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1. Imtroduction

A great importance of the null tetrad, spinor or bivector (= helicity) formalisms in the
theory of relativity is well known. Persuading anyone of this might look like a provocation.
In fact one can hardly imagine the modern theory of relativity without those formalisms;
moreover, their role in the complex relativity or in the theory of gravitational instantons
seems to be even greater than in relativity with Lorentzian metric. Therefore, it is reasonable
to give a compact and uniform description of those formalisms for all 4-dimensional
real or complex Riemannian manifolds. This is just a purpose of our work.

It is evident that one can expect three formalisms considered to be locally equivalent.
However, there is a filling consisting in general theory that they are also globally equivalent
for suitably oriented spaces. In the present work we make this point proven. For this
purpose we abandon the idea of the spinor structure and we deal with “spinor formalism
without spinor structure”. The mathematical language we use is the theory of fibre bundles.
This is the language which seems to be most convenient and general for the problems
considered [25, 26].
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Another question we deal with in this work is the possibility of decomposition of,
so called, Einsteinian structures into their sub-structures. We find these decompositions
for complex Riemannian manifolds or real Riemannian manifolds with metrics of signa-
tures (1, +1, £1, +1) or (I, I, —1, —1). Last but not the least purpose of our work
is to give some new formulation of the action principle leading to Einstein equations. The
result obtained seems to be important in Yang-Mills fields theory. This problem is now
intensively investigated by the present authors.
~ Our work is divided into two parts. The present onc is devoted to the null tetrad
(Section 2) and spinor (Section 3) formalisms. Our intention is to give only the mathematical
foundations of these formalisms. The details important for the practical applications
can be found in Refs [8, 13,.17, 18, 24]. We want also the formalisms presented here to be
identical, at least locally, with the ones from our previous works. The only differences lie
in the factor used for the definition of 1-forms g48, i.c., g4# as defined in the present paper

| S
is equal to ﬁgﬂ’ from the previous works, and in the definition of V ;3 (see 3.94)).

We do not list all the literature concerning the problem. We have decided to mention
only these works which have been inspiring for the present article. Thus in the analysis
of the null tetrad formalism and in the considerations on the spinor formalism we refer
to Refs [1-24].

2. Null tetrads

Let M be a four-dimensional real of class C* or complex analytic differentiable mani-
fold. T(M) denotes the complexified tangent bundle over M (if M is real) or the holomorphic
tangent bundle (if M is complex). Analogously T*(M) is the complexified or holomorphic
cotangent bundle over M, respectively. We assume that M is endowed with metric g, i.e.,
g € &(T*(M) ® T*(M)) is nowhere degcnerated tensor field on M which is real, g = g,

for real M.
(In the present paper &(...) denotes the set of all cross sections of the vector bundle
defined in the parenthesis.)
Thus (M, g) is a four-dimensional real or complex Riemannian manifold.
We have the following cases
(a) “Complex Relativity”‘(CR): M is complex.
(b) “Hyperbolic Relativity” (HR): M is real; the metric g is of signature (+ + + —)
(HR.,) or (———+) (HR.).
(c) “Ultra-hyperbolic Relativity” (UR): M is'real; the metric g is of signature (+ + — —).
(d) “Euclidean Relativity” (ER): M is real; the metric g is of signature (+ + + +) (ER.)
or (———-) (ER.).
The cases (b), (c) and (d) define “Real Relativity” (RR). Let p be a point of M. Then,
four linearly independent vectors (e,, €3, €3, €4),, €,€ Ty(M), a = 1, ..., 4, such that

g = gae'®e .1
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at p, wherc
esse
gl = g o o 1;]: @2)
fo o1 0,;1

(e, €%, e* eY),, "eT :(M), constitutes a basis dual to (e,, e;, e, es}),, and moreover

JHR+: él = é2’ éS = €3, E4 = €4,

HR:
|HR_: &, = —e,;,6; = —e;, 8, = —e,, 2.3)

UR: ¢, =¢€, a=1,..,4, 2.4)

ER: ER,: e, = e,, €5 = e,
ER_: e, = Zej;8; = —e,,

(2.5)

are called a null tetrad at p.

The set |J {(p, (¢,),)}, where (e,),:= (e,, ;, €3, e4),, With naturally defined structure
peM

of the principal fibre bundle is callcd a bundle of null tetrads and will be denoted by NL(M).
The structure group of NL(M) we denote by ¢ and call a tetrad group. One can easily
find the following isomorphisms ¥

CR: ¥ = 0(4; C), HR: ¢ = 0(3,1; R),
UR: ¢ ~0(2,2; R), ER: ¢ = 0(4; R). (2.6)

Of course NL(M) is a -structure on M, i.c., it is a reduction of the bundle of linear frames
(holomo:phic if M is complex) L(M) to the subgroup ¢.

Let ¢ acts on the left on C* as follows: if /:="||I*,!| e % and & := (£2, €2, &3, &%) e C*,
then

LEY E M Ye &= 17 7

(In the present paper we assume that small Latin indicés a, b, ¢ and drunthrough 1, 2, 3, 4.)
Having this, one can define in a standard way [25] a vector bundle E(M) associated with
NL(M). We have the obvious isomorphism E(M) =~ T(M) and very often we consider
objects on E(M) as ones on T(M) and vice versa. The metric g on M defines a fibre metric,
also denoted by g, on E(M). For an arbitrary point p e M and arbitrary two vectors
X = X’,, Y = Y, € Hz4(p), Where Mg : E(M) — M is the projection of E(M) onto
M, one has

g(X, Y).= g.X°Y", (2.8)

with g,, defined by (2.2).
Now we intend to define a connection on E(M) compatible with the fibre metric g.
We must proceed with caution because our differentiable manifold M is not assumed to
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be paracompact and, moreover, if M is complex analytic, then there arises the problem
of analytic extensions of local cross sections of E(M), even for paracompact M.

Let &o(...) denote the set of all local cross sections of a vector bundle defined in
parenthesis. Then, we define a connection D on E(M) to be a mapping

D: &1 (E(M)) = E10(E(M) ® T*(M)) (2.9)
such that for each open set U C M and for each X e &(E(V)), fe S(UxC)
(@) DX e £(E(U) ® T*(U)), (2.10)
(i) D(fX) = dfX +fDX @2.11)

and, moreover, for any open sets U, V C-M, U V # ¢, and any local sections X € £(E(U)),
Ye 8(EU)), Ze S(E(U n V) such that

Xigny = ¥Ylgay = 2 (2.12)
(where by |y, we mean the restriction of the cross section to the set U n V) is
(iti) DXlyny = DY|yy = DZ. (2.13)

A connection D on E(M) is said to be compatible with the fibre metric g on E(M) (i.e., it
is a metric connection) iff for every open set U C M and any X, Y e &(E(UV))
dg(X, Y) = g(DX, Y)+g(X, DY). (2.14)
If (e,), e, € E(E(U)), is a null tetrad on an open set U = M, then from (2.10) and (2.11)
one has
De, = I'’e, (2.15)
and
DX = (dX°+I"%X%e, (2.16)
for any X = X%, e &(E(U)). The 1-forms I'°, € &(T*(U)) are called components of a con-
nection form over U associated with the connection D with respect to the null tetrad (e,), or
briefly, components of a connection form over U. Using (2.16) one finds that a connection

D on E(M) is compatible with the fibre metric g on E(M) iff for each open set U — M and
each null tetrad (e,) on U

gcbrca+gacrcb = 09 (217)
or, equivalentiy, with the “lowered” indices
4Ty, =0. (2.18)

Notice that the conditions (2.17) say exactly that I'%, € &(T*(U)) are components of the
1-form on U = M with the values in the complexified Lie algebra § ® g C of the tetrad
group ¥. We say that a connection D on E(M) is real if M is real and if for any local real
cross section X = X e &(E(UV))

DX = DX. (2.19)
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With the use of (2.3)-(2.5) and (2.16) one easily finds that for real M a connection D on
E(M) is real iff for each point pe M

HR: I, =I°, (2.20)

where indices ¢, d are connected with a, b according to the scheme 1 - 2,2 51,3 - 3,
4 - 4;

UR: I, = I'%; 2.21)
ER: I, = I, (2.22)
where ¢, d and a, b are connected as follows 1 - 2,2 - 1,3 > 4, 4 - 3. A connection
D on E(M) defines the exterior covariant differentiation on E(M) which we also_denote
by the symbol D, and which is a mapping
D: &, (E(M) ® A'T*(M)) = &, (E(M) @ A" 1 T*(M)) 2.23)
for 0 < r <C 4, such that for an arbitrary open set U c M
(a) Doe S(E(U) @ A 'T*U)) for ae&(EU) @ A T*UY), (2.24)
(b) D(wo,+fo,) = aDa,+BDe, for a,BeC;0,,0,e&(E(U)R® A'THU)) (2.25)
© DX ®w)=DX A o+Xdo for Xed&EWU)),wes(ATHU)). (2.26)

Let 0 e S(E(M) ® T*(M)) be the canonical form of E(M), i.e., for any point pe M and
any vector X e T(M)
8(X) = i(X) € Mz (p), (2.27)
where
i: T(M) - E(M) (2.28)

is the natural isomorphism. (Notice that as a rule we use the same symbols for the objects
from T(M) and E(M) if this identification does not lead to any misunderstanding).

If (e,), e, € S(E(U)), is a null tetrad on an open set U = M and (¢), €’ € §(T*(V)),
is a dual null tetrad of (e;), then by (2.27) one has

0 = e%,, on U. (2.29)
Now, the torsion form of a connection D on E(M) is defined to be a cross section
T € 8(E(M) @ A*T*(M))
F = Db. (2.30)
The curvature form of D is the cross section # e &(E(M) ® E*(M) ® A2T*M))

defined locally on an open set U = M with respect to a null tetrad (e,), e, € S(E(U)),
as follows

gab = drab-i-f'“c A ch. (2.31)
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Eq. (2.31) is-the local representation -of the following (symbolic) expression
R = DI. (2.32)

Eqs (2.30) and (2.32) are the Ist and the 2nd Cartan structure equations, respectively. From
(2.30). and (2.32) . one finds -casily- the- Bianchi’s identities-
ist identity:

DT =& A 0("2" DT = &% A &), (2.33)
2nd identity:
DR = 0. (2.34)

With the use of (2.31) we prove that for a real connection.D, the 2-forms %, fulfil the
analogous relations with respect to complex conjugation as the 1-forms I'°, (see (2.20)-
-(2.22)).

In what follows we deal with a connection D on E(M) which is real for real M, compa-
tible with the fibre metric g and its torsion form vanishes. For a given E(M) there exists
one and only one connection of these properties. We call it Riemannian or Levi-Civita
connection on E(M). The 1st Cartan structure equation reads then

DO = 0, (2.35)
and the 1st- Bianchi’s identity takes the form of
R A6 =0"S" g A& =0 (2.36)

The- functions R%, ., € #(Ux C) defined by
R = L R4 A € £2.37)

constitute components of the curvature tensor of Riemannian manifold (M, g) on an
open set U & M with respect.to the basis (e,), e, € &T(U)) (we identify i-'(e,) = e,).
By (2.17) and (2.31) ont has

Rapes = = Rugea: (2.38)
From the definition (2.37) we have of course
Rya = =Ropar 2.39)
Then the Ist Bianchi’s identity is locally. equivalent to the following relation
Rgpea+Roapc+ Racap = 0. {2.40)
The formulae {2:38), (2.39) and (2.40) yield

Rapea = Rua- (241
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In a standard -way we define:
(a) The scalar curvature of (M, g), R e &(M xC), which is given locally by
R := R%,, (2.42)
(b) The traceless Ricci tensor of (M, g); Ce &(T*(M) @ T*(M)),
with local components
Cap 1= Rupe~% Ru, (2.43)
(¢) The conformal curvature tensor -of (M, g) (the Weyl tensor of (M, g)),.W-e &(T(M)
® T*(M) ® A*T*(M)), with local components
a a ‘ a a R a
Co%ea i= R%a+C {cgd3b+5 [ccd]b+ '6_ 0 [cHayp- (2.44)

The components of the Weyl tensor satisfy the conditions analogous to (2.38)—(2.41), and
moreover

Ce = 0. (2.45)

One finds easily that the complex conjugation of the components R%, ;, C% 4 Ca, R etc.,
can be accomplished according to the scheme explained in (2.20)-(2.22).
Define the following objects

C€® i=2C,342 = 2Ry245, C* 1= Ci242+Causz = Rizaz +Rigas,
c®.=2C . = 2R ~+£.C(2)'=‘C +C = Ryz31+R
1= 2Caz31 = 2Razsit s : 1231t Ca431 = Ryz31+RKiaqay,s

CW 1= 2C33, = 2R313;. (2.46)
and

C® = 2C4141 = 2R4q4y, CH = C141+Cs441 = Rypg1+Raagys
C® = 2Cy1ay = Regst o, €D 1= Cpiaz+ Cagaz = Ragas+R
= 2Cars2 = 2Rawszt s i= Ca132+Caq32 = Kyp33+Rayza,

CW 1= 2C;3,35 = 2R3235. (2.47)
We have the following relations
HR: C® = ¢®, (2.48)
UR: C® = C®, 6@ = (@, (2.49)
ER: C® = c®, @ = —c?,¢c® = c®

CO = ¢ CH = _¢@ E6Y o ), (2.50)
where « = 1, ..., 5.
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Now we write down the 2nd Cartan structure equations in the form of

A3+ T4y A (Typ+T3,) = £ CP%* A E+1CHe A +63 A &)
’ R
+ (% c® - T{) @ Aet—LCue* Ae' =1 Cy(—e' At+ed A et
~3Cu€® A & =Ry, (2.51)
R
A(Fy,+T33) +20 45 A Ty = CHe* A 2+ (C(3’+ E) (€' A t+e® A )
+CPe3 A e'—~Cyuiet A ' —Ciy(—e' A ef+ed n et
+C326° A &% = Ry + Ry, (2.52)
' R
Al +(Ty3+4T3) A T3 = (% c - —1—:2—) et A et+1COe! A+’ A e
+1CV A e =3 Cye* A +3Cyy(—e' A dte’ et
-1C3 A & =Ry, (2.53)
ATy +T 4y A (=T, +T39) = 1 CV* A ' +5C¥(—e' A e +¢* A €*)
1 /3) R 3 2 1 4 2 1 i 2 3 4
+ {5 C¥~ I e Ae—~3Cue" Aet—5Cyule’ Ae“+e Ae)

~3C1e’ A el = Ay, (2.54)

. . R
d(=Ty34T3) 424y ATy = CPe* A '+ (C‘”—}— Tz—)(—e‘ Ae+ed Aeh)
+CPe3 A e2—Cyye* A e —Cpyet A 46> A &%)

+C388 Ael = =R+ Ry, (2.55)
: 1 A(3) R 4 1,1 ~(2) 1 2 3 4
Alag+(—T 2+ T3) A3 =|3C -5 e Ae+53C(—e Ae"te Ae)

+1CWe® A =1 Chpe® A E+1Cyy(e' A 463 A eM)—1Cy3e° A e = Ry,
(2.56)

(Notice that Eqs (2.54)-(2.56) can be obtained from (2.51)-(2.53) by changing 1 — 2,
251,353,444 and C® - C®) We intend to give a deeper interpretation of the
formulae (2.51)-(2.56). For this purpose we have to define some new objects.
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First, a metric g on M defines in a natural manner a fiber metric on the vector bundle

4
@ ATHM), (A°T*(M) := MxC) as follows.
r=0
Forany o, 0 € H ;rvpn(P), p € M, of the form o = w' A ... A 0,0 =06' A ... A.GC
o ) v o
with o', 6/ € I7.4 (D), i,J = 1, ..., 7, we define an inner product of © and o, (o, o),

to be a number

(r) X
7(w, 6): =r!det |'g(’, )] (2.57)

for 0 < r< 4, and

(0)
7(0,0) := wo (2.58)

for r = 0. A C-linear extension of the formulae (2.57), (2.58), defines the inner product
on the fibre 11 ;1. (p). As p is an arbitrary point of M we obtain the fibre metric

()
7 € E(ATHM) ® A'T*(M)) on AT*(M).

Let now @ := 0 + ... +W4, 6 1= 0o + ... +04, Where o, 6, €Il ;1our(P), p € M.
Then one defines

4 (r)

"0,0):= T y(@,0,). 2.59)
A C-linear extension of (2.59) for each point p € M determines the fibre metric y € (AT *(M)
® AT*(M)). Assume that Riemannian manifold (M, g) is oriented. In the present formalism

it means that the structure group of NL(M), ¥, has been reduced to “special
tetrad group” S¢

S% 1= {I = lil%||e 9:det|I%] = 1}. (2.60)

It is equivalent to the statement that one has defined a 4-form V e §{A*T*(M)) represented
locally in the form of

V=e nAere®aet (2.61)
Now we are in a position to introduce the Hodge * -operator to be a bundle isomorphism
# AT*(M) > AT*(M), (2.62)

which restricted to A'T*(M), 0 < r < 4, is defined to be a bundle isomorphism
2 AT*(M) = A*~"T*(M), (2.63)

such that for any point pe M and o, ® € I1 1 roun(P)

i 1
G A *® = —exp {l—; r(4—r)} = e, @)V. (2.64)
r!
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(The factor “-exp {...}”" makes the present definition of the Hodge =-operator identical
with the one given in our previous works [8, 15, 16, 21}]).

By this factor our definition (2.64) differs from those of Atiyah ct al. [27], Friedr.ch
{28] or Flanders [29]).

One finds easily that

«x = identity on AT*(M). (2.65)

Let A2 T*(M) be the eigcnspaces of the s-operator belonging to + 1 eigenvalues, respecti-
vely.
Now, as from (2.64) one has

cAro=(—D)* "0 Arre=2+0 A0, (2.66)
the decomposition
APTHM) = AZT*(M)+ A2 T*(M) (2.67)

is orthogonal one. A2 T*(M) is called a bundlc of self-dual 2-forms and A2 T*(M) a bundle
of anti-self-dual 2-forms.
The curvature tensor of (M, g) can be understood as a bundle morphism

R: APTHM) - ATT*(M), (2.68)
locally defined as follows
Re® A €)= 1 R® e A &, (2.69)

where (¢%), e"e T*(U) is a dual null tetrad on an opcn set U < M.
Define local bases of A3 T*(U) and A2 T*(U):

S'iz=2e* A% S'2:=¢e' A elted aet §PP:=2e A€,

S S 8?2 e (AL T*(U)), (2.70)
Sii:=2e* Ae!, Sit:= —e' A c?+e® A €%, Si2:=2e® A €%,

sii, §i2, S22 e (A2 THU)). (2.71)

Using them we find the following orthonormal bases of A.T*(U):
for CR, HR, ER:

P = 1(S11 4872, #Pi= ésxz’ Fi= — (S 522, (2.72a)

i
2
Fii= 1(Sii48ih) &2 — -;jsii, Pri= — %(sii~sii), (2.72b)

WP, P = 8%, W(F¥, &%) = 64, (L, F*) = 0. (2.72¢)
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for UR:
Pri=5(5"+8%), =55 F2= (ST -5, (2.73a)
Fi:= L (Sii4823), &1:= L§i $i:= 1 (§ii-822), (2.73b)
WS, F°) = diag I, —1, — 1] = W(F¥, F*), W(F*, ¥*) = 0. (2.73¢)

(From now on we assume that Latin letters u, f, r, w run through 1, 2, 3.
Then we have

R(SF*) = R F°+C"; 7,
R(S4) = Ry, &7+ Cu, F". (2.74)

From Eqs (2.51)-(2.56), (2.70), (2.71), (2.72a, b) and (2.73a, b) one finds the following
formulae

CR, HR, ER:
R . . R .
R*, = C*,— 65",.. Ru, = C¥; ~ Eé";, (2.73)
where
,.1 (C(l)+C(5))+C(3), —i(C(z)-'l'jC“)), ‘:_ (C(!)_C(S))
chu“ = :| l(c(2)+ct4)) —2C(3), C(Z)_C(4) {i
l :
.t_ (CV =™, CH ™, -1+ C®+ C"’g} , (2.76)
.‘1 (C(l) C(5))+C"(3) !'(C(Z)+C{4)) _ i(é(”_c‘“))
s * 2 “
“EC"‘L‘. 4= ,l(C‘”-*—C“’) —2C, CO_¢c® 1{
- ~(C‘” C®), oW, *(c“>+c<5))+c<3>i , 277
and

i . ! |
ii“"li(cu'*‘czz'f’css“'cu)» i(C3;—Cy3),s 3 (Cs3 +C22—C44“Cxx)i
e = ’;’ ‘(Cu Ci2)s —2Cyy, —(CA +Cs3) ]
i
{

(C44+C22"C33—C11) —(C43+Cyy)s $(Cy1+C22—C33—Cua) |

= J|ICs, . (2.78)
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UR:
One has (2.75) with

% (C(1)+ C(S))+ C(S)’ C(2)+C(4)’ % (C(S) _C(l))
—(C(2)+C(4)), _2c(3)', . C(2)_c(4)
“% (CH—c®), CH—C®, LD+ CP),  (2.79)

: 1
IC%1 =32

||Cu; || is defined by the matrix (2.79) after changing C® — C®, « = 1, ..., 5. Moreover,

—3(Ci1+C+C33+Cas), C31—Caz, 5(C33+Cy3—Cas—Cry)i| |
iIC% Il = 3 ||Ca1—Cs2, 4 2Cy,, Cu1+Cyp
7 (Caa+Cy—Cy3—Cyy), Caz+Csy, 3(C33+Chs—C11—Cyy) (2.80)

and ||C%,|| can be obtained from the matrix (2.80) by changing 1 — 2,2 - 1,3 — 3,4 - 4.
Gathering all above considerations we conclude:
The endomorphism #: A2T*(M) — A*T*(M) locally defined by (2.69) can be repre-
sented in the following form relative to the decomposition (2.67):

W 0 | [ R\IL, 0]
09 /‘1/— 12091

where % ;e End AIT*(M), #_eEnd AZT*(M), % eHom (AiT*(M), ALT*(M)),
%' e Hom (A2 T*(M), A2T*(M)), and I is the identity transformation of ALT*(M) -or
AXT*(M). Then

A= (2.81)

%, 0

0ol

Trw, =0=Tr#_. (2.82)

With respect to the orthonormal bases defined by (2.72a, b), (2. 73a b), the bundle mor-
phisms #,, W _, € and @’ are represented by the matrices ||C* ||, [|C fl, [1C% || and ||C#%||
respectively. Using these representations one finds easily the following relations

W@w, Wi04) =y (W 104,04), (2.832)
Wo_, W_6_) =y _o_,0.), (2.83b)
Wo_,66,) = yE'o_,0.), (2.83¢c)
o, #o) = YR, 0), (2.83d)

for an arbitrary point pe M and any w.,, a+eH;21+T*(M)(p), ., a_eH;zl_T.(M,(p), w,
oell AZT!(M)(P)

The formulae- (2 81)~ (2 83) are generalizations of the facts well known in the case
of ER (see [27, 28, 30, 35]).

Concluding the present Section we would like to notice that the 2nd Bianchi’s identity
(2.34) can be easily represented in terms of the null tetrad formalism: (see the formulae
(A.3a)+(A.4d) in [16] and the formulae arising from (A.3a)-(A.3h) after changing 1 — 2,
251,353,454 and CY- (C® for a =1, ..., 5).
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3. Spinors

In this Section we present “‘a spinor formalism without spinor structure” for 4-dimen-
sional Riemannian manifolds. W¢ assume that our 4-dimensional Riemannian manifold
(M, g) is oriented. Morcover, for HR or UR we nced also the reduction of S%-group
to S¥', where S%' is the connected component of the unity element. (For CR or ER,
S¢' = 5%.)

In the case of HR this reduction means the time orientation of (M, g) and one has

HR:S%' = {|I%iieS¥; + (P + 13 —1*-1) = 1} (3.1

For the case of UR the group S%' is analysed in the part IT of our work.
S%'-structure on M will be denoied by SNL(M). In what follows we do not assume
that M admits a spinor structure (see [24, 31-35]). Let (p, (e,),) € SNL(M), p € M. Define

(p' (e1i9 €135 €21, eZi)p) = (ps (e43 €3, €y, ""63)1,). (3'2)
One can easily verify that if (p,(e,),) € SNL(M), e, = [°,e,, I° | € S¥', and if

(p,(errirs @13, €300 €3:3)p) 1= (P (€405 €5, €11, —€3),), 3.3)

then
epi = Vylipeys (3.4)
(capital Latin letters 4, B, C ... etc., run through 1, 2), where
CR: ji*,feSL2;C), iiiAyiie SL(2;0),
HR: leieSL2;0), 1Myl = (el
UR: iy iieSL(2; R), [l4;iieSL(2;R),
ER: ji*4iieSUQ),  ii4yieSUQ). (3.5)
Thus, (3.3), (3.4) and (3.5) Yield the following group isomorphisms
CR: SO(4;C) = S%' ~ SL(2; C) ® SL(2; C) = SL(2; C)xSL(2; O)/Z,,
HR: SO'(3,1; R) = S¥' > SL(2; C) ® SL(2; C) = SL(2; O)/Z,, (3.6)
where
SL(2; €) ® SL(2; €) := {I1*51%1; i1l € SL(2; C), 45 = I},
UR: SO'(2,2; R) = S%' = SL(2; R) ® SL(2; R) = SL(2; R) x SL(2; R)/Z,,
ER: SO(4; R) = S%' ~ SU(2).® SU(2) = SU(2) x SU(Z)/ZZ,
where Z, := {l, =1} is the cyclic group. (Remember that for CR, ER: S%'= S%).
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Therefore, the sum | J {(p, (e,3),} defines a principal fibre bundle with the structure
peM

group %, where
CR: ¥,:=SL(2;C)®SL(2;C), HR: %,:=SL(22;C)®SL(2;0),
UR: ¥%,,:=SL(2; R) ®SL(2: R), ER: %, :=5U(2) ® SU(2). (3.7

This principal fibre bundle will be denoted by SP1i(M) and called the bundlc of spinor
frames over M. One has obviously

SPLi(M) & SNL(M). (3.8)

Let 4,, acts on C* on the left as follows: if I = ![IA'AIE’;,HGQW,

@y E=(EAB)eCh = IE = ¢ = (§4F),  CaB = |V JBpeaB
(i) E=(MeCt = 1 =8 = @E7), PV i= P
(iii) §=(EAB)eCt = & = & = (AB), hb = |4 1B eab,
(iv) (=('peC =1t = =), Mpi= 1107080,
(v) E=(BAeC = It =& = (Ey), Ghgi= Mgl 1Bpea;
(@) E=(EReCt =g = = (), pi= 1401,

Then, one can define in a standard manner vcctor bundles associated with the principal
fibre bundle SP1i(M):

(i) St1i(M) — the spinor bundle of type ((1, i), (0, 0)) over M,
(i) S%(M) — the spinor bundle of type ((2,0), (0, 0)) over M,
(iii) S3(M) — the spinor bundle of type ((0, 2), (0, 0)) over M,
(iv) S*' (M) — the spinor bundle of type ((1, 0), (1,.0)) over M,
(v) Si;(M) — the spinor bundle of type ((0, i),; (0, 1)) over M,
(vi) §*;(M) — the spinor bundle of type ((1,0), (0, 1)) over M.

The dual vector bundles to Sti(M), SHM), SX(M) or S!;(M) are

()* S,{(M) — the spinor bundle of type ((0, 0), (1, 1)) over M,
(ii)* S,(M) — the spinor bundle of type ((0, 0), (2, 0)) over M,
(iii)* S3(M) — the spinor bundle of type ((0,9), (0,2)) over M,
(vi)* S,1(M) — the spinor bundle of type ((0, i), (1, 0)) over M,
respectively.
By taking the tensor products of above defined vector bundles we obtain the spinor
bundles of the form S?(M). S?(M) is called the spinor bundle of type ((p, 4), (7. 5)) over M.



819
From our construction of S1i(M) one finds easily an isomorphism
j: Sii(M) - E(M). (3.9)
Namely, j is defined according to the formula

j: (eli9 €313, €21, eZi)p - (94, €, €1, —e3)p (310)

for any point p € M, with (e,3), (€45 €11 ;}(M)('p)) being a spinor frame at p and (2,),
(e, € T 531 P)) being a null tetrad-at p-which understood as an element of [Ty ,(p) belongs
to I ENlL(M)(p) (see (3.2)).

(From now on we use null tetrads in the sense of SNL(Af)!). Then, for an arbitrary
vector X4Be ;€ H_;;(M)(p) ‘

J(X4Be,5) = X%, € Hyuy(p),
Xii= X% Xti=Xx? Xx2i=3Xx' x22=-X3 (3.11)
If M is real then X%, e M g}(p) is real iff

HRi; EE = iXBA’ (3123)
UR: X4B = Xab, (3.12b)
ER,: X' = FX22, Xi2= +X2i (3.12¢)

Let D be a connection on E(M). The isomorphism j-! : E(M) — S1i(M) defines uniquely
the connection D on S!i(M) such that for any open set U = M and any X e &(E(U)) the
following diagram
D
X — DX
J'“IJ( . lj‘l ®1 (3.13)
D )
JHX) — Dj'(X)

commutes; where 1: T*(M) — T*(M) is the identity mapping. With the use of (2.15),
(3.10) and (3.13) one can easily find, that the components I'43.;, € &(T*(U)) of the connec-
tion 1-form, over an open set U = M, associated with the connection D with respect
to a local spinor frame (e,3), e, € &(S1i(U)), defined by

ﬁeCl’)- = 4Bg;e 5, (3.14)
are related to the components I'’, e £&(T*(U)) as follows
rlili = F44’ r1.21i = qu inli = F14= F251i = _F34’
Flili = F42’rlili = Fzz,FZili - Fblz,rzili _ _F32’
iy =I*, M2,y = 12,02 =14, 122, = -1,

[tiyy = —I*, Mty = —I% T2iyy = =Ty, [22,; = Ty, (3.15)
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or, in the compact form
[Abgy = —gab goy'T", (3.16)

where g4B, and g.;’ are defined later on by the formulae (3.82)—(3.84). The fibre metric
g on E(M) and the isomorphism (3.9) define the fibre metric g on Sti(M) as follows

gU7'X,J7'Y) = g(X, Y) (3.i7)

for any point pe M and any X, Yell E(}n)(p). Hence, for a spinor frame (e,3), at p

gleais €ch) = —EapEips (3.18)
where
L 0 1 - o
SURLY S, a9

From the definition of the connection D on S*i(M) one easily concludes that this connection
is compatible with the fibre metric g on S1i(M) iff the corresponding connection D on E(M)
is compatible with g.
Then, by the definition, we find that D is compatible with g iff for each point pe M
epceinl B gyt eqpepil Fep = 0, (3.20)
or with. “lowered indices”
 Tcpai+T asep = 0. (3.21)

(The spinorial indices are to be manipulated according to the scheme

. C... — e .. '... —_ o
Eacy ... = YWy . 8AC'PC = Ya o

Ao

Chpe = 97, ellgan = gl (3.22)
where

e = “_(1’ (1,“ = ¢ o) (3.23)

We now prove an important theorem.
Theorem 2.1. A connection D on S1i(M)is compatible with the fibre metric g on S1i(M)
iff for each point p e M there exist 1-forms ',z = I'py, 43 = I'z; at p such that

F ascp = Tacepp+ 1 ppkac (3.24)
The 1-forms I' ;5 and I'y; are uniquely defined by I' ,5c)-

Proof. Assume that a connection D on S1i(M) is compatible with g Therefore (3.21)
holds, and also

—Iecpup—T 4pcs = 0. (3.25)
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From (3.21) and (3.25) one finds

(T ascp—T apew) +(Tepap—Tebap) = (UaFce—Tckap)ess = 0. (3.26)

Hence, defining

Tye:= 5 Fifci, (3.27

we have
I aiep—T abes = 21 actip ©(3.28)
e (3.29)

Writing'fhe left-hand side of (3.26) in another form one obtains

(T uics—Tesan) +(Tepap—Tabes) = Moies—TEppa)eac = 0. (3.30)

Thus,
Taics—Tesap = 2T bitacs (3.31)
Tsp= Fpp (3.32)

where
Tipi= 5 M55 (3.33)

Adding (3.28) and (3.31), using also (3.25) we conclude that (3.24) holds. Conversely,
if (3.24) holds, then the relation (3.21) is satisfied and, consequently, D is compatible with
g. Thus, the proof is completed. @

Now, (3.24) is equivalent to the following relation

T4Bos = 855+ B0,
T4, = 0= 4, (3.34)

The formula (3.34) means exactly that I'43.; e T* (M) are the components of a 1-form
at pe M with values in the complex Lie algebra of the complex Lie group SL(2; C)
® SL(2; C), and. 'y, 'tz € T* (M) are the components of 1-forms at p € M with values
in the complex Lie algebra si(2; C).

In what follows we deal with a connection D on Sti(M) compatible with the fibre
metric g. Then, from (3.15) and (3.34) one finds

2l ,, [+l
I+ T3, 25

2l 4y, —T'y+ 15 '
. 33
-~ T2+ 34, 215, (3.33)

From (2.20)—(2.22) and (3.35) it follows that a connection D on E(M) is real iff for an arbi-
trary point pe M

Mgl = -3 , Mgl = —3%

HR: I =T33
UR: TI',g=T,8 I3 ="~3
ER: I, = I8 T3 =T (3.36)
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The formulae (3.36) are equivalent to the following statements
HR: |5 esl2; ©) @ T,/AM), ITP4311 = iM%,
UR:  (iMgiiesl2; R) ® T,M(M), 4 € 5125 B) ® T,5(M),
ER: iiMgiiesu2) @ T,X(M), IiM4;i e su2) ® T¥(M), (3.37)
where T: R(M) is the rcal cotangent space at the point pe M. One has also
CR: [[Mpjiesl(z; €) ® T, (M), il 4;ii € s1(2; C) @ T,(M). (3.38)

A connection D on S'i(M) defines the exterior covariant differentiation D on Sti(M)
in the analogous manner as a connection D on E(M) defines the exterior covariant differen-
tiation on E(M) (see (2.23)(2.26)).

We easily find that for any open set U « M and any cross section o € &(E(U)
® A'T*(U)), 0 < r < 4, the following diagram

l el (3.39)
b

commutes.

The decomposition of a connection D on Sti(M) given by (3.34) enables us to define
the connection on an arbitrary spinor bundle Sf;}(M). This connection will be denoted
by D and it is locally defined as follows

~ AwBee g A B . AeBees
Dec‘..g.‘ 1= FECe;...'...“*‘ voo +TEgec g+ ...
Ee B e AeEe..
~TI“ec.p.~ ... ~TBiec o — ..., (3.40)

where (eg:_‘:f;:), eg"_"'f;:_' eé"(Sff(U)), is a spinor frame on an open set U c M.

Then, one can immediately define the exterior covariant differentiation D on Sf;’(M).

Now we find easily from (3.14) and (3.34) that if (e,43) and (e4-5.), €3> €5 € E(S1(T)),
are two spinor frames on some open set U C M related by the transformation (3.4) with
(3.5), then

FA'B’ =] IA,AIBB'FAB+ 1~ 1A’AthB’ (3.41)
and

ré; =1- 11"111';1;,1*,1&.,_'1— 14" dlA,. (3.42)

Let 8 be the canonical form of E(M). Then, the canonical form 8 of Sti(M) is defined as
follows

E(SYI(M) @ T*(M))3 6 := (' ® 1. (3.43)
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With the use of (3.39) one concludes that the torsion form  of a connection D on Sti(M)
&(SH(M) @ A*T*M))T := D8 (3.44)

is related to the torsion form J of the connection D on E(M) (see (2.30)) as follows
g =('ehy. (3.45)

In the local spinor frame (e,;), e,; € £(Sti(U)), on an open set U = M, we have

6 = gABe,;, (3.46)
where g4B e £(T*(U))
. 4 ez i
[gABl + = .
lg4®li= 1t n _ sl - (3.47)

One can express the metric g on U in terms of g4B as follows
= g4 @ g, (3.48)
s

Then, the Ist Cartan structure equation (3.44) restricted to U gives
dgaB+ I, A gCB4TBy p gAC = T 4B, (3.49)

with § = T 4be ;.

The curvature form of D is the cross section % € &(S1i(M) ® S;3(M) @ A*T*(M))
which restricted to an open set U =« M and with respect to a spinor frame (e,z) on U,
eq; € 8(S1i(U), possesses the components

Rabcy = dT4Bcy+ [4bgs A Ty, (3.50)

This is the local representation of the following (symbolic) expression

%= Dr. (3.51)
Then, the Bianchi’s identities read
1st identity: DF = G A 6(°S" DFab = paby A gob), (3.52)
2nd identity: DR = 0. (3.53)
Using (3.34) one finds easily that
RAB ;= R OB+ RB4,, (3.54)

where

R = dIg+ T4 A TS5, (3.55)



824

and

RAg = dl4y+ T4z A IC5, (3.56)
Hence,

=R, QQ1+10%_, (3.57)
where @€ (St ® A2T*(M)), R-<&(STy(M) ® A*T*(M)) are (locally) defined by

(3.55), (3.56), respectively, and 1€ &(S*;(M)), 1 €(S1;(M)) are the Kronecker’s &’s.
By (3.29) and (3.32) one has

Rap = Rpa, Rap = Rji (3.58)

Egs (3.55), (3.56) can be written globally as follows
&, := DI, (3.59)
#_:=DF_, (3.60)

respectively, where Iy, I'- are the components of the connection 1-form associated with
the connection D; I, I'- are locally represented by I'*, I'4;, respectively. Now the Bianchi’s
identities take the forms of

1st identity (locally):

DT 48 = R'c A gOB+Gh: A gAC, (3.61)
2nd identity:
D&, =0 and DF_ = 0. (3.62)
From now on we assume that the connection D on E(M) is Riemannian. This occurs iff
Do =0 (3.63)

(see (2.35), (3.39) and (3.43)).
Then the st Bianchi’s identity reads

locally

RAND=0( < R A gB+RB: A gAC = 0). (3.64)

Let S € &(S3(M) ® A>T*(M)), Se E(SH (M) ® A2T*(M)) be spinor fields on M locally
defined as follows

S4B .- Séﬁg“_é A gBD = SP4, (3.65)

S4B ;= g, gCA A gDB = SBA, (3.66)

One finds easily that S1?, §'2 = §2!, §22 are exactly the self-dual 2-forms defined by (2.70),

and Sii, §i2 = §2i, §27 are the anti-self-dual 2-forms defined by (2.71). As a consequence
of (3.63) we have

P§ =0, D5=o0. (3.67)
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Let U« M be an open set and S*% e &(A2,T*(V)), S45 € £(A>-T*U)) be as in (3.65),
(3.66). Then consider the following decompositions of %, and #;3 on U

Rap = RypcpSP+ R 4pcpSCP, (3.68)

Ras = RepanSP+RypcsSCD, (3.69)

where R, pcp = R(AB)(CD)’ Rizep = Riaiyepy Raseh = Ramyéiy RABéb = R(AB)(&:S) are

the components of spinor fields on U. Now we decompose the spinor fields on U defined
by R pcp Or Rjsép into irreducible objects according to the formulae

Rupcp = Yasep+ Poatryc+ A8 4c8pp + €4nEae)s (3.70)
Rises = Vabcs + Dot + Aleicens +eapesc), (3.71)
where vy, pcp = Yusepy Vibch = Ydsésy Pap = Py Dup = ¢(A§), 4, A e &(UxC)

define some spinor fields on U.
We prove an important proposition

Proposition 2.1. The 1st Bianchi’s identity on U, (3.64), is equivalent to the following
formulae

Rupep = Rupes, Gan=0, ¢35=0, A=4 (3.72)
on U.

Proof. First, one finds that the 1st Bianchi’s identity on U, (3.64), is equivalent to the for-
mulae

(R*c A gCB+RB: A gAC) A gDE = 0 (3.73)
on U. Then, using (3.68)-(3.71), (3.65), (3.66), (3.47) and (2.61) we conclude that
{(3.73) <> [(Rusep— Rasis) — 20 anfich— 2e4sbii
—3A—A)eperplV = 0= (3.72)). 1 (3.74)
Finally, denoting
Cuascp'= —2%4pcp,  Cipeh = ~29ised»  Casep := 2Rusch» (3.75)

and using (3.55), (3.56), (3.35), (3.68)~(3.71) onme finds, by comparing with (2.51)-(2.56),
the following relations

1 (5 1 (4 1 (3
Citr = “z‘-C( ), C1112 = -2~C( )’ C1122 = TC( ),
1 (2 1
Ci220 =3CP, Cyppp = 3 CW, (3‘,7,6)
L e mm il (5 PN 07 o, . . I, 1 €3
Cuu = ?C( ), Cuxz = 'z‘C( ): anz =7 C )’

Cizss =3 C?,  Cizzs = +CW, (3.77)
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Capch = 3 84&"88b Cabs (3.78)
A R. (3.79)
- 48 » .
for #,5 and #,; we have
1 CD R 1 ol )
Rup = —7 CapcpS ™ + EZ‘SAB‘*"E C48e5S€P, (3.80)
1 ch R 1 CD
Raip = —7 CanepSP+ g7y Siz+z CopapS - (3.81)

An object (spin-tensor) g, appearing in (3.78) is defined as follows: according to (3.47)
we put

gk = g4b ¢’ (3.82)
with (the Infeld-van der Waerden matrices)
. 0 0 . 01
B .= AB_ - —
em i g e[
. 0 0 . 10
AB_ ¢+ — A -
g 3 - ”0 __1” E] g B4 . “0 0“ . (3'83)\
Then
845" 1= E4ctpp8” 8D, (3.84)

Now, the isomorphism j: S1i(M) — E(M) defined by (3.10) can be naturally extended on
S,;(M). Namely, in the obvious notation

j(e4B) 1= gaBe® = jTH(e") = —g pe. (3.35)
Notice that (3.10) can be written in the form of

Hean) = —gai'ea=J 7 (e) = g*Be4n. (3.86).
Using (3.85) and (3.86) we are in a position to define a bundle isomorphism

J7TIM) = EM) > SEM). (387)
Indeed, if p is any point of M and
Ti= T 460, ® ... Q€ @ ® ... e ell;inp)
then
ST = T H(6) ® o ®7(e,) ®TT(E) ® -

® J €Y e I 14 (P)- (3.88)
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Thus
JTHT) = TABe-Abrep c5.8ao @ - @ €ah, @ D1 D ..
® ecsbr e I, (), (3.89)
where
T"lél"“"é"c,[;,...c,b, = ('l)sg"‘é‘a, g“'é'a,gc,i), gc,n,bs' by (3.90)

The spinor arising on the right-hand side of (3.88) or (3.89)'is called a spinor image of the
tensor 7. Thus, one can easily find that the covariaat curvature tensor of (M, g) with the
local components R,,., possesses the spinor image belonging to &(S,i(M)) with local
components

Ruscperea = Cacecesptin+ Copratactee— CacintecEsp — CrebpEactii

- % (e4cteGEintps + EAEECGEEDEFR)- (3.91)
The spinor field on M with local components C,creespesa+ Cipratactee appears to be
the spinor image of the covariant Weyl tensor of (M, g). The spinor fields on M with local
components C,ceeespera O Cipra€actee are the spinor images of the self-dual part or
anti-self-dual part, respectively, of the covariant Weyl tensor of (M, g). Thus the spinor
fields on M with local components C gzcp Or.Cypep are called the undotted (= left) or
dotted (= right), respectively, Weyl spinor of (M, g). The spinor field on M defined by
Cpip is called the traceless Ricci spinor of (M, g). (From the group theoretical point
of view, the formula (3.91) defines the decomposition of R s3cpgicys into irreducible objects:
D(2,0), D(0,2), D(1,1) and D(0,0).)
Then, with (3.76)—(3.78), we find easily the following relatlons

CR: Cpeps Caseps Caséps R — complex,

HR: Cpcp = Ciééb, _C,wézi = Ccpis R = R,
UR: Cypcp, Caicpr Canéps R — real, '
ER: Capop = C*P, C 3ep = CABED, C gpep = CABCD, R = R. (3.92)
Now, the 2nd Bianchi’s identity (3.62) can be written locally in the form of -
VEiCoepe+ V55 Cenyiz = 0,
VAéCfBéﬁf?"'VE(ﬁCIAE]C'D') =0,
VOC ci5+% VAéR =0, (3.93)
where V ; is defined by the formula

D = g4BV ;. (3.99)
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Finaily, for any spinor valued r-form on an open set U < M one has the Ricci’s identities

BOGEE = T4 n g5 8+ 4T A gtk
T T - e 1P Lol L (3.95)

Up to now we have dealt with the spinor formalism without spinor structure. However,
if (M, g) admits an appr0pr1ate spinor structurc, then one can define the spinor bundle
SYM) of type (1, 0), (0, 0)) over M, the spinor bundle Si(M) of type ((0, 1), (0, 0)) over
M, and the dual vector bundles S§,(M) and S; (M), respectlvely Then the spinor bundles

S""(M) appear 1o be the terisor products of above mentioned vector bundles. Moreover,

Iy or I'i; define the connections on S'(M) or S1(M), respectively, and % or ., respec-
tively, are the curvature forms of these connections.
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cién y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, D. F.,07000 Méxi-
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his stay. at -the . Centro.
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