, if we want to return to the 4-dimensional Finslerian structure
(F.), we must reduce the dimens:on number from 8 to 4 by taking account of some mapping
process of the (y)-field on the (x)-field. So, we shall focus again our attention on the metric
obtained above, i.c.,

21X ¥) = V() Fhy(%, ¥);  halx, ¥) = NiNIR(y) (2.6)

and adopt this as eur F -metric. In this case, the nonlinear connection N(x, y) is found to
play the role of mapping operator. Then, by this N-mapping, (2.1) and (2.2) are formally
brought to their corresponding F,-formulas as follows:

8y" = N¥6y' = dy*+K,",y*dx"+ L;",y*dy"
= Pydy"+Qdx", .7
DV* = dV*+T* Vdx"+C, Vv dy"

= dV*+F* V' dx"+ 0, V*5y* (2.8)

(sce Section 4 of [1]).
Finally, it is necessary to obtain the relation of two connections § and D. In our case,
the intrinsic conncction & is treated as known-from physical conditions such as (2.1),
so that the relation of D with 6 must be obtained. d is assumed, from the beginning, to be
metrical for &;, (i.e., 6k;, = 0) under N =0, but not metrical for g;, (i.c., dg;, # 0).
On the other hand, D is metrical for g,, (i.e., Dg,, = 0), but not metrical for &, (i.e.,
Dh,, # 0). Therefore, for our purpose, the relations (Dg;, = 0 & dg;, # 0) must be

reconsidered as follows: D is a metrical connection for g, derived from the non-metrical-
8. Then, by virtue of Kawaguchi’s theorem [4], the desired relation can be obtained:

Dy* =8y +5g"0g.)y". 2.9)

With the aid of (2.9), our Finslerian. structure based on (2.6) can be completely clarified
(see Section 4 of [1]). A

Thus, it turns out.that our F,-structure has the metric.(2.6) and the connection (2.8).
In the following Sections; we shall extract some physical aspects underlying this F-structure.

3. Physical aspects — I

First, it should be remarked that this kind of metric (2.6) is now called the generalized
Lagrange metric (cf. [2]), which does not admit any fundamental function Z(x, y) from
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2
r_
2 aytay<’
homogeneity condition with respect to y. Therefore, (2.6) is quite different from the original

Finsler metric (cf. [3]), which is defined by the homogeneous fundamental function L(x, y)
2

1
2 oy*oy~
Now, it is seen from (2.6) that the metric g,,(x, y) deviates from the Riemann metric
72(x) by the amount of k,(x, y). Therefore, the Finslerian light-cone (i.e., ds}
= g%, Y)dx*dx* = (3,,(x) +h,(x, y))dx*dx* = 0) does not coincide with the Riemannian
light-cone (i.e., dsg = 7, (x)dx*dx* = 0). That is to say, dsz = 0 is not compatible with
dsi = 0, because h,dx"dx* # 0, in general. In a word, g, (x, y) breaks (or does not pre-
serve) the conformal structure underlying the Riemannian or Einsteinian general relativity
(cf. [9]). This is one Finslerian resuit (or effect) caused by #;,(x, »).
Next, as mentioned in Section 2, the metrical conditions Dg,, = 0 hold good, so that
the horizontal connection coefficient F,", can be formally written as

which (2.6) is derived in the form g, = so that (2.6) does not satisfy any

in the form g, = and becomes positively homogeneous of degree 0 in y.

- )
Fiu= {,1 u} +425% (€X))

‘ K
wherc{ i
as the rest, the latter being essentially constructed from k,,(x, y). From this form of F;*,,

it is found that the Finslerian geodesic composed of F,*, does not coincide with the Rie-

}means the Christoffel three-index symbol formed with y,,(x) and 4, is defined

mannian one composed of AK;;} , due to the term 4,",.. That is to say, h;,‘ (x, ¥), summarized

as 4,",, gives rise to the difference of Finslerian and Riemannian geodesics. In a word,
the connection F,*, breaks (or does not preserve) the projective structure underlying the
Riemannian or Einsteinian general relativity (cf. [9]). This is another Finslerian result
caused by A&, (x, y).

Concerning the above-mentioned Riemannian or Einsteinian conformal and projective
structures, it has been shown recently [10] that they can be preserved simultaneously, even
if we choose such a Finsler metric g,,(x, y) as is conformal to the Riemann metric y,,(x),

. e 60 .
i.e., i = Y(X) €xp (2o(x, »)), where the condition 6,, = — = 0 must be imposed to

ox*
reduce F;", to { AK#
been proposed by the author and some physical problems have been considered (cf. [11]).
And the spatial structure of the (generalized) Finsler space based on this metric has been
fully investigated by several authors (cf. [12]). By the way, it should be noticed that if
h,(x,y) is assumed to be given by &, = y,.(x) exp 2¢(x, )), then our g,(x,y) (2.6
is also changed to the conformally Riemannian form, i.e., g, = 7,.(x) (1 +exp ¢(x, y)).

}. This kind of metric (without homogeneity), however, has already
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4. Physical aspects — Il

Now, from.F;", (3.1), the third curvature tensor R,;, can be written in the form, by
its definition [3],

valu = Kvxlu({ })+vaﬁ,p(A), (4'1)

K x
1 u} and L,*;, is defined

as the rest. Therefore, by use of (4.1), one kind of Einsteinian field equation  for the
Finslerian field can be constructed as follows:

where K,*,, is the purely Riemannian curvature derived from
H

Rv;.*,%-ngl = Ku"% Ky, +M,; = 1, 4.2)

where R,, = R,%,., R = R,,;g"*, etc. and M,, denotes all the remaining parts and 7,, means
the energy-momentum tensor for this case. Therefore, the term M, , constructed essentially
by L,";(4) of (4.1) summarizes all the Finslerian (F,) contributions caused by #,,(x, »).
That is to say, M,, summarizes the deviation from the Riemannian (R,) structure. (The
symbols F, and R, mean the 4-dimensional Finslerian and Riemannian structures, respec-
tively). In the case of Finslerian vacuum with 7,, = 0, M, plays the role of source term
for the Riemannian field represented by X, (see also below).

In (4.2), K,, # 0 (non-vacuum in R,-field), even if 7,; = 0 in F,-vacuum, owing
to M,, # 0. Conversely, 7,, # 0 (non-vacuum in F,-field), even if X,; = 0 in R4-vacuum,
owing to M,, # 0. This means the-difference in character of the F,- and Rs-vacuum
states. The latter case (i.e.; K,, = 0 and M,; # 0) embodies the concept of complete
compactification of the internal space with the flat-background, because as mentioned
above, the quantity M,, absorbs all the y-dependent internal contributions (cf. [8]).

5. Physical aspects — 111

The field equation (4.2) represents the x-dependence of the Finslerian field, which
resembles Einstein’s gravitational field equation. On .the other hand, the corresponding
field equation which represents the y-dependence can-also be considered. In fact, several-
authors [13] have proposed the following field équation:

Svl—% ng). = Hyis (5.1)

where S,; is the Ricci-tensor derived from the fiist curvature ., (i.e., S,; = S,%,,, see
[3]), and S(= S,,8"") is the scalar curvature and u,, represents the energy-momentum
tensor for.this case.

Concerning (5.1), it has been known [13] that if u,; = 0-(F,-vacuum state), then
S,1 = 0 holds good, which implies S,*;, = 0 by Matsumoto’s theorem [14]. And if the
conditions that S.*;, = 0 and L(x, y) = L(x, —y) hold good, where L is the Finslerian
fundamental function from which g,,.(x, y) is derived, then the Finsler space reduces to
Riemannian due t0 Brickell’s theorem [15]. Therefore, it is found that the empty region in
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(5.1) presents an almost Riemannian structure. This shows that the field equation S,, = 0
is somewhat unsuitable from our Finslerian standpoint.

In our case based on (2.6), too, the field equation S,; = 0 is found t6 be unsuitable
from a physical viewpoint, as will be seen in the following. For that purpose, we shall
actually calculate S,, in the first order approximation with respect to & ,(x, ¥) (i.e., neglect-
ing higher order terms >O(h?)): First, as the inverse of g,.(x, »), we shall put

gHx, y) = yH) - (x,y); B = yy¥hy, (5.2)
Next, by use of the metrical conditions Dg,, = 0, the vertical connection coefficient C,*,
becomes (cf. [3])
oh oh oh
Crl, =1y 2+ &~ 2. 5.3
L 37 (ay,, ay;, ayy ( )

Finally, the first curvature Sv a1« i approximated as follows:
*h o*h, é*h,,
Sk, =U o A Aty L O 5.4
= (ar‘ay’- L o) ¢
from which S,, is obtained in the form
S o o*h,, &*h,,  o*h,, N 3*hy,
TV \ovey T oy vy ayay)

(5.5)

(In (5.4), the symbol U, means interchange of 4, 1 and subtraction). At this stage, if it is
assumed that there exists a function &(x, y) (Finsler energy [2, 16]) such that

%e(x, y)
} ,Y) =+ A 5.6
(%5 ¥) 3 ay),ay,‘ (5.6)
oh,, 0% .
then C;*, (5.3) becomes C;*, = 7" — = § " —————, by which §,;, = 0 in (5.4)

a* T areyeyt
and S,, = 0 in (5.5). That is to say, in this special case, the field equation S,; = 0 holds
good identically for any value of /1, (x, ¥) (5.6). Therefore, it may be said that the vacuum
field equation S,; = 0 can always be satisfied for any Finslerian perturbation 4,(x, y)
given by (5.6). This is unsuitable from a physical point of view. The field equation (5.1)
itself, therefore, should be reconsidered in future (cf. [16]).

6. Physical aspects — IV

In the same manner as in Section 5, we shall finally take up again the field equation
(4.2) (with 1, = 0) derived from the third curvature R* e First, in our case, the horizontal
connection coefficient F;", is given by (3.1), where 4%, is put in the first order approx-
imation with respect to A, (x, y),

. o (Ohy Oy, Ry,
45 =37 (ax: + ax"; - axff‘), 6.1
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because F,;", is constructed from g** i‘i"; = ((;i‘: -N, %g)_:;) and N, = (—3%, (F,",,y“y")
is already the first order quantity (cf. [3]). Then, R,";, is again given by the form of (4.1)
and the field equation (4.2) (with 7,; = 0) remains formally as it is, because the term
L,;,(4) does not vanish in this approximation (see (6.1)). That is to say, even in the first
order approximation, the Finslerian perturbation h,(x, y) exerts effective influence
on the field equation (4.2) (with 7,; = 0). This conclusion is not changed, even if (5.6)
is assumed. This is quite different from the field equation (5.1) (with p,, = 0).
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