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We investigate influence of temperature effects on evolution of a scalar field in the
new inflationary model of the Universe. We study a simple model of a potential and show
that temperature effects only slightly influence the duration of the inflationary period and
the amplitude of density perturbations.
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1. Introduction

The inflationary model of the early evolution of the Universe introduced by Alan
Guth [1], and later modified by Albrecht and Steinhardt, and independently by Linde [2]
provides a solution of several problems inherent in the standard Big Bang cosmology, for
example the flatness, horizon and isotropy problems. In the inflationary scenario it is
assumed that at very early stages of evolution the Universe was very hot (temperature
was higher than the critical temperature of transition from symmetric to nonsymmetric
state of the grand unified theory) and expanding. As the Universe cools down, due to
the special form of the potential (Fig. 1) it could be trapped in the symmetric phase (false
vacyum state) and supercools. Inflation occurs during the slow transition from the false
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vacuum state to the true vacuum state. This transition is usually referred as slow roll aver.
As long as the energy density can be approximated by the energy density of the false
vacuum the Universe is expanding exponentially and its geometry can be described by
the de Sitter metric

ds? = di* - H'(dr? + r?dQ%), §))

where H = R/R is the Hubble constant and dQ? is the line element on the unit sphere.
In Grand Unified Theories the Higgs field usually has a very complicated group
structure [3]. To describe the evolution of the field it is useful to consider only the direction
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Fig. 1. The Coleman-Weinberg type effective potential for the Higgs field

of spontaneous symmetry breaking and use a one dimensional potential [4, 5]. Recently
several different potentials have been studied and it was shown that they provide enough
inflation to overcome some of the problems of the standard Big Bang cosmological model.

In this note we would like to consider temperature effects on the evolution of a scalar
field and to study their impact on the inflationary scenario. Following the analysis of
Guth and Pi [6] we consider a simple potential and study the zero temperature evolution
of the scalar field. We also estimate the amplitude of energy density perturbations and
duration of the inflationary epoch.

In the next chapter we assume that the system is immersed in a thermal bath and kept
at constant temperature 7. We investigate the finite temperature evolution of the scalar
field. It turns out that temperature effects only slightly influence the duration of the infla-
tionary epoch and the amplitude of energy density perturbations.
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2. The zero temperature model
Following Guth and Pi [6] let us consider a scalar field with a potential
V = Vo—} 03d?, ()

where ¥, and w, are constants. We keep only the quadratic term because the scalar field
responsible for inflation is very weakly coupled {4, 5]. The evolution of the scalar field
in an expanding Universe is described by the equation

S+3HO+V'(P) = 0. 3)

In an expanding Universe the scalar field is dynamically damped. The equation of motion
for the scalar field can be derived from a time dependent Lagrangian

L =G & -V(®)e", @)

where I’ = 3H.
The scalar field evolves slowly [7] when

)y < 9H?. )

We assume that initially the scalar field is concentrated around the false vacuum state
(® = 0) and the probability ¥(®) that the field has value & is given by the Gaussian distri-
bution

P(®) = N exp (—a(P—49)%) 6
1/i/2a < I, where I ~ H-! is the typical region where the scalar field is homogeneous [8].

[Za e
N is the normalization constant N = _/—, and 4% — describe initial quantum fluctua-
7T

tions around the false vacuum state. We assume that quantum fluctuations 4¢ have the
Gaussian distribution, so

P(49) = -\% exp (— —;— Ad)2> Q)

and /o <1
Instead of solving the equation describing evolution of the scalar field we calculate
the Green function. Using the path integral method [9] we obtain

/2 1/2 . t
' _ we i VO(er '—1)
Gol®, #,1) = [2m‘h sh a)t] i { W T

i 1 2 rt 2 r n/z]}
x —_— P’ h wt— — shwt | —2¢d’e 8
exp{hZhwt[(Qe +9'“J{ochw 5 ®
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It is now easy to calculate the average value {®2) (¢) and in the limit of late times,
taking into account that sh wf ~ ch wt ~ L e, w = Yw2+1 I'2, we obtain

a2+a12 a/2
D2>(1) = 200 1 +4add? ——— |,
@ = T 1daser | ®
12 ’ F !
where ¢ = —, o =a|ll—-—]), o =o0—3T.
2h 20

To estimate the amplitude of density perturbations we use the formula derived by
Bardeen et al.
o9 o

= =4 . (10)
Q ¢c|

In our case 6& = V<&?> 40 and @ is classically evolving field so for large time we have
o.(1) At a2
7 1602a

172
] e”". In the zero temperature case energy density perturbations are

6Q a/Z 1/2
z =4 [I+2aa a————z+a,2:| . (11)

d
The value of % which we obtained is unrealistically large but this is a problem encountered
44

also by other more realistic models of inflation [10].

3. The evolution of the scalar field at finite temperature

To study the influence of temperature on the evolution of a scalar field in an expanding
Universe we use the formalisim of temperature Green function [11], which is defined by

iG(®,t, ¥, t') = 25" Tr [e PR R/t f()e KUV G+(g')em RUIA], (12)
where (ﬁ(@, t) is the field operator, K = H- uN, H is the hamiltonian and N is the number
u 1
of particles operator, u is the chemical potential, Z5 = Tre-#K and f = o

At first we disregard the damping term. In this case the temperature Green function
can be expressed in terms of eigenfunctions of the Hamiltonian. Let u, be such that
Hu, = Eu,, then

iGy(®, 1, &, 1') = T [ uy( @ (@) (1 +n)e” o, (13)

where e, = E,— p, and n, is the thermal average of the number of particles in the k-state.
It is reasonable to assume that particles obey the Boltzmann statistics, so we have

my ~ €™, (14)
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The finite temperature Green function can be expressed in terms of G,, we have
iGy(®, @', 1) = ' FN[Gy(D, ', 1)+ Go(@, ', t—ifh)], (15)

where E, is the ground state energy at 7 = 0.
When damping is included we construct analogues of creation and annihilation
operators. For the Hamiltonian of damped harmonic oscillator

2'}2
_n h70

A= e O
¢ 2007

+1 wid?e, (16)
following the standard procedure [12], we can express the creation and annihilation opera-
tors a* and a in terms of the creation and annihilation operators of the time independent

(I = 0) Hamiltonian
a(t)\ _( ch(I42)—sh(l12) ag a7
a(t) | \—sh('42) ch(T'y2)/\a, )’

The time independent Hamiltonian is represented by the diagonal matrix

10
Hy = 1 haoAq (0 ]> Ao, (18)

+
do

where A, = (a ), and :: denotes normal ordering of operators ag, do.

0

It is easy to generalize this description for infinite number of oscillators. Using (17)
we can express the Hamiltonian of an infinite set of oscillators in terms of annihilation
and creation

H(r) = Y hofch I't a}f a,— % sh I't (a; a; +a,a,)]- (19)

The same relation holds for the upside down harmonic oscillator.

To calculate the finite temperature Green function we use the vector description of
the creation and annihilation operators. We assume that at the initial moment ¢ = 0
the field operators in the damped and undamped case coincide, so D, t = 0) = (P,
t = 0). The K operator can be expressed in terms of the creation and annihilation operators
and it can be written in the form K = X | (E,— p)a; a,. Using the transformation (17) we
obtain the Green function, in the high temperature limit (I'$ — 0), in the form

iGy(P, D', 1) = ¢ N PIG(D, D', 1)+ PG, D', 1~ if)]. (20)

It is now easy to calculate the average value of the scalar field, we have

A, 42 12 ¥
2 J2a a’+o'? - , @
(P¥4(t) = i e ‘[(Za) 32 [1+4a4<p a2+a,2}

— Vyete™ 822 sin ([ Bh/2)
Ik

+2Re {e“ﬂ BTt exp ( ) e P4y
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2 2 ’ 2 2
a B 2a0 4 B,

x [1+8ad€bz — ”Z]exp [~A<1>2< s "2)
{(a"+a'") Ay a“ +a (a*+a'") Ay,

s It —IB :
L mpenr exp(—-?_ioe *e” %2 sin Fﬁh)(A)'”

T'h
L+ 8udd? a’ 32] A<I>2< 2aua’ 4a> B? ’1
X |1+ e — | eXp | — - — 11,
a (a2+a12) A P a2+a¥2 (a2+all) A) ( )

A = 2(a cos 20’ fh—a sin 2w’ Bh)

where

,
2 4+a?

+ 2 —— (cos I'Bh sin 20fh —2¢**" sin I'Bh)
a

Ay = AB[2) (22a)
B = asin o'fh+a’ cos o'ph
By;» = B(B/2). (22b)

In the high temperature limit we have the simple formula
(PPp(1) = (1+7 1) (D*5(1), @3)

and the amplitude of energy density perturbations in this limit is given by

(‘%") =(1+e*f M (%—’) . (24)
8 0

4. Conclusions

Now we can estimate the duration of the inflationary epoch. One can define the dura-
tion of the inflationary epoch as a time necessary for the scalar field to evolve from the
value &(t = 0) = 0 to some value &, = &(z,) at which the energy density is still dominated
by V(¢,) ~ V(0). Using equations (9), (23) we see that the duration of the inflationary
epoch in the high temperature limit denoted by ¢, is related to the duration of the infla-
tionary epoch at zero temperature denoted by ¢, by

1
h—ty = — In (1 +e0p), (25)

When the scalar field is in thermal equilibrium with radiation the chemical potential u
is equal to zero [13], therefore, we have

w'(tl—t!ﬂ) = ln2 (26)
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(#)(2)
e/s 2/o

We see that temperature effects only slightly alter the duration of the inflationary
period and the amplitude of energy density perturbations.

and also
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