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A scheme for numerical calculation of certain values in the Chiral Bag Model, obtained
independently by means of asymptotic expansions, is presented. The method was employed
in the case of the moments of the baryon number density originating from the vacuum
polarization, serving as a cross check for the correctness of analytical calculations.

PACS numbers: 12.40.Aa

In the Chiral Bag Model [1] baryons are portrayed as consisting of free masless quarks
confined inside a spherical bag and coupled to the external mesonic field constituting
a Skyrme soliton'. The boundary condition for the quark field is

~iy n¥() | og = exp (IOT - 1Y) P(l= M

where R is the radius of the bag, » = r/R and @ is a real number describing the strength
of the classical pion field at the surface of the bag. The components of the vector T are
the Pauli matrices acting in isospin space.

The coupling at the surface leads to the asymmetry between virtual quarks and an-
tiquarks, what results in non-zero contribution to many quantum numbers which comes
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1 for a detailed description of this model and the calculations involved see [2-3]. Notation and con-
ventions used here are the same as in [2].
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from the polarization of vacuum. These quantites are dcfined by the sum

Quae = —7 2. sign (E)Q(E), (2)

{E}

where Q is the vacuum expectation value of a symmetrized operator } [¥+, 0¥] and
energy levels E are found by solving free, masless Dirac equation with the boundary condi-
tion (1). This sum can be divergent and is regularized using the Poisson method

Quee = —% lim Y sign (E)Q(E)e™ 1. (3)
10+ {E}

The energy levels are 1abeiled using the following quantum numbers: n, K, M, sign (E),
P and . The number n labels radial excitations, K and M are connected with the operator
K = I+J, where I and J are angular momentum and isospin operators respectively.
K(K+1) is an cigenvalue of K? and M an eigenvalue of the third component of K. All
energy levels are degenerate with respect to M because of the symmetry of the problem
under SU(2) rotations in K-space. P is the space parity. From now on sign (E) will be
denoted by k. For K > 0 there are two distinct solutions with the same »n, K, M, k and P;

and thus ¢ is introduced as an additional index, necessary to remove ambiguity.
It is very useful to introduce a special symbol for the average of any expression ¢

[4]:

+ Y kO, P,e), when K >0;
- x,P,e 4
@ Y KQ(x, P), when K =0. )
K, P

The terms occurring in (3) have alternating signs and cancel each other partially. Thus
the convergence of the series (3) is more obvious when 1ewritten using averages, where all
cancellations are already pcrformed. Moreover, due to existing symmetries of the energy
levels, the functional form of the averages is much simpler than that of its components.

Employing (4) and splitting the K = 0 and K > 0 parts we rewrite (3) as

o0

Quac = Qk=0+0x>0 = -2 1i10n 2 Qe )8 ligl Y KVQpuce” D, (%)
t—=0+ n=1 =0+ nv
where we took advantage of the degeneracy with respect to M. The dimensionless quanti-
ties x,(@) and x,,(O) denote-the absolute values of the eigenenergies multiplied by the bag
radius R; Q, and Q,,, denote the quantities evaluated in the stationary states with quantum
numbers n and nve respectively, and v = K+1/2. '

We will concentrate on the quantities for K > 0, since they will serve as a better exam-
ple for the application of our method because the formulae involved are much more
complicated. The sum defining Q. ¢ in (5) can be rewritten in such a way that all divergent
terms are extracted and calculated analytically (this part, called anomalous, will be denoted
by /. o) and in the remaining part (called regular and denoted by %x o) We can directly
set t = 0. For further details of this calculation see [2].



901

We have used the Euler-Maclaurin summation formula for performing summation
of the anomalous part, obtaining

Ok>0 = Fg>0+Rx>o0

nf2

— -8
=Fx>0m — J dp, tan? fo{m§P) In cos fo~8 Z Z YMEP>, (6a)
o] n

v
where

e_dK >0

wf2

= ;‘ J dB, sin® ﬁo[((m(22p)ao> + <m(12p)a1> + (mgz”)az»/cos Bo— mgzp)<aoal>]- (6b)
0

The functions a, and m{*? are defined as the coefficients in asymptotic expansions for the
energy levels

20

a , €, 0
Xnve ™ ’ + ﬁo“k—) > (7)
cos fiy : / v

and the corresponding quantities Q

O ~ Z mM, ®)

k=1

where f, is found as the only solution of the equation
v(tan o~ Bo) = n=, C)

satisfying 0 < B, < n/2. The analytical formulae for the averages existing in (6) were
calculated and are given in {3].

The above calculations were performed in the case of the even moments of the distribu-
tion of the baryon charge M3} [3]. (2p) will denote the quantities connected with the 2p-th
moment, The calculations are straightforward but lenghty and the analytical expressions
involved are rather complicated (cf. Appendix A in [3]). Thus it is very important to ensure

the correctness of the results. One possible cross-check is suggested by the fact that
n/2

6[ dp, tan® fo(m§”) = 0, (10)

vac

is required to ensure that there is no logarithmic divergence in M3;,. This test, which is
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highly non-trivial, considering complexity of the formulae involved, was passed satisfac-
torily.

We have also used another, more direct test for the correctness of the formulae for
the averages. It relies on numerical calculation of the expectation values of some operators.
Let us consider the expectation values of the following operators: r22, r2? ||, #? |H|2.
If we evaluate the average (4) using these expectation values then, for certain fixed v, we
can represent the results using inverse powers of v

M M
(MEPy = C§ + f— + .

nve

CMx CMx
2 2 3
<anf)xnve> = V2 + v3 + .. 3

3 2
CMx CMx

1 2
<Mr(|35) :ve = v + V2 + o (11)

It should be noted that the leading coefficients in this expansion are related to a, and m>”
from (7) and (8)

(BO’ @) = (m(z”))
C3%(Bo; ©) = (m§Paoy+(mPPa;>+{mPa,),
CY¥(Bo; ©) = 2miPaga,). (12)

The further coefficients C can be similarly expressed by combinations of a, and mZ” for
larger k. Since all r.h.s. of (12) are given by analytic formulae the simplest way of checking
their correctness is to omit all but leading terms (that is these with the lowest power of
v) in the r.h.s. of (11) and to compare them with the numerically calculated averages in
the Lh.s. of (11). The accuracy of this approach is limited by the following facts:

— v must be quite large, since the terms omitted in transition from (11) to (12) are
proportional to 1fv,

— for a fixed v n cannot be too small, since the analytical formulae were derived
using asymptotic expansions, which work correctly for high energy levels (large n)..

Considering the above, it follows from (9) that the agreement between the values
calculated analytically and numerically cannot be very good for small .

This check was performed for all averages appearing in (6), i.e. necessary for the calcu-
lation of . Typical results of such comparison are shown in Fig. 1. Here C¥* (solid
line) is compared with the averages computed for various K and n. The agreement is indeed
very good for f, close to #/2 and intermediate, and becomes worse for smaller f,. We can
also see that, even for K == 1000, the agreement is not-so-perfect for B, < 0.3. This confirms
our expectations and means only that the validity of this method of checking is limited
to B, € (0.3, 7/2). Nevertheless, it is a very strong confirmation of the correctness of analyt-
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ical formulae for the averages. It would be very unlikely if several very complicated func-
tions of B, and @ would give correct values only for certain values of their arguments,
Such possibility, however, cannot be, at this stage, completely ruled out.

A natural improvement on this method would be inclusion of the higher-order terms.
In principle it is possible to do it, but the effort put into this calculation, due to the com-
plexity of the formulae involved, would outweight the profit. It is possible, however, to
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Fig. 1. CM" for p =1 and © = 1.4 (solid line) is compared with the results of the numerical averag-
ngof M (2”)x,.vz Open triangles, circles, boxes and crosses denote averages obtained using X = 100, 200,

nve

500 and 1000, respectively

include higher order terms implicitly, if we observe that from (9) it follows that f, depends
only on the ratio n/v and not on n and v separately. Since coefficients C depend only on
Bo and ® we can compute averages for two values of n and v chosen in such a way that the
ratio nfv remains constant, i.e. #/(K+1/2) = n'/(K’+1/2). This condition is fulfilled for
instance by n' = 3n and K’ = 3K+1. Then we can eliminate the higher-order C. For
example in the case of (MZP> we would have

nve

M M
(2p)> = C C

nve 4 ’
v

cM c
MRDY = =5+ =% (13)
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from which we obtain

v4<M(2p)> _vl4 M(Zp)>r

nve nve

S = C¥, (14)
y—v .

where denotes the quantities computed using #” and K'. The results of such approach for
p = 10 and © = 1.4 are depicted in Fig. 2. A substantial improvement in the agreement
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Fig. 2. C;” for p = 10 and ©® = 1.4 (solid line) is compared with the results of improved numerical
averaging of M’('tf) (formula (14)). Open circles, boxes and triangles denote averages obtained using X = 100,

1000 and 1500, respectively

for low values of B, can be seen. It should be noted that the scale is logarithmic, and that
the two values agree over five orders of magnitude. The sharp dip cotresponds to the change
of sign.

The above calculation shows that we are able to obtain values for the quantities given
in (12) using numerical method rather than analytical formulae and that both approaches
give the same results with high accuracy. This means that in order to calculate some quan-
tity, e.g. x>0, We do not have to calculate the integral given in (6b) analytically. Instead
we can perform numerical integration using numerical estimates of the averages appearing
in the integrated function. This alternative method for obtaining the solution has the
virtue of being free from indulging in tedious analytical calculations.
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The proposed method of integration is as follows: first we calculate function to be
integrated in a sufficiently large number of values of f,, and then we use any method for
numerical integration which does not require fixed distance between points on x-axis.
It is necessary since 8, cannot be taken arbitrarily but has to satisfy (9). It should be also
noted that the solutions of (9) are not evenly spaced in the interval-(0, n/2). For a fixed
v B, soon approaches n/2 with growing n. Thus we have at our disposal only few small

v

10
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Fig. 3. tan? ﬁ°<m(32")> as a function of cos fB,. Open circles denote numerical values, solid line is

obtained from analytical formula. For the sake of clarity of the picture only some points used for numerical

calculation are actually shown. Specifically, for S, > 0.4, only about 1/10 of the total number of points
used is depicted

Bo, corresponding to few first n. The remedy for this is to take §, for several v. Moreover,
in order to obtain small §, we must take large X, of the order of 1000 or more.

Before applying this method to the calculation of &, let us check how does it work
in the case of the integral (10). The result of the integration should be 0, and therefore the
area enclosed by the curve in Fig. 3, where the function to be integrated is depicted, should
have its positive (i.e. above the x-axis) and negative (i.e. below the x-axis) parts equal.
Examination of the Fig. 3 reveals that in order to obtain the correct result the (integrable)
divergence appearing for 8, = 0 should be treated carefully. This is done by fitting a func-
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tion exhibiting divergent behaviour for B, = 0 to the numerical points lying close to the
end of the interval and using analytical formula for its integral from the last known point
to the end of the interval. If we denote the smallest 8, available by f,;, then we can calcu-

pm in

late the integral as { (fitted function) + numerical formula using discrete points. We have
0

obtained the best fits using function of the form a/x", and the best fit value of o was close
to 0.5.
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Fig. 4. sin? B, [(KmPPapd>+ <mPPa,> + {m§Pa,)/cos fo —m§ P <aoas)] as a function of cos fo. Open
circles denote numerical values, solid line is obtained from analytical formula. Not all points actually used
for calculation of the integral are plotted, see caption to Fig. 3

As far as the value of &/, is concerned we employed similar method and again
encountered difficulties arising from the necessity to extrapolate from the numerically
calculated values to the end points of the interval. The result depends quite strongly on
the type of function used for interpolation. Moreover, as it can be seen in Fig. 4, the values
of the integrated function vary over five orders of magnitude in the interval of integration,
what again makes fitting and extrapolation crucially dependent on the chosen functional
form. It does not, however, exclude possibility of obtaining correct results.

An example of such results is presented in Fig. 5, where we plot A x>0 as a function
of @ for p = 5. Comparison with exact (analytical) formula shows that the agreement is
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Fig. 5. o K>o as a function of & for p = 5. Open circles denote numerical values, solid line is obtained
from analytical formula

good. Thus, the numerical method not only serves as a cross-check for the correctness of
the analytical formulas, but also provides alternative method of obtaining final values.

Concluding, we have proposed a method for numerical cross-check of analytical
calculations used in chiral bag calculations. This method can also be used for independent
calculation of expectation values of operators.
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