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The claims made by V. 1. Obozov, that Einstein’s equations together with the Bianchi
identities and their consequences exclude certain types of equations of state and prohibit
certain kinds of flow of a perfect fluid, are mostly contradicted by existing explicit solutions
of Einstein’s equations. The errors in Obozov’s arguments are pointed out.

PACS numbers: 04.20.1b

1. The incorrect claims of V. I. Obozov and their counterexamples

This note has the purpose of correcting certain errors made by V. I. Obozov in his
two articles [1-2], referred to as Papers 1 and 2.

In Paper 1, the author claims that the Einstein field equations, the Bianchi identities
and some conclusions from them exclude the following situations for a perfect fluid:

L 0= hu, pud—utu)#0, o, #0,
1L pi=gui, ox(8—u'u)#£0, o.p;#0,
HI. ¢ =const. p,;= gu,

v. 0.0 —u*u) # 0, = const,

where ¢ is the mass-density of the fluid, p is its pressure, «; is the velocity field, # = g u*,
g = p,u". In fact, statements I, IT and IV are contradicted by known explicit ‘solutions
of Einstein’s equations.

Counterexamples to 1 are e.g.:

(a) The Stephani Universe [3-5] which is the most general conformally flat perfect
fluid solution of the Einstein’s equations with nonzero expansion {Obozov’s references
1 and 3 contain special cases thereof).
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(b) The special case of the Kustaanheimo-Qvist (K-Q) class of solutions [6-7] consid-
ered by Kustaanheimo [8], Taub [9] and Glass [10] which is defined by the arbitrary function
f(x) being proportional to x~*? (the K-Q class are rotation-free, shearfree, expanding,
spherically symmetric perfect fluid spacetimes).

Both (a) and (b) have mass-density depending only on time in the comov ng coordinate
system and the gradient of pressure not aligned with the velocity field.

Counterexamples to II are some of the solutions found by Szafron [11]. They have,
in the comoving reference frame, pressure dependent only on time and inhomogencous
mass-density. The Szafron class is defined by the following set of properties: 1. Rotation
and acceleration are absent, 2. The 3-spaces orthogonal to the fluid flow are conformally
flat and their Ricci tensor has a double eigenvalue. 3. The shear tensor has a double eigen-
value {12].

Counterexamples to IV arc the special cases of the Szafron solutions found earlier
by Szekeres [13] (where p = A = 0in addition to the properties listed above) and Lemaitre
[14] (where p = 0 # A and the spacetime is spherically symmetric). (For unknown reasons
the latter class of solutions is veferred to in literature as the “Tolman-Bondi model” although
Tolman [15] reobtained the results of Ref, [14] and quoted Lemaitre, and Bondi [16]
quoted . Tolman, none of them claiming priority).

Thus, of the above list only statement III survives. The errors in the arguments leading
to the incorrect statements [, Il and IV will be pinpointed in the next Section.

Two more claims of Paper 1 require corrections:

V. *... as follows from the thermodynamics of a perfect fluid its flow is isentropic
(...) the equations of state of the form ¢ # o(p) describe physically unrealistic models
of the perfect fluid”. (Introduction to Paper 1).

For a general perfect fluid, the entropy per particle is constant along the flow-lines
(see e.g. Ref. [17], Eq. (1.8)). In an isentropic perfect fluid, the entropy per particle is a uni-
versal constant, and only this requirement is equivalent to a barotropic equation of state
¢ = o(p) (see again Ref. [17]). Thus there is no reason to call those solutions which do not
admit such an equation of state “physically unrealistic”; on the contrary, those with
¢ = ¢(p) are rather special.

VL. “In nonstationary gravitational ficlds of an irrotational perfect fluid the accelera-
tion of the fluid particles is zero” (Section 4 of Paper 1).

This statement is contradicted by all the nonstationary solutions of Barnes [18] which
include the Stephani Universe [3-5] and the K-Q class [6] as subcases. The erroneous
argument is that tu, — t,u; = 1, ,—n ¢, impliesu; . = u,;and t,, = ¢, ;; this isnot true.

In Paper 2, the following statements require corrections: -

VIL. “The velocity field of a perfect fluid with geodesic flow is defined by:

Ui = ?11‘ G(Eij»_ uin)”, M)
where 6 is the scalar of expansion (theorem 2.1 in Paper 2).
VIIL. Eq. (1) above “is the necessary and sufficient condition for the gravitational
field .of a perfect fluid to be conformal to a flat spacetime” (theorem 3.1).
IX. Eq. (1) is also the necessary and sufficient condition for conformal flatness of



803

a viscous fluid spacetime in which mass-density and the viscosity coefficients are functions
of pressute only (theorem 4.1).

Statement VII is contradicted by the solutions of Szafron [11] in which the perfect
fluid moves geodesically, but with nonzero shear, and also by the solutions of Lanczos
[19] and Godel [20] (see also Ref. [17]) in which the fluid (actually dust) moves geodesically,
but with nonzero rotation.

In statement VIII, Eq. (1) is a sufficient, but not necessary condition for conformal
flatness. If (1) holds, then w = ¢ = 0 = u;, and the only perfect fluid solutions with these
properties are the Friedman-Lemaitre-Robertson-Walker (FLRW) solutions (this follows
¢.g. from the paper by Barnes [18], quoted in Paper 1). They are only a subset of the most
general conformally flat perfect fluid spacetimes which were found by Stephani {3, 21].

No counterexample to statement IX is known to me, but its justification contains errors
which invalidate the conclusion (see next Section).

Since VII is false, also the following conclusion from VII and VIII, formulated in the
introduction to Paper 2, is false:

X. “The flow-lines are geodesics only in the conformally flat gravitational fields of
a perfect and viscous fluid”. Counterexamples to this are again the Szafron solutions [11]
which are of Petrov type D although the flow-lines of the perfect fluid are geodesics.

The errors in deriving statements VII, VIII and IX are discussed in the next Section.

2. The errors in the arguments

The errors which led to statements I, II and 1V are of the same type. The author found
out that a certain tensor T, (different in each case) has the properties T° ai=T 0, =0
in cases ITand IV, and 7" u; = T’ p, = 0 in case I. From this he concluded that T} = 0.
However, (1;0;) or (u; p,;) is a set of just two linearly independent vectors and if the pro-
jections of a certain tensor onto both vectors vanish, it does not imply that the tensor is zero.
Thus the errors are hidden in the paragraphs following Eqgs (3.8), (3.10) and in the second
paragraph of section 3d in Paper 1.

Statement VII says in effect that if acceleration vanishes for a perfect fluid, then rota-
tion and shear must also vanish. The conclusion that u; = 0 implies @ = 0 is drawn from
Eqgs (2.2)-(2.3) in Paper 2 which are correct. However, those equations actually imply
that if u; = 0, then either » = 0 or p , u" = 0. The second case includes the solutions by
Lanczos and Godel [19-20]. The further claim that u; = 0 =  implies 6 = 0 is based
on the author’s previous unpublished work [22), so it is not possible to pinpoint the error
in the argument. However, the counterexamples mentioned in Section 1 (Szafron’s solu-
tions [11]) are a sufficiently convincing disproof of the claim.

In deriving statement VIII, an additional assumption is fed into the argument, namely
that the equation of state is of the form g = ¢(p). With this additional condition imposed,
the Stephani Universe [3-5] reduces to a FLRW Universe [5]. Thus statement VIIT becomes
correct if the expression ‘‘perfect fluid” is replaced by “barotropic perfect fluid”.

One of the arguments leading to statement IX was the false conclusion from Egs (2.2)-
—(2.3) in Paper 2. This in itself invalidates the claim. However, the reasoning involves one
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more error. The fact that the metric can be written in a manifestly conformally flat form
does not itseif imply w = 0 (after Eq. (4.7) in Paper 2). This implication is true for a perfect
fluid via the field equations (see Ref. [21]), but for a viscous fluid a proof would have to
be supplied (if the implication holds at all).
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