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m =0 LIMIT OF NONMINIMAL DESCRIPTION OF SPIN 3*
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It is shown that the theories of spin 3, equivalent in the massive case, are not equivalent
in the m = 0 limit. The Townsend description with the help of the antisymmetric tensor-
-bispinor is obtained as the m = O limit of the nonminimal theory of the spin 3,
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1. Introduction

In the previous paper [1] the nonminimal description of a massive field carrying spin
2 (using an antisymmetric tensor-bispinor ¢*’) has been obtained. This description is equiv-
alent to the minimal one of Rarita and Schwinger (using a vector-bispinor ¢*). It is well
known that theories equivalent for m # 0 need not to be equivalent in the m = 0 limit
(e.g. the notoph [2-4] and the notivar® [5-7]). The Rarita-Schwinger theory in the zero
mass limit describes particles with the helicities +3.

In the present paper we give the analysis of the zero mass limit of the nonminimal
description [1]. The only nontrivial result is the Townsend theory [8] describing particles
with the helicity +1 and dipole ghosts with the helicity +3.

2. The m = 0 actions

2.1. The m = 0 limits of the nonminimal theory
Let us start with the action [1]
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where y* is a vector-bispinor and ¢, $*/ are antisymmetric tensor-bispinors p* = — %
¢* = —¢". Eliminating the Lagrange multipliers v*, %, ¢ and ¢** we get the well
known Rarita-Schwinger action. To obtain the nonminimal description of the spin 3 we
perform integration by parts in the action (1) (y* and §* are converted into the Lagrange
multipliers).

The possible massless theories, resulting from the nonminimal descriptioninthem = 0
limit, are obtained as follows:
(i) we put m = 0 in the action (1); we get

I = [dx(~%"Pp9* — % #°p0); @)
(ii) we put m = 0 after elimination of the Lagrange mulitipliers »* and ¢%; we get
I = 5 dx{—% & 'I’pz[% 7’1(0',"1’)‘*""}’«'/’“}
~% [3 Goyy +i5*7,10 s}, (3)
where (oy) = 0,,9"";
(iif) we put m = 0 after elimination of all the Lagrange multipliers (first ° ¢ and then
¢, ¢*); we get
I = [ dx[+5 6,0"*y,(0p) + 15 ($0)7:0,9"*
i i R
= 7 0 et 15 (9) 39) (o), 4
where (y0) = y,0".
2.2, The action (2)
The field equations are
o*yf — 0Py = 0, (5a)

aptpﬂ“ = O- (Sb)

Let us analyse Eq. (5a). It can be regarded as a constraint on the field . We deduce the
general form of y*

Y =0y 6

where y is a bispinor. Substituting this solution to the action (2) we get (after integration
by parts) I = 0. We conclude that the action (2) does not describe any physical degrees.of
freedom.
Let us look at the action (2) from another point of view. The action (2) is invariant
under the following gauge transformation:
Sp* = 0%, Oy =0,

where ¢ and &, are a bispinor and a vector-bispinor respectively. From Eqgs. (5) we obtain
the general form of solutions

vo=0y,  yY =00,
where ¢, is a vector-bispinor.. So, we have the case of a pure gauge theory.
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We have been solving time dependent constraints in the above analysis. To confirm’
the result we have obtained, we perform the canonical analysis of the action (2).
Let us describe the action (2) in the form

I ={dx%
where
£ =+ B~} Py

Then, introducing ¢* = »%, we can rewrite the action in the form (k = 1,2, 3):

I = [ dx(P3°y* + M3°¢* — #) )
where
P = 6(6'7‘;?;)" = %%
0 L
II, = 399" = =7 P
and
H = —IPy’—§ PO % 0"y + 0y, ®

We observe that 4°, {#°, 9" and " are the Lagrange multipliers. Varying the action with
respect to them we get the following constraints

84 =0, 82 =0,
oy —dly' =0, SI-YIT =0.

They are consistent with the canonical equations. To solve the constraints we use the
formulae of Appendix. We obtain

amﬂk
m(£$ =0, m(x3)=- (Hv‘+3 -—} va)a
'a“a;y‘
¢ D = %(3 — +v") ¢-

Inserting these solutions to Eqgs. (8) and (7) we get o# = 0 and I = 0. So, there is no
physical degree of freedom.
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2.3. The action (3)

This action is (up to convention)! the Townsend action [8]. Aragone (see Ref. [11]
of the paper [5]), performing the canonical analysis, has shown that the Townsend action
describes a particle with the helicity +5 and a dipole ghost with the helicity + 3. The result
has been confirmed by Deser, Siegel and Townsend [S]. The canonical analysis of the action
(3), performed by us, gives the same result. As far as we know, the analysis of Aragone is not
published. Therefore we give a short résumé of our calculations.

It is convenient to use the following decomposition

=0 vy (k=123

where % = ¢*+9%¢ with 7,0* = 0, p;; = 0¥ +7*y) with Y9, = 0. With the help
of the formulae of Appendix we can rewrite the action (3) as the sum of the +% and +3
helicity pieces:

I =I1+H+I(+D).

After solving the constraints, resulting from varying the action with respect to the Lagrange
multipliers p and @, we get

) I(£3) = | d(Q,0°¥*~ o) )
where
H = - 3Qky0?mam qlks
Q. = F T (D) +3P(+D)ys),
¥, = d( P +ivsv(£D)

The momenta conjugated to ¢, and p, are

i _
I, = 7 [ﬁk-y(’_.% Puysto and P, = % $ysvo

respectively.

From the action (9) we obtain the equation
i(y0)0,¥* = 0.

Introducing the bispinor y = 3,%*, we get

I(i-'%)eﬂ‘cctive = I Xmi(}'a)x-
(@)
I(+3) = [ dx(5,0°P*+ 0,0°4* + 0,74y, 0" A"
+ Eo¥m0 P = 257070 49),

i

' We use g = iy%y%® and o' = - [p%,y"L
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where
' = ¢, A= (D +insph(ED,
E = D2+ (23ys, 0 = ~iPM (s
The field equations are
(704" =0, (76 = 2y,0"4,
HEY Y. =0, (O )1, = 20"(E o)

We see that ¢ and O are the independent variables. Eliminating 4 and = we get

I(£3) = _[dx é-‘lz P(70)7,0"(70)®.
It is the +3 dipole ghost action [5]. Remembering that (y9)y,,0™ = —7,0"(7%6), we have [5]

I( i%)effcctivc = J dx&(?’fa) ('}’5)@.

2.4. The action (4)
Putting y,, = sw,_,,,ysy”zp’, we get the m = 0 Rarita-Schwinger theory.

3. Final remarks

Let us briefly summarize our result. We have shown that (i) the theories of spin 3
equivalent in the massive case, are no longer equivalent in the m = 0 limit; (i{) the Townsend
description with the help of the antisymmetric tensor-bispinor can be obtained as the
m = 0 limit of the nonminimal massive theory.

We are very grateful to Prof. J. Rembielifiski and Drs. S. Giler, P. Kosifiski and
M. Majewski for illuminating discussions.

APPENDIX

We use the following decomposition of the vector-bispinor (k = 1, 2, 3)
& = 749,
where ¢ is the bispinor and y,¢* = 0. $* can be decomposed into the orthogonal parts
¢ = $ =D+ (+D),

where

- 1., ; .
AR 22 36"~y ('o)lond™, 4 = -5,



846

We see that

?’k‘ﬁk(i%) = )’k(ﬁk(i’;‘) =0
and

ak(ﬁk(i%) = 0, 5k'¢;k(i%) = 3P~

The analogous decomposition can be performed for ¢*.
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