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We describe how the formalism of Field Theory can be applied in the study of linear
polymers. Fractional fermion number due to topological backgrounds is used to probe for
fermion bound states associated to deformations of the linear lattice. A transition is exhibited
and its phenomenological consequences are explored.
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1. Introduction

The formalism of Field Theory has encountered widespread application in Physics.
Particle physicists rely on it to describe phenomena that occur from Mev’s to (10%) Gev’s
and to speculate as high as 10° Gev, or more. Yet, its deep connections with Statistical
Mechanics make it a useful tool even at energies of a few electronvolts, in the realm of
Condensed Matter Physics.

In this talk I shall describe one such application which enjoys the property of being,
at the same time, very simple and very rich. It consists of the investigation of the continuum
limit of a class of models for linear polymers. The resulting Field Theory exhibits topolog-
ically nontrivial configurations in its bosonic sector which induce fractional number in
its fermionic sector. The analysis of the topological properties of the Field Theory finds
an illuminating realization in the phenomenology of such polymers.

The outline of the talk is as follows: (i) in Sect. 2 we briefly review some essential facts
about the Physics of polymers; (i) in Sect. 3 we describe the Field Theory approach to
a class of models for linearly conjugated polymers; (iii) Sect. 4 makes a brief digression
on the relationship between fermion number and topology; (iv) Sect. S applies these ideas
to polymers and discusses a transition with well defined phenomenological consequences;
(v) Sect. 6 presents conclusions.

* Presented at the XXVI Cracow School of Theoretical Physics, Zakopane, Poland, June 3-15,
1987.

** Work partially supported by FINEP, CAPES and CNPq.
(875)
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2. The physics of polymers

We shall briefly review some of the essential properties of linear polymers. The proto-
type we shall adopt in the discussion is polyacetylene, a long chain made up of carbon
and hydrogen atoms (C—H).

Carbon has a ground state where 1s and 2s levels are filled and, furthermore, there
are two unpaired electrons in two of the 2p orbitals. One of its first excited states, however,
has four unpaired electrons, one in each of the 2s, 2p,, 2p, and 2p, orbitals. When carbon
atoms bind to form compounds they hybridize, that is, they form linear combinations
of the orbitals in level 2 which determine the directions along which bonds are formed.
One such example is shown in Fig. 1a. It corresponds to sp® hybridization which is a linear
combination of the four orbitals of level 2. Fig. 1b shows yet another type of hybrid, called
sp? since it only involves two of the p-orbitals. The third p-orbital (p,) will give rise to
a different type of bond. Finally, Fig. lc exhibits an sp-hybrid. It is this latter form which

pz s'pz

Fig. 1. Hybrids of carbon: a) — sp*; b) —sp?, pz; ©) — sp, Px, Dy
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Fig. 3a)-b) — degenerate ground states of transpolyacetylene; c)-d) — nondegenerate (E, < Ej) lowest
energy states of cispolyacetylene

determines the bond structure of acetylene (H—C = C—H) shown in Fig. 2. The bond
between the two carbons coming from the sp-hybrid is called a o-bond, whereas the two
bonds coming from the remaining p orbitals are called n-bonds, in analogy to the termi»
nology used for diatomic molecules.

Polyacetylene is formed by chemically breaking one of the n-bonds of acetylene
so that a bond to a new carbon can be created. More and more carbon atoms are attached
in the process, forming a long polymer whose basic structure is the monomer (C—H).
The bonds between carbon atoms are of either the - or the n-type. Electrons will be more
localized in o-bonds; n-electrons are less localized along the chain. However, as a con-
sequence of the interaction of these n-electrons with lattice phonons they are not uniformly
distributed. 7-bonds end up restricted to certain pairs of atoms, forming a structure which
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Fig. 4. Schematic representation of a soliton defect

a)

Fig. 5a) — midgap state in the soliton case; b) — midgap states in the polaron case

alternates single (o-type) and double (¢ and n-type) bonds. This process is called dimeriza-
tion of the chain; it is a direct consequence of the compromise between vibrational and
electronic energy (Peierls transition mechanism). It yields a chain with bonds of alternating
lengths and splits an ideal lattice of spacing a into two sublatfices of spacing 2a.
Dimerization leads to a number of properties: (i) the alternating structure of single
and double bonds gives rise to two types of polyacetylene, depending on whether the two
carbon atoms singly bound to those in a double bond are on the same side (cis-polyacetylene)
or on opposite sides (trans-polyacetylene) of the bond (see Fig. 3). The figure also shows
the doubly degenerate ground state of trams-polyacetylene. The cis-polyacetylene chain,
however, does not have a degenerate ground state. The two states shown have different
energies due to0 the presence of hydrogen atoms whose interactions distinguish them;
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Fig. 6a) — optical absorption coefficient in the soliton case (without solitons the line at w, = 4, is absent);
b) —same in the polaron case (only 24, line appears if no polarons are present)

(i) another consequence of dimerization is the appearance of an energy gap at k = n/2a;
(iii) furthermore, the degeneracy of the ground state of transpolyacetylene allows for the
appearance of configurational defects of the soliton (kink) type (see Fig. 4) as we either dope
or heat up the polymer. Cispolyacetylene does not admit solitons as its ground state is non-
degenerate. Nevertheless, it does allow for configurational defects of another type, the
so-called polarons, which are essentially soliton-antisoliton pairs. Polarons can, obviously,
also appear in transpolyacetylene.

The occurrence of solitons and polarons is always accompanied by one or two bound
states in the n-electron spectra, respectively. These states appear in the middle of the gap
between valence and conduction band. They play a role in the peculiar semiconducting
behavior and can be detected in magnetic resonance and/or optical absorption properties
of the electronic spectrum. Fig. 5 illustrates the presence of these states whereas Fig. 6
compares optical absorption coefficients in situations with and without solitons in transpoly-
acetylene.

As we shall see in the sequel, the existence of solitons and polarons and their respective
fermionic bound states finds a natural description if one resorts to the language of Field
Theory. Fermion number and its relationship to Topology are, then, instrumental concepts
in the analysis,
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3. The field theory approach

There exists a class of models for linearly conjugated polymers which are natural
generalizations of the original Su-Schrieffer-Heeger (SSH) Hamiltonian [1]. In particular,
the one introduced by Mele and Rice [2] applies to polymers made up of diatomic mono-
mers. Its Hamiltonian is:

2
Dj .
Hyor = E 21\; E 2MB E V(¥n=Yns1)+0 E afaj—é E b{ b,
i n i 1

- Z tj+1,j(a;bj+1+b;+laj)'_ Zt1+1,x(bz+at+1+al++ 1by). (n
j 1

It describes atoms of type A(B), of mass M ,(Mp), on the odd (cven) sites of a linear
lattice. The {y,} characterize the displacement of the'position of the '™ atom from an ideal
lattice of spacing s and {p,} are their canonically conjugated momenta, ¥V is the potential
associated with lattice vibrations; {a;} and {a;} ({b;"} and {b;}) denote creation and
annihilation operators for n-electrons at site j({), 25 is the differencc in valence energy of
the 7-electrons at sites of types 4 and B and ¢, ., , is the hopping parameter from site » to
n+1. We shall take it to be:

tn+1.n = t0+(_1)n+12ﬂ—Y(yn+l-yn)' (2)

If p = 0 we recover the case treated in Ref. [3]. Nonvanishing y amounts to ¢;., ;
=t;=y(Vj+1—¥) and t,,y; = t,—9(y;+1—»), Wwhere t; = to+2u and t; = to—2p.
It is this form that contains, for y # 0, the electron-phonon interaction responsible for the
Peierls mechanism.

The Field Theory approach consists of taking the continuum limit of the model
and dealing with the resulting field theory model in 1+ 1 dimensions. We can obtain the
continuum limit by introducing a; = (—1)*(25)'? U(js), b, = (-~ 1)"*(25)"/*¥(Is) and
Yo = (= D"p(ns). U’s(V’s) can be extended to even (odd) po'nts by taking the average
of their values on either side. The limit corresponds to taking s — 0 (ns — x) and, at the
same time, identifying finite sums (s) ,) with integrals ({ dx) and finite differences with

U(x)
o)
(65 is the Pauli matrix) and redefine constants, we obtain for the electron-dependent
part of Hyor

H(e) = [ dxyp™*(x) {ap+Ble(x)— ul}p(x) +¢ | dxp™ (x)osp(x), (3

where a(= 0;) and p(= g,) are the Dirac (Pauli) matrices in 1+1 dimensions.
The paremeter ¢ is proportional to 6. As we are interested in 4 = B (for polyacetylene
M, = Mg = Mcy), then, ¢ = 6§ = 0. The Hamiltonian H is invariant under a charge
conjugation operation which takes positive energy into negative energy states and vice-
-versa, since {H, o3} = 0. The e-term would spoil this. This continuum (field theory)

derivatives. If we group the U’s and V’s into a doublet, p(x) = (I +i03)//2 (
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approximation is certainly justified for phenomena which take place over distances much
larger than the separation between adjacent carbons.

Although we have not written it explicitly, the phonon Hamiltonian is just that of
a scalar field with a self-interacting potential ¥(g). The system of coupled equations of
motion for this fermion-boson model, for the case of STATIC configurations of the scalar
field is then:

2

d
- L V@ = i (4a)
X
W~ gy = oz, (4b)

—ior

where we have used ¢(x, 1) = e "y (x). These equations constitute the basis of a semi-
classical approximation to the problem. They can be shown to be derivable from a Gross-
-Neveu (GN) model treated in a static semiclassical approximation. The scalar field is related
to the auxiliary field commonly introduced in the GN model to transform the quartic
fermionic coupling into a Yukawa-type coupling.

The important point is that the coupled equations of motion possess solutions which
will correspond to the three types of ground states of polyacetylene. For the scalar field
they are:

@(x) = gy, dimerized (5a)
p(x) = £ @qtanh (kgylx—x4l), soliton (antisoliton) (5b)

p(x) = Pyt @, tanh [KP (x—Xo)]F P, tanh [KP (x+ X,)], polaron (antipolaron)
(59)

In the case of solitons and polarons, the spectra of the fermionic equations of motion
possess bound states: one zero energy state in the soliton case and two charge-conjugate
states in the polaron case. This comes out of the analysis of Egs (3), (4b), with ¢(x) given
by one of the scalar solutions just mentioned.

The Egs (4a) and (4b), which led to solitons, polarons and their corresponding bound
states, can also be obtained from a phenomenological scalar potential of the form V(¢)

A . . .
= Z(wz—q,vf))z. There exists an interesting relation [4] between those equations and

nontrivial solutions of a purely scalar theory in the presence of an external (constant)
current j (a term jo in the Lagrangian). This connection allows one to solve the coupled
system without resorting to inverse-scattering methods [4, 5.

4. Fermion number and topology

We shall just outline the connection between fermion number and topology. For
a more complete treatment we refer the reader to the review article by Niemi and Semenoff
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[6]. The definition of fermion number is ¢btained from the normal ordered operator:
. © A ©
N:= | de:py®P: = | dx[9TP—<QIPTPIRY], (6)

12> is taken to be the vacuum state for the unperturbed system. However, in the presence
of a topologically nontrivial external background the vacuum state is modified to |Q.
Thus, if we maintain the normal ordering instruction with respect to the unperturbed
vacuum, we may obtain a nonvanishing (perturbed) vacuum expectation value of the
number operator:

N =<(Q|: N:|Q>—<(Q: N: {2) # 0. (D

In fact, it may be shown that any type of real value may be obtained for the fermion
number of states generated from the vacuum by the action of local operators, as long as we
have our fermionic system under the action of a global (topological) external field. In the
particular case of charge-conjugation (C) invariant Hamiltonians, the values of fermion
number thus obtained are either integer or half-integer. This is easily seen if we use local
operators [ such that: (i) [:N:, L] = z[, z an integer; and (ii) {:N:, C} = 0. Taking two
of these operators acting on the vacuum to create states that are charge-conjugate, we
immediately see that twice the fermion number of any of them has to be integer. Therefore,
they can have either integer or half-integer values.

The charge-conjugate invariant case corresponds to ¢ = 0 in equation (3) and amounts
to treating polyacetylene-type Hamiltonians. We shall now show that, in a topologically
nontrivial background, the vacuum value for fermion number may indeed be half-integer.
We shall compare two Hamiltonians, # and H, corresponding to a fermionic system with
and without an external topological background, respectively. We assume that both have
a complete set of states which are orthogonal eigenfunctions |9(E))> and [¢(E), respectively,
with eigenenergies {£} and {E} (both discrete andcon tinuum spectra are included). Charge
conjugation takes |w(E)> = |w(—E)>, [9(E)) — |p—(E)>. Our definition for fermion
number yields:

@K

N= | dx{ Y o"E, OPE x)— Y p*(E, )9E, %)} ®)

- E<o E<O
We have assumed that only negative energy states are occupied in the vacuum state. This
is quite natural for H, however, in the case of H special care must be taken. The reason
is that topological backgrounds induce the appearance of zero-energy bound (normali-

zable) states, as established by the Atiyah-Singer theorem [7]. The vacuum is, then, degener-
ate; we have chosen to consider the zero-energy state unoccupied. The sequence:

Ezo [W(E)) <(E)| = E;o lw(E)) <y(E)i

= 1Y 19(E) B = 3 T HED <HE), ©
E

E
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where the two last sums extend over the whole spectra and charge-conjugation and com-
pleteness were used, leads to:

N= ] dx{ 3 $"E0PE 0-3[ T 9" (E DHE, x)

E<0O E>o

+ Y BHE, WE, x)+ 0. )P0, x)]}. (10)-

E<oO

Using charge-conjugation once more, we obtain:

o

- f dxp*(0, x)p(0, x) = —% (11)

where the zero energy (normalized) bound state was the only one to contribute.

Clearly, this result may be generalized to a statement that the fermion number of the
vacuum (one of the degenerate ones) is given by one-half the number of occupied zero
modes minus one-half the number of unoccupied ones. Thus, topology leads to zero energy
bound states which, in turn, may yield fractional fermion number.

5. A curious transition [8]

We shall consider the Hamiltonian in Eq. (3) in the presence of a soliton background,
o(x) = @, tanh (kpox). The form we have chosen for the hopping parameter generalizes
the work of Ref. [3], however the spectrum can still be obtained exactly. The eigenvalue
problem is equivalent to:

0 D)\ (us) _ Uy
(b0 o)) =20 w

with D(u) = — di; + g(x)—u, ¢(x) the kink field. As the square of H is diagonal, the
system in (12) can be show to correspond to
[D@D* (W]u, = Eu., (13a)
[D*(wD(u)Ju_ = E*u_. (13b)

For E? # 0, every solution u. of (13a) or u_ of (13b) yields two solutions of (12) since Du_
and D+tu, satisfy (13a) and (13b), respectively. Whenever E = 0, the unique zero mode
of (12) will be mapped into one only of the equations (13).

Equations (13a) and (13b) lead, both, to Schrédinger problems:

dZ
[— PR +V(z)]ui = gl (14a)

V(z) = B tanh z—y sech’z (14b)
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Fig. 7. The three types of potentials that occur —a well (W), a step (S) or a barrier (B)
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Fig. 8. Regions in the (r-k) plane corresponding to the various situations allowed for Eqs (13a) and (14b).

In the convention of Fig. 7 we have: I — W(a), W(b); 11 » W(a), S(b); III — S(a), S(b); IV — W(a), B(b);

V - W(a), W(b); VI - S(a), W(b); VII — S(a); S(b); VIII - B(a), W(b). The indices (a) and (b) refer
to Eq. (13)

with B = 2u/k?@,, y. = (1 £k)/k? and e = (E2— ¢} — p?)/k?%¢{. Depending on the values
of r = p/g, and k we may have different types of potential for the two equations of interest.
The possibilities are shown in Fig. 7 and correspond to a well (W), a step (S) and a barrier
(B). Fig. 8 shows the combinations that occur as we move on the (r —k) plane. The labels
(+) and (—) refer to Eqs (13a) and (13b). We note that the k£ < 0 portion of the plane
describes the solution for an antisoliton and may be obtained from the k > 0 case quite
easily.
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Fig. 9. The spectrum of H corresponding to different values of li)/ho. In a) there is a zero bound state, in
b) this state is squeezed by the continua; in ¢) it has disappeared

Let us analyze what happens for 0 < k <1 as we change the value of r. We start
from assituation |r| < |1 — k| (region I), where both equations are potential wells. Depending
on r, these wells may have several bound states and a continuum. The spectrum of eigen-
values of the two equations is identical (a consequence of C-invariance) except for a zero
eigenvalue which only occurs for the (+) Eq. (13a). As we change r, we gradually transform
the well of (13b) into a step with no bound states (region IT). This happens for |r| = |1 —k|
and although (13a) remains a well, it does not contain any bound states other than the zero
eigenmode, as all nonzero modes are identical between the two equations. Furthermore,
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the value of the continuum threshold also changes with r, as (E),,= @a(1 — |r])?. Still inside
region IT we reach |r| = 1, where this threshold vanishes. The continuum then starts from
zero and, for (13a), it overlaps with the zero bound state. As |r| continues to increase the
potential well of (13a) ceases to have a bound state and (E),, becomes nonvanishing again.
Finally, a |r| reaches [1+k|, the well of (13a) also turns into a step.

We can use this information to extract the spectrum of the Hamiltonian. The eigen-
values are simply E, = +./E2 and are obviously related by C. The zero eigenvalue of (13a)
is just the normalizable zero mode of D+, whereas D has no such mode, i.e., (13b) has no
zero bound state. The variation of |r| corresponds to a process whereby the continua
of positive and negative energy states close their gap around the zero bound state. As we
reach |r| = I(u = =+ @,) the gap has shrunk to zero and we have a continuum from minus
to plus infinity. For |r! > 1, the gap reopens but, now, without any bound state. The
situation is illustrated in Fig. 9.

We can now draw some interesting consequences on the behavior of fermion number
from the mechanism just described. Its overall effect is to do away with a zero energy bound
state which existed in the middle of the gap. The results of the previous Section lead us to
conclude that for |r| < 1 we shall have N = +1/2, whereas for |r| > 1 no bound state
at zero will appear, meaning N = 0.. Therefore

N(r) = + F0(1=r), 15y

with 6(x) the Heaviside function. A couple of comments are in order: (i) if we look at the
zero mode of D+ we find

wo(x) = po(0)e"* sech*(kgox). (16)

The point |r| = 1 corresponds to the point where the norm of (11), | dx|yo(x)I?, diverges.

The zero energy state becomes non-normalizable and disappears from the spectrum;
(ii) the transition in fermion number could also be derived by looking at trace identities
[6, 9] which relate it to topological (asymptotic) properties of the external (scalar) field.
The inclusion of a mass term replaces the soliton with an effective field, @ = @(x)—p.
Since fermion number is proportional t0 4 = sign @g(+00) —sign @eg(—o0), it will
vanish for |u] > @o. The topological nature of the soliton, which connects negative and
positive values of the scalar field, is washed out by the mass term if [u| > @,.

We may go back to the model for polyacetylene and identify the positive and negative
energy continua of the field theory (continuum) limit with the conduction and valence
bands for m-electrons. The zero energy bound state corresponds to an introband localized
level. As the conductivity along the polymer chain is enhanced by the propagation of these
soliton solutions, the presence of intraband states as well as the narrowing of the gap
will certainly affect it. Thus, the transition in fermion number we have just described would
amount to a variation in the conductivity of the semiconducting polymer.

It remains to decide under what circumstances hopping parameters of the type exhlblted
in (2) will occur. In fact, they appear quite naturally in polymers of the cis-type such as cis-
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-polyacetylene. The alternating phonon independent part of the hopping is due to the
presence of the hydrogens which couple to carbon atoms. However, as was already mention-
ed, cis-type polymers do not have degenerate ground-states. As a consequence, they do
not admit soliton deformations. Yet, they do allow polaron configurations. We will now
show that the problem was have just solved is quite useful in focusing a case of real physical
interest, i.e. polarons in cis-type polymers such as cis-polyacetylene.

The polaron solution can be written as:

@(x) = @o— @, tanh [K®,(x+X,)]+ &, tanh [KS,(x— Xo)], (17)

where @, and @, are slightly different mass scales, K is a pure number and X, an arbitrary
distance. If xo > (K®,)~! this reduces to a widely separated kink-antikink pair. It should
be clear that the topological properties of such a solution are no different than those of
a dimerized phase with ¢ = &,. Yet, the limit of wide separation allows us to construct
the set of eigenstates of the Dirac Hamiltonian in a polaron background in terms of those
in a soliton (antisoliton) background. The curious behavior of the latter as we vary u allows
us to infer that, in the polaron case, a similar phenomenon will take place: as |u| approaches
®,, the gap will close squeezing the (now) two localized (bound) states in between. As the
gap reopens for |u| > @, we shall have no more localized states with a corresponding
change in the comductivity properties of the system.

We may illustrate this effect by showing that the spacing between the two bound states
of the fermionic spectrum in the polaron field goes to zero as |u| approaches &, from below.
For simplicity, we shall examine the case of very large separation. It is, then, convenient
to write the fermion Hamiltonian as

H = Hg+Hg+H, (18)

with Hg and Hj the asymptotic forms of H at (x,) and (— x,). Each term in H has the same
form of the matrix appearing in (7) where:

0
Dy(p) = —% 5(_x_——X—o) —p+(Dy— D))+ @, tanh [Kd,(x— X,)], (19a)
Dy(y) = —%m—j—}m - (Po— B)— B, tanh [KP,(x+ Xo)], (19b)
D) = —[(Po—p)+(o— &,)]. (19)

We know the spectra of Hg and Hj exactly. Furthermore, the full Hamiltonian, H, is
invariant under the change (X,, K) = (—X,, — K), which amounts t6 exchanging soliton
and antisoliton. Also, the property

ws,6(x + Xo) = w5,(x, —Xo) (20)

holds for ys(ys) eigenfunction of Hy(Hs) of eigenenergy E. Thus, for wide separations,
we expect that any eigenfunction of H will be approximated by a superposition

p(x) = :‘L: {as(E)ys,s(x — X o) + as(E)ys g(x + X )} @2n
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Since H is invariant under the change (X,, K) — (— X,, — K) the transformed wave function
v’ will be related to v by just an overall phase factor

P'(x) = (). (22)

Making use of the orthogonality properties of the kink (antikink), spectrum we obtain
as(E) = e"ag(E) (23a)
af(E) = ¢~ "ay(E). (23b)

Thus, 6 has to be either 0 or =, i.e., al(E) = +as(E). Then

p1(x) = Y as(E) [ys,e(x — Xo) T 5, e(x + Xo) . (24)
E
As we are interested in the bound state spectrum only, we confine our attention to the bound
states of the kink and antikink spectra (both are zero eigenstates). Denoting the fermion
(polaron) bound states by |+

£ = [ws,0(x~ Xo)t 95,00+ Xo)]- (25

We, then, compute the matrix elements of H in the basis {|+), |—>}. Using X, > (KPo)™*
and &,— P, ~ In (K®,x;) = j, we obtain, to lowest order in j, for u > 0:

_[~@o=f() 0
H = [o +(¢o—u)f(j)]' @0

The splitting between the levels, 2(®,— 1) f(j), does indeed vanish as u — .

6. Conclusions

The physical consequences of our calculations seem quite interesting. Different poly-
mers in the cis-configuration may exhibit different ratios [u|/®, (for a given polymer the
ratio may be varied by stretching). This ratio is a comparison between the difference of
extrinsic hoppings and the energy gap between valence and conduction bound. Our predic-
tion is that, as this ratio approaches unity, the polymer will undergo a change in its conduc-
tivity and optical absorption properties, as a consequence of the disappearance of the
intraband states. Furthermore, one can show that, even in the case of trans-polyacetylene,
alternating hoppings may be achieved if we use an external stationary electromagnetic
field along the polymer axis with wavelength twice the period of the lattice. Although such
fields cannot be produced experimentally (we would need x-ray frequencies), they play
a role very much similar to the staggered fields which are commonly invoked to describe
the physics of anti-ferromagnets. This would, then, be the setting for the problem with the
soliton background.
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Finally, it remains to present a more complete treatment of the fermion spectrum in
the polaron background. This work is already under way and will be presented shortly [10].

It is a pleasure to thank the organizers of the School for their warm hospitality and
CAPES, Brazilian Funding Agency, for its support. Thanks are due to C. Bonato, G. B. Co-
stamilan, J. M. Pureza and M. C. Santos for many interesting discussions.
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