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Tiie nonminimal description (with the help of the antisymmetric tensor-bispinor)
of the spin%, equivalent to the Rarita-Schwinger theory, is given. The variational principle
is formulated.

PACS numbers: 11.10.Ef, 11.10.Qr, 11.15.-g

1. Introduction

In the previous papers [1-3] we have discussed the nonminimal description of the
boson field (with spin 2). Now we go to the fermion case (with the spin 3 as an cxample).

To describe, in economical way [1], a massive fermion with spin 3 (and definite parity)
we use Lorentz spin tensors carrying the maximal spin s,,,, = 3. In this case, the highest
representations being contained in such spin tensors are (1, ) @ (3, 1) and (3, 0) @ (0, ).
The theory based on the representation (1, 1) @ (3, 1) is the well known theory of Rarita
and Schwinger (the spin vector v* is a ficld variable). We will refer to this description as to
the minimal one. The description using the spin tensor ¢*° = —¢** including the highest
representation (3, 0) @ (0, 3) we call the nonminimal one.

In the present paper we discuss the nonminimal description of the spin 3, equivalent
to the Rarita-Schwinger theoiy. We assume that the ficld equation in the nonminimal
formulation is, as in the Rarita-Schwinger case, of the first order. In Section 2 it is shown
that the nonminimal description is possible, but a combination (3,0) ® (0,2) ® (1,
@® (3 1), as the highest representation, must be used. The admixture of the (1, 1) @ (3, 1)
representation is necessary, since there cxists no first order equation based on the (3, 0)
+(0, 2) represcntation only [4]. In Section 3 the variational principle is formulated.
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2. The field equations

Let us start with the Rarita-Schwinger equation' for the spin vector y* transform-
ing under the Lorentz group as (1,3 & (3, 1) @ (0, 3) @ (3, 0) representation

Expan? sV 0"y  — (. — vy ) = 0. @1
From Eq. (2.1) the supplementary conditions result

7Y =0, (2.2)
9,y = 0. 2.3

Inserting these conditions to Eq. (2.i) we get
(iy-d—m)y* =0  (or (OQ+m’)y" = 0).

So, the field y* has the mass m. The supplementary conditions restrict the number of spin
variables. Indeed, in the momentum space in the rest system (p = (m, 0, 0, 0)) the spin
vector y*(p) has only 2-4 components: 9+ 1y(39). So, the field ¢*, obeying Eq. (2.1),
carries the spin 3.

To introduce the nonminimal description of the spin 3 with the help of the spin tensor
we rewrite the Rarita-Schwinger equation in the form of a set of two equations. It can
be done (in alternative way) in two manners:

a) 3 Eupants? = (8= va¥)9* = 0, (2.42)
m@?* = Pyt — 3%y, (2.4b)

b) PYpat m(8er—17)% = 0, (2.52)
Voa = Capa?s¥ Y (2.5b)

where ¢** and y’* are antysimmetric spin tensors: ¢#* = —¢*, y?* = — ¢**. The set (2.4)

is unique up to the point transformation
6 = 67+ A("1,9" = 1',6") + Bo"s - o,
where 6 ‘¢ = 0,,6" and (1+24) (1 +64+12B) # 0, and to the scaling
o > ip*.

The same is valid for the set (2.5).
Let us discuss the set (2.4). Excluding ¢, we get the equation for the field ¢

5 (@ =)o - §+i(0y,97 - y,07) = mg*. (2.6)

! See, for example, the paper [5], where the full analysis of the first order equation for a spin vector
y* is given.
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From Eq. (2.6) we obtain the supplementary conditions
¢ =0, 2.7
Euvapd @ = 0. (2.8)
Taking into account these conditions one gets from Eq. (2.6)
(iy- 6—-m)p™ = 0.

In the momentum space, in the rest system, the nonvanishing components of ¢** are ¢%,
7:0° = 0. So, Eq. (2.6) describes the spin 3. Using the decomposition (A.1) (see Appendix)
we conclude that W% = E% 3,E% = y,W% = 0. So, the representation (3, 0) @ (0, 3)
can be used as the highest one only in the combination with (1, 1) @ (3, 1). We note that
this situation is similar to the case of the spin 2, where description with the help of the 4-th
rank tensor is possible if we accept an admixture of (1, 1) representation to the highest
one (2,0)+(0,2) [1].
Let us discuss the set (2.5).- From Eq. (2.5b) we get

i

pa 2.9
5 V¥ (2.9)

v =570 p)+
and
¥ = 1 (0,97 V19"~ 6% (0 - p). (2.10)

So, the highest representation is (1, 3) @ (3, 1). Inserting Eq. (2.9) to Eq. (2.5a) we get the
equation for the field **

21‘0”%0,——my”%1 = 0. (2.11)
Eq. (2.11) gives the following supplementary conditions
o-yp=0, (2.12)
Yy = 0. (2.13)
Using Eqgs. (2.10-13) we get from Eq. (2.11)
(iy - 0—m)y,y™ = 0(and (O+m*)y™ = 0).
We see that the field variable is actually the spin vector y* = iy, y°". Using Egs. (2.10)
and (2.11) we obtain the equation for x*:

. a som l o i & o
i(y - O — iy 0px" — 3OO0+ 60 = mp

It turns into the Rarita-Schwinger equation after the point transformation y* = y*
=7 ).



850

3. The variational principle
We start with the action
I = .{ dx[3 ”\I_)/maﬁfi"1 +7 aﬁ‘f_’l'l’m — m(Py* — @v“w”)
- % m(‘T’pA - '}*’aewzd’s'}’x)d’m - %: mapi(w‘“ - Samn)’s)’x%)] . (3.1

From 67 = 0 we obtain the set of the equations

oyt~ Py = moP, (3.2)
v = .0, (3.3)
=3 Pyt i Meguysy S —m{y,—1"p,) = 0, (3.4)

and the one of the Dirac conjugated equations. From these equations we obtain immedi-
ately the sets (2.4) and (2.5).
We observe that the fields ys;, P51, $p; and ¢, in the action (3.1) are Lagrange multi-
pliers and they can be eliminated fiom the action. With the help of Egs. (3.2) and (3.3) we get
I = dx[F Feapanysv o9 + 5 PP eupncys7 9" — m(Bat” ~ Pay"v59")]

what is the symmetric form of the Rarita-Schwinger action.
Performing integration by parts in the action (3.1) we convert %, ¢’ into Lagrangc

multipliers that can be removed using Eq. (3.3). So, we obtain the action in tcvms of y* and
¢ fields:

I = [dx{~5 Pp[377(c " ) +ivey™]
— 5 3 o +ip*v.10
+5 m{P"y, P v+ @ 0) (o p)] 3.9
-3 ’”L‘E‘mﬂ"pz + Qﬂ)'}’al’xfﬁnp““% (p-o)(o: )]
— % m{yps + P17 s + 5 ($0) (0 - )T

From this action we obtain the rclation (2.10) and the system of the equations, from which
the relations

7" = 29,0% v’ (o - ¢) (3.6)
and

o-p=—20"¢ 3.7

result. With the help of these relations one can reduce the system to two equations: (2.6)
and (2.11). We note that due to Egs. (3.6) and (3.7) the action (3.5) describes only one
spin 2.
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Eliminating the Lagrange multipliers ¢* and ¢** from the action (3.5) we obtain the
description in terms of ¥** only. Putting y,; = ¢ 2op?sY ¥" we get the Rarita-Schwinger
theory.

We finish with the conclusion that the field ¢* is not an independent variable. There
exists no variational principle giving Eq. (2.6) only.

4. Final remarks

We have obtained the nonminimal description equivalent to the minimal one of Rarita
and Schwinger. It is well known that theories equivalent for m # 0 need not to be equiv-
alent in the m = 0 limit. The analysis of the zero mass limit of the nonminimal description
obtained in the present paper will be given elsewhere.

1 am very grateful to Professor J. Rembieliniski and Drs S. Giler and P. Kosinski for
discussions and remarks.

APPENDIX

The decomposition of the spin tensor ¢* = —¢?* into the irreducible Lorentz parts
(with determined parity)

[G.0e0I]el(L,) G D]®[G.0+(0,D)]

is

¢ = W+ E¥ 4+ G”, (A1)
where

W = ¢7 —3 (0.6 V.9 +§ 6" - ¢),
E? = 3 (7997 =V"1.9") =4 0%(o - ¢),

G* = {5 6*(c - §).

The irreducible parts obey: 7, W* = 0, o6 - E = 0. The dual properties of these parts are

1 .
E”WﬁWaﬁ = —l'ySW

uvo

]

% 8;1\'&55“3 = iYSE;;v’
% suszGaﬁ = - iYSGuv‘
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