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CHARGED PARTICLE RADIATION ALONG A FINITE
TRAJECTORY IN A MEDIUM

By A. P. Koszev*, A. Krawczyk** AND J. RUTKOWSKI**
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The expressions for the energy emitted by a charged particle moving along a straight
line finite trajectory in a transparent medium have been analysed. It has been shown that the
dependence of the irradiated energy on the particle velocity lacks that peculiarity, which
may be treated as a threshold. A possibility of dividing the radiation into two parts caused
by different mechanisms of the particle-medium interaction has been considered.

PACS numbers: 29.40.Ka

1. Introduction

The theory of Vavilov-Cerenkov radiation (VCR) was first formulated for the case
of an infinite straight-line uniform motion of a charged particle in a medium without
boundaries [1]. Then the irradiated energy can be calculated from the formula:

e’L 1

Bn>1

where ¢ is the electron charge, ¢ — the velocity of light in vacuum, frn — the particle velocity,
o — the emitted light frequency. To avoid the infinity in (1) the authors of this theory
had to divide the energy W by the trajectory length L.

The authors have noticed that the same result can be obtained, if one performs calcu-
lation for the particle moving along a finite trajectory. The results of this approach were
published’ in [2]. But in this case the formula (1) describes only a part of radiation emitted
by the particle and it is valid only if the trajectory length is much longer than the emitted
wavelength. This condition becomes the more rigorous (i.e. L becomes infinite) the nearer
is the velocity of the particle to the light phase velocity.

* Mailing address: Laboratory of Neutron Physics, Joint Institute for Nuclear Research, H.P.O.
Box 79, Moscow, USSR.
** Present address: Instytut Fizyki, Uniwersytet Lodzki, Nowotki 149/153, 90-238 Lédz, Poland.
! According to Prof. I. M. Frank [3] he used that method several times.
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Thus the widely known properties of VCR refer, in fact, to the particular case of an
infinite particle trajectory. One of these properties is the VCR threshold, i.e. the phenom-
enon, which occurs when the velocity of the particle exceeds the phase velocity of light
in the medium the particle is moving in. As it is easily seen from formula (1) at

1
B=—n—- (2)

W = 0 and the particle with the velocity § < 1/n should not radiate at all.
The condition (2) may be obtained directly from the expression describing the character-
istic angle of VCR:

1
cosfl = —. 3)
n

All these simple considerations (1-3) seem to be convincing, but one should not forget
that they were derived from Maxwell equations for the charged particle moving infinitely
in the medium. Based on the expressions (1-3) there were constructed many different types
of Cerenkov detectors. Their successful operation made it a strong belief that the above
theory was applicable for any real detector.

The first report on the experimental test of the threshold condition (2) was very short,
[4]. There was no information about the thickness of the mica radiator it was performed
with. Probably no attention was paid to a connection between the thickness of the radiator
and the threshold. It should be noted here that the possibility of a deviation from a theoreti-
cal description (3) due to a finite thickness of the radiator was mentioned {5] many years
before the first Cerenkov detector had been used. Unfortunately, it was left without atten-
tion. The problem was considered again in {6] and a satisfactory discussion was given in
{7}. Under the experimental conditions of [6] and {7] the VCR does not have a threshold
(like a 6-function), so the expression (2) determines the respective velocity f only approx-
imately. There exists quite definite angular distribution of the radiation. This feature has
been known since 1939 (see Ref. [2]), but the authors of Ref. [7] showed that the main
maximum will disappear when

1
n+i/L’

“)

where 4 is the wavelength of emitted light in vacuum. Therefore, the threshold velocity
is smaller than that obtained from (2).

Paper [7] refers to experiments with a target of the thickness of an order of several
wavelength where the above formula was confirmed. In practice Cerenkov detectors are
much longer, but even in a 1.5 m long detector the radiation has been observed undre
threshold (in the sense of (2)) and this under threshold radiation had to be taken into
account to determine particle energy more accurately in an experiment [8]. In Refs.
[9-12] there was investigated the Cerenkov gas detector yield as a function of the pres-
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sure inside the detector (up to several dozens of milimeters long) and no peculiarities
were found which could be interpreted as a threshold.

The problem of the VCR threshold existence is interesting not only from an empirical
point of view. A particular mechanism of the interaction with the medium may exist
when the charged particle velocity is greater than the phase velocity of light. The purpose
of this work is the detailed study of the VCR energetic yield in the case of a finite particle
trajectory. To avoid referring too often to [2], the main formulas and their interpretation
given by I. E. Tamm will be quoted below.

2. Tamm’s results

"Let a charged particle move in a homogeneous transparent medium with a velocity
v in the time interval (—1,, o) and stay at rest outside this interval. Then the density of
the current may be written as:

J. = evd(x)0()d(z—vt) for —viy <z <ty
J:=0 for |z| > vty (5
and the Fourier integral expansion is as follows:

iwz

j () =‘:,_§;é(x)5(y>e‘ v for |zl < vt ©)

Jfw)y =0 for [z| > vty

The retarded potential, describihg the radiation field, has the form:

1 i ” ’, ZI _ ionR
Aylx, y,2) = ; J\Jw(x Iiv )e ¢ dx'dy'dz’, )

where

R = V(x=x)V+(—y)+(z-2)

Now one can- calculate the electric-and magnetic fields and, after integrating over
time interval, the Poynting vector, and obtain the following formula for the emitted energy:

¢

202 >
wo 2Fn j Jo)do, (8)
[+

where

n

_ ['sin® [wto(1 — Bn cos 6)]
Je) = J T —Pncos?

sin® 6d0. 9
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Having integrated (9) under the condition:
wty > 1 (10)

and neglecting fast oscillating terms such as sin [wfo(l + fr)] one can write:

_g =L (g LB
J=J, = P (ln = pnl Zﬁn) for pn<i an
nwt, 1
J = J1+ ﬁn (1-' ﬂ—z-P) for ﬁl‘l > 1. (12)

It is clear that if fn — 1, the condition (10) is not sufficient and the formulas (11) and (12)
cannot be employed. The more rigorous condition is:

wt]l—fn] > 1. (13)

The expression (13) excludes the area where the function J(B) reveals discontinuity, while
from Eq. (9) one can directly derive the simple formula for fn = 1:

J = In(4ywty)—1, (19

where 7 = 1.781. The VCR was singled out by Tamm from the expression (12) (i.e. for
Bn > 1) as J—J,. This difference together with (8) results in the formula (1). The remaining
part of the expression (12) is connected (according to Tamm) with an instantaneous
change of particle velocity from 0 to v at the moments +¢,.

Thus, the formula (1) has been obtained in another way. Further on we shall consider
only the peculiarities due to a finite trajectory of the particle.

3. Complete expressions for the yield of irradiated energy

When integrating the initial formula (9) with respect to a new variable
x = wtyg(l—fncos b) (15)
one can obtain the following sum of three integrals:

X2 X2 X2

1 \ot, (sin?x .1 (sin’x 1 . 5
Jo (1 ﬁznz) B f 2 x+ ﬂ3n3j " dx Frorn sin” xdx (16)

X1 x1 X1

where
x; = otg(1=Bn), x, = wts(1+pn).

The last integral may be calculated immediately:

X2
sin 2x|*?

in® xd =£_
Ismxx 2 4

X3

(a7

Xy
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The second one was, in Ref. [2], expressed by the sum of the cosine integral and a logarithm,

but it leads, as it will be shown below, to an infinity of the function J(f) for g = 1/n.

That integral is commonly denoted by S1 and its values are tabulated, e.g. in [13].
The first integral in the sum (16) may be expressed by the sine integral and elementary

functions:
X2

J‘ sin® x cos 2x 1%

dx = Si(2 - — . 18
2 i2x)+ 2x 2%} x, (18)

X1

Then, the complete formula for the energy irradiated by the particle with a frequency o has
the form:

W= J, (19)

J, = (1 : );-)59 {Si[20t6(1 + pn) — Si[2wt4(1 — fn)]}

- ﬁ2n2

1

+ B {S1[wto(1+pn)]—S1[wt(1 - )]}
- m {sin [20t4(1 +pn)]—sin [2wt0(1-—ﬂn)]\}

fn—1

1
+ W cos [2wt4(1 + pn) ]+ 5—23-,%3— cos [2wty(1 — n)] - (20)

2
BTn—z .
Tt is easily seen that the terms with sine integral at greater values ¢of the argument and
under the condition that fn > 1, tend to n and become identical to the formula (1). For
this reason they were identified by Tamm with VCR. It is important to note that these
terms do not turn into zero for fn < 1 and, at the same time, do not occur in the formula
(11). On the other hand, there is no logarithmic term in the expression (20), which is re-
sponsible for discontinuity of the function J(f). Furthermore, some terms vanish at fn = 1
and one can rewrite the complete formula in a simpler form:

in (4ort
J = S1Qwiy)+ S—“;t( @lo) _

1. (21)
Wo

4. Example

All the terms in the formula (20) remain real for any particle velocity. To realize what
is the contribution of each term into the radiation, the particular case reported in [7] will
be analysed below with parameters shown in Fig. 1.

In Table 1 it is shown to what degree the condition (13) is satisfied for the above
case.
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TABLE I
EkeV wto(l—fin)
40 | 106479
140 | 03313
149 0.0004
160 0.3609
200 C 13811

- The results are shown in Fig. 1. The energy of the radiation is given in eV per cm per
electron, since the calculation is performed for the unit interval di. As it is seen in Fig. 1
the sum of the terms containing sine integral (denoted as Si) oscillates for fn < 1, vanishes
at fn = 1 and increases practically linearly with energy for fn > 1. The sum of the terms
containing the function S1 reaches its maximum value near fn = 1; its contribution de-
creases at high electron energy, but it is predominant for fn < 1. The sum of terms with
cosine oscillates with the amplitude comparable with that of Si (the part for frn < 1), but
with an opposite sign. The terms with sine function are tog small to be seen on the figure.

2 . . .
The term — B is represented by “constant” on Fig. 1. The sum of all terms is posi-
n?
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Fig.\l. The contribution of individual terms of the formula (20) into the yield of VCR initial parameters:
L = 1240 nm, n = 1.58; A = 400 nm



859

2000
TC
o
°
g
v 1500
e
Q
>
2
= j000}
500 -
% 0
(-]
A 1
0 50 100 - 150

ElxeV)

Fig. 2. The approximation of the formula (20) for the radiation intensity (continuous line) by expressions:
(11) — circles, (12) — crosses, (14) — full circle
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Fig. 3. The approximation of the formula .(21)- — solid line — by the expression (14) — points
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tive, it increases with energy and is represented by a smooth line having no discontinuity

1
at the threshold (,3 = ——).
n

Fig. 2 shows an agreement between the approximate formulas (11), (12) and (14)
and the exact formula (20) for the case analysed in this section. In the energy region > 1/n,
the agreement is good because the formula (12) contains the whole set of terms (in the sense
of (20)) which contribute significantly into radiation. The situation does not change consider-
ably near the threshold, where the condition (13) is not satisfied any longer, but, at the
same time, the influence of the logarithmic term is still small. Some discrepancy at lower
energies may be connected with the neglecting of the terms containing cosine and integral
sine — the two terms of opposite contributions, although not cancelling each other totally.

At Bn = 1 the formulas (14) and (21) agree well, because the logarithmic argument
is sufficiently large. When the argument becomes smaller, the approximation of function
S1 by a logarithm fails. In Fig. 3 one can see that the logarithmic term in the formula (14)
tends to minus infinity as wt, — 0, while the function S1 tends to zero, as it should be expec-
ted. Let us return to Eqs. (11) and (12). It should be noted here that the infinity of the
logarithm appears at any value of the parameter wt,. It is the result of the approximation
of the function S1 by a logarithm. The area where this approximation is not correct, in
paper [2] is excluded with the help of Eq. (13).

5. Energy irradiated in the main maximum

The basic work [1] treated the fact that VCR may be observed only in the direction
of the characteristic angle (3) as one of the main features of VCR and that the destruc-
tive interference takes place in all other directions. The radiation from real detectors should
be described by the angular distribution as in the formula (9). This distribution has the main
maximum at an angle approximately equal to that given by (3), [6] and some additional
secondary peaks [14].

There are two reasons for investigating the dependence of the radiation intensity in the
main maximum on the particle energy. The first one is the connection of the main maximum
with the VCR in the sense of [1] as it was mentioned above. The second one is the Tamm
description, i.e. his division of the radiation into two parts, each of them caused by the
different mechanism of the particle-medium interaction. The main maximum has the limits
clearly seen: the numerator of the formula (9) equals zero at a sine argument of *7.

After integrating (9) within these limits, one can obtain

e 1 4e*
The formula may be used only when both limits appear at the real angles, i.e. when the
following condition is satisfied:

1
B =

“n—AL’ (23
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The first term of the formula (22) except for the coefficient 0.9, corresponds to the formula
(1), i.e. to the VCR in the sense of [1]. The second term is small. Within the application
range of the formula (22) and for the data from the previous section, the second term value
is 0.6% of the main maximum. Tt is worth noting that the term understood as VCR is
strictly connected with the second term, representing the bremsstrahlung. Similar expres-
sions can be obtained for other maxima with the only difference in the constant coefficient
values.

6. Conclusions and remarks

It should be noted that:

1. The complete expression for the irradiated cnergy (20) does not reveal a disconti-
nuity at the energy f = 1/n. The intensity of the radiation changes smoothly with energy.

2. The terms containing sine integral in the expression (20) are continuous functions
of energy as well.

3. The radiation in both main and secondary maxima is described by the two terms
connected with different mechanisms of the particlc-medium interaction.

The discussion allows one to formulate the following conclusions:

1. The formulas (11) and (12) (under the condition (13)) and formula (14) approximate
well Eq. (20), which does not reveal any discontinuity near fin = 1 and lacks any peculiarity
which might be treated as a threshold.

2. The division of the radiation into two parts caused by two different particle-medium
interaction mechanisms seems rather conventional and is quite impossible outside the
limits set by formula (13).

The authors would like to express their gratitude to Professor I. M. Frank and
Dr V. K. Ignatovich for stimulating discussions and active interest in the presented
study.
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