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ANOMALIES IN QUANTUM MECHANICS*
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The problem of anomalies in quantum mechanics is discussed. It is shown that they
can be treated in a way comipletely analogous to the Fujikawa approach in field theory.

PACS numbers: 11.15.Bx

It is sometimes very useful to study some interesting phenomena in field theory using
simple models. Recently Elitzur et al. [1] have succeeded in inventing quantum mechanical
models exhibiting global anomalies. Their paper shows how far can one proceed with simpli-
fications still retaining some nontrivial properties of quantum theory. They produced two
kinds of models: those having classical gauge invariance which is inherently broken on
quantum level and others, in which the gauge symmetry can be restored at the expense
of breaking some global symmetry.

Here I want t¢0 add some further remarks to show that the analogy with the field-
-theoretical situation can be pursued even further. Apart from any serious motivation it is
done also for fun.

Let us take the simplest quantum-mechanical model one can imagine — the “theory”
of one fermionic degree of freedom. This is nothing but the 2 x 2 matrix algebra in disguise.
We will work in the coordinate representation. To this end let us introduce the Grassman
variable { and its complex conjugate {. The wave function reads

¢(Q) = ap+al, Q) = ag+a,d,

with complex a, and a,, which, in general may depend on other variables (see [2, 3]).
Adopting the integration rules [d{ = [d{ =0, [{d{ = {{d{ =1 one can write the
following scalar product [4]

(@, ) = | $OpQe ALl = Gobo+ayb,.
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0
The basic operators are { and

¢

0 0
{p = {(apg+ail) = aol, 55 = éz(ao'f‘axf) = dy.
They fulfill the relations
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{’ac"’ 5 -

0
All other operators can be constructed out of { and?. The physically interesting ones
are the fermion number operator F “and Witten index operator (~1)¥
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We shall also need in the sequel two other operators: the ‘““charge conjugation”

0
C=(+—, C'=C'=
3 a
which fulfills
i 0
CiCt=—, C=C"={
¢ P % {

and the operator realizing gauge transformations

il — ‘. 6
U@ = " & = 14"~ 1),

U)U™ (o) = €,

U(a) (% Uta) = e ™

,,Q\:ie)

s U(“)¢ = a0+‘

Let us now couple our fermions to the external field. The lagrangian reads

L = ™ (1) (18, + A@)p(D).

The "theofy has two formal symmetries [1]. First, there is a gauge invariance
w() =» Opr), ) - pT e O, AR - AD+3a().
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There is also a discrete symmetry, charge conjugation,
PO ptE), A > —A®D).

Elitzur et al. [1] have shown that the abqve symmetries cannot coexist on quantum level.
This point will be discussed at length “below.
The. hamiltonian. of the theory reads

H = —AQ®) (3" Opt)+p).

Here B is an arbitrary #éal number connected with the problem of operator ordering. In
the Schrodinger picture and coordinate representation one can take

]

Solving the Schrodinger equation one gets

t t
B 1) = agexp (i(1+ ) J drA@)+arl exp (B | drA@): ).
As Elitzur et al. have noticed, if we demand the charge conjugation t0 be the symmetry
operation, i.e.
CHC' = H(-A),
then § is uniquely fixed to f = —3. On the other hand the gauge symmetry is thenu

broken, as it will bg: checked below. 7
In the Euclidean approach’ the lagrangian reads (1 — it, A —» —iA)

L = (6, —iA®))C. 2
Again the gauge transformations { — €*®, n —» ™y, A(t) > A()+0,a(t) and charge
conjugation n «>{, A(t) - —A(t) are the symmetries of the classical theory.
Let us denote by K,(¢, ', 0) the propagation function ¢((, 1) = [ K4({, t1L", 0)p(()dl'.
Then because of the ferm on .number conservation K, takes the form.
KL 117, 0) = Ko(t)' + K4(1)L.
Another representation is
$(C 1) = [ K& 11, 0)p(¢e ¥ arat,
with
K (G, 10, 0) = Ko()+ K(D)LT"

The main point we want to emphasize is that calculating K, we may proceed in two ways
following the treatment given by Fujikawa [5].
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(A) Non-gauge-theoretical formulation

Our starting point is the Euclidean lagrangian, Eq. (2). Following Refs. [5] and [6]
we assume smooth continuation i4 — 4 in Eq. (2) which takes the form

L = (0, — A(M)E. 3

Note that such a continuation usually either changes the gauge group (for example from
UL(N) x Ug(N) to GL(N, C) [6]) or breaks it. In our case the group changes from U(1)
to R:

(= e, pone”™™® AW > AW +0x(2).

In Ref. [3] we have shown that the propagation kernel for the Euclidean lagrangian (3)
can be obtained from the suitably defined path integral

hf D{Dn exp (n(~3,+A(D)]) = {exp (-3 g drA(D)+{ exp (3 6‘ dtA(1)),

where b.c. denote the free boundary conditions for % (1 is the momeatum!) and {(0) = —{’,
{(t) = {*. Continuing back to the starting Euclidean lagrangian (2) and then to “Minkow-
ski space” we obtain

i i
K (& 1, 0) = Cexp (— % deA(f)) +{" exp (E J:dTA(T)) .
0 0

' '
i

K, 10, 0) = (U exp (-— é—jth(‘t)) +exp (:‘Z_ jd‘t’A(‘t)) .
0 4]

or

Comparing with Eq. (1) we conclude that it corresponds to the choice f = —1, i.e. the
theory is charge conjugation invariant

C+’RAC = kAc, Ac = —A.
On the other hand local gauge symmetry is lost; it is easy to check that
Ut @) K (DUO) # K1),

with A%(7) = A(t)+0,a(t), 2(0) # a(z). Note that passing from the partition function of
Ref. [1] to the propagator we exhibit the gauge symmetry breaking even for “perturba-
tive” gauge transformations, The ‘“chiral charge” is, however, conserved

(p(0, 09(1) = (1/’(1), ¢ 5% ¢(t)> = const.

1 The choice £(0) = ¢/, made in Ref. [3), differs from the one made above because of different
rule of Grassman integration.
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because it generates the gauge transformations of the first.kind which are still the sym-
metries of the theory.

Taking the trace of the propagator K, corresponding to the Euclidean lagrangian (2)
we may calculate the partition function

2 t
Z=TrK, = 2‘1 (@i, Ka9)) = 2 cos (%(f)dTA(T)), $1=1, ¢;=(
in agreement with Ref. [1].

(B) Gauge-theoretical approach
Again we start with the original euclidean lagrangian (2) and define the integral

| DDnexp (n(~ 8, + LA

b.c.

proceeding exactly along the lines of Ref. [3]. Denote
‘ D = —d,+iA(t)

and‘let — D? = D+D be the positive definite self-adjoint operator on (0, ) defined by the
boundary conditions

@0) =0, @) =0.

Denote also by ¢,, and 4,, n = 1,2, ..., the eigenfunctions and eigenvalues of ~ D?,
respectively. Then {1, *Dg,}is also an orthonormal set. We add one function ¢, such that

Dgo =0, (90, g0) = Jdelgo(@l = 1.
i.e.
@o(t') =t fexp (i g dtA(7))

to form an orthonormal complete set {@o, {4, *Dg,}T}. Now we may expand-

11 = No@o(t) +. 21»1.." *D (),

with Grassman variables #,. Similarly we put

(O = 6O+ %, B,
with {(t) obeying ‘
DX (1) =0, (D)= (L0)= (.
Our integral becomes
J DLDn expnD{ = N™(t) (o, D{.) Det}(—D?).
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Now

t
—~ifdtd(r)

(9o, DL,) = (_E d1@o(D (D) = 173 +Le o)

and using Coleman theorem [7, 3] we check that Det* (— D?)t™% does not depend on A(r)
and therefore we can put

N(t) = t~* Det*(—-D?).

The only point one has to take care of is that — D? is not of the form — 2+ f(z), in order
to apply Coleman theorem the first-order derivative term must be eliminated. Then we
arrive at the operator —d82 and Coleman theorem is trivial in this case.

Thus our final expression for the propagator reads (after going back to Minkowski
space)

K& 1L, 0) = {"+Lexp (—i g drA(7)). @)

Comparing Eqs (4) and (1) we conclude that our propagator corresponds to the choice
B = —1. Obviously the charge conjugation is no longer a symmetry

C*K,C # K.
On the other hand theory is gauge invariant
U)K (OU@(0)) # K1)

for any ofz). 1t is to be expected because we maintained the gauge invariance at each stage
of derivation. We can als¢ compute the partition function

t
Z = 1+expi [ dtA(7).
0

Let us note that contrary to the case of global gauge symmetries [1] the choice f = —1
is here unique.

I thank Drs S. Giler and P. Maslanka and, last but not least, Prof. J. Rembielinski
for helpful discussions.
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