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We report on a theoretical investigation of parton and hadron muitiplicity distributions
produced by quark-antiquark and gluon-gluon systems at centre-of-mass energies from
22 GeV to 2 TeV, on the basis of the Lund Shower Model, which is the Monte Carlo parton-
shower and badronization model accounting best for the available ete~ annihilation data.
Both classes of distributions are studied for full phase space and central rapidity windows.
They are found to have negative binomial properties analogous to those observed in many
experiments. We also find a simple relation between the partonic and hadronic distributions;
it can be linked with the concepts of preconfinement and local parton-hadron duality.
At partonic level, the results suggest a simple interpretation in terms of independent emission
of “bremsstrahlung gluon jets” having geometric multiplicity distributions.

PACS numbers: 12.38.Qk

1. Introduction

Following the unexpected findings of the UAS Collaboration at the CERN pp collider
in 1985 [1a], many experimental groups analyzed multiplicity distributions in e*e~ annihila-
tion [1b], hadron-proton collisions [Ic], proton-nucleus collisions [1d] and deep inelastic
muon-proton scattering {le]. They confirmed the very wide occurrence of the negative
binomial (NB) shape for the charged particle distributions in central rapidity intervals
[¥] < yo (v = longitudinal rapidity in the c.m. frame; in the e*e~ annihilation experiment
of Ref. [1b] the longitudinal direction is defined by the thrust axis of the final state particles).
For total multiplicities, the NB shape holds at high energies whereas at lower energies
one finds narrower distributions with Poisson or positive binomial shape. A recent survey
of the available experimental evidence is given in Ref. [2].

Continuing our search for a dynamical understanding of the widespread occurrence
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of NB multiplicity distributions [3, 4] and encouraged by a recent study of Kittel [5],
we report on a theoretical investigation of multiparticle production by quark-antiquark
(qq) and gluon-gluon (gg) systems up to c.m. energy /s = 2 TeV, based on the model
which has achieved greatest overall success in accounting for the available ete~ annihilation
data. Our reason to concentrate on qq and gg systems is that they offer the cleanest cases
to study QCD-based particle production mechanisms, avoiding the complications linked
with the partonic structure of initial-state hadrons and with final-state diffraction dissocia-
tion effects.

The extensive data on e*e~ annihilation obtained at PETRA (/s < 45 GeV) and
PEP (/5 < 30 GeV) have been analyzed by means of various QCD-based models (most
of these data do not concern multiplicity distributions). A thorough comparison between
the various models, carried out recently by the MARK II Coilaboration [6, 7], shows
that the best overall description is given by the Lund Shower Model with coherent evolution
(we adopt the terminology of Ref. [6]), the optimal values of the shower evolution param-
eters being

A4 =04GeV  (QCD scale in LLA),
Qo = My, = 1.0 GeV (cut-off for parton evolution). M

The model is described in Ref. [8] and is implemented in the program called JETSET
version 6.3 [9]. Basically it contains the Monte Carlo generation of a parton shower from
the initial qq or gg system, followed by a hadronization prescription of Lund string type.
The parton shower follows the QCD Leading Log Approximation (LLA), except for the
imposition of an angular ordering condition which simulates the destructive interference
between soft gluons. The simulation of this “coherent evolution” by angular ordering
was first incorporated in a Monte Carlo model by Marchesini and Webber [10] and the
JETSET 6.3 shower algorithm is of similar character. JETSET 6.3 is completely different
with regard to the hadronization of the final partons of the shower for which the Lund
string fragmentation algorithm [11] is used.

The work reported below uses JETSET 6.3 with default values, i.e., coherent evolution
with angular ordering, p2 as scale parameter in a,, and global definition of the splitting
variable z (these choices correspond to the curves marked “d” in Figs. 5 and 7 of Ref. [8],
where the necessary definitions are also given).

The Monte Carlo results reported below (Section 2) were obtained in collaboration
with T. Sjstrand. They concern the multiplicity distributions of the final partons and of
the (meta)stable charged hadrons. Confirming and extending Kittel’s result [5], we find
that both the partonic and the hadronic distributions have the same NB properties as
observed experimentally in many reactions. At sufficiently high energy (/s 2 200 GeV)
we find in addition a close relationship between the partonic and hadronic distributions
which we relate in Section 3 to the concept of local parton-hadron duality [12]. In Sections
4 and 5 the clan structure of NB distributions, already used in our earlier work [3,4],
is applied to the analysis of the partonic distributions. It leads to an approximate but
physically intuitive description of the partonic distributions in terms of bremsstrahlung
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gluon jets with geometric (i.e., self-similar) multiplicity distributions. Section 6 sum-
marizes the results and presents concluding remarks. A few relevant mathematical facts
concerning NB distributions are grouped in the Appendix.

2. Main Monte Carlo results

As explained in the Introduction, in collaboration with Sjostrand we used the Lund
Parton Shower Model to generate the partonic and hadronic systems produced by qq
and gg pairs at c.m. energies /s = 22, 29, 200, 630 and 2000 GeV. Extending recent work
of Kittel (who had used two options of the earlier version 6.2 of JETSET with other values
of A4 and Q, [5]), we investigated the multiplicity distributions and found the following
overall results:

A) Good NB fits for final-parton and charged hadron multiplicities, in full phase
space and in symmetric intervals [y| < y, of rapidity*.

B) Increase of the NB parameter k (see Appendix) for growing interval jy| < y, at
fixed energy /s, and increase of k-1 with /s for total phase space and for fixed interval
vl < yo.

C) Approximate energy independence of the quantity

N = kn [1+(n/k)] = /7, 2)

in fixed intervals |y| < y,, and its approXimate linearity in y, at fixed energy. N is the
average number of “‘clans” in the interpretation of NB distributions in terms of independent
emission of clans (see Section 4 below). The increase of 7 is therefore mostly due to the
increase of the average clan multiplicity 7, = n/N.

The only exceptions to NB behaviour are for charged hadrons in intervals |y| < y,
with y, > 3 (for which the familiar even-odd effect due to charge conservation appears,
good NB fits holding for even multiplicities) and with y, < 1 (where the hadronic distri-
bution has a small peak at low multiplicity above a smooth NB-shaped background;
surprisingly this effect is only pronounced for qq at /s = 2000 GeV). At /s = 22 and
29 GeV, while 4, B and C hold for the hadronic distributions, the partonic ones for y, > 2
are narrower than Poisson and give poor fits. All Monte Carlo runs generated 2000 events.
The goodness of fit parameters (y%/number of degrees of freedom) are listed in Tables I
and II for a representative selection of cases.

Figures 1-4 give our Monte Carlo results for N and 7, at three energies. The values
for total multiplicities are approximately equal to those for the largest y, shown. The errors
are mostly < 4% (the error on k is larger when the distribution is close to Poisson or
narrower). Figures 1 and 2 for N strikingly illustrate property C, especially Fig. 1 for
partons. In addition, Figures 3 and 4 reveal the interesting property that the i, values

¢ For programming convenience, the rapidity was defined with respect to the linear sphericity axis for
the final partons, which corresponds to the largest eigenvalue of the tensor Sqp = (X piwpipipit™) G Ipi)™!
i i

with pi{@ = x, y, 7} the momentum of parton /. The results are expected to be similar if sphericity or thrust
had been used.
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TABLE 1

x*/mumber of degrees of freedom for negative binomial fits to the multiplicity distributions of final partons
at \/E = 29, 200, 2000 GeV in rapidity windows |y| < y, and in full phase space

Yo 0.5 2 4 5 6 Total
g8
29 GeV 8.95/8 16.9/14 24.7/12 - - 17.5/12
200 GeV 28.3/17 51.9/36 25.2/35 47.4/34 — 40.5/34
2000 GeV 69.5/36 92.2/84 109/83 61.6/79 77.8/78 79.2/78
aq
29 GeV 8.16/7 59.5/13* 45.2/14* — — 47.8/12*
200 GeV 28.9/13 49.5/29 46.3/29 45.2/29 — 37.0/29
2000 GeV 23.3/26 76.5/63 103/68 88.7/69 93.9/66 75.0/64
* bad fit.
TABLE 1I

#*/mumber of degrees of freedom for negative binomial fits to the multiplicity distributions of charged
hadrons at 4/s = 29, 200, 2000 GeV in rapidity windows |y| < yo and in full phase space

Yo 0.5 2 4+ 5+ 6+ Total

2424
29 GeV 14.0/15 40.8/26 10.7/14 — — 10.8/14
200 GeV 63.0/33 71.6/63 57.0/29 23.5/29 —_ 27.0/29
2000 GeV 127/711 144/153 127/80 93.1/74 66.0/73 70.6/74

aq
29 GeV 13.0/12 22.3/23 20.0/11 — — 16.8/10
200 GeV 65.1/20* 114/54 65.6/28 51.3/27 — 64.5/27
2000 GeV 194/54* 152/119 142/68 86.3/67 100/63 86.6/62

+ even multiplicities only, * bad fit.

for the qq and gg systems are approximately equal. At /s = 29 GeV, the Monte Carlo
values of N, 7, for the hadronic distributions of the qq system are within at most 109,
of the HRS Collaboration data [1b], although the analysis of Refs. [6, 7] did not involve
the multiplicity distributions of [1b]. One will have to wait for the new ete~ colliders SLC
at SLAC and LEP at CERN to have data at higher energies.

For /s > 200 GeV we also found the following approximate relations between the
NB parameters 7i,, and k,, of the partonic and hadronic distributions at the same Js
and in the same rapidity domains

n, ~ 20 3

ky =~ k. 4
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Except for small rapidity intervals (yo S 1) where k;, is appreciably larger than k,, the
relations (3), (4) hold to 10-15%. In view of Eqgs. (2)-(4), the energy independence of N
(property C) cannot hold exactly for both the partonic and the hadronic distributions;
comparison of Figs. 1 and 2 shows that it holds better at the partonic level. We have also
considered intervals {y—y,| < y, with y, = 0.5 and y, varying by steps of one over all
phase space. While the multiplicity distributions rapidly differ from NB shapes for growing
y: (an effect presumably due to energy momentum conservation at least for the larger
y, values), Eq. (3) is found to hold far into the fragmentation regions.

Relation (3) for total multiplicities was already obtained for \/E = 10 GeV~10TeV
in Ref. [8], see curve “d” of Fig. 7. The other curves of this figure which are all obtained
with “conventional” evolution models (no angular ordering) show important variations
of the total multiplicity ratio 7,/fi, with \/s. For one of these conventional models taken
at /s = 200 GeV, Sjostrand has also shown that f,/fi, for |y| < y, increases from 0.7
to 1.2 for y, increasing from 0.5 to 4.0 (private communication).

3. Local parton-hadron quality

The validity of Eq. (3) for a wide class of y-intervals suggests that in the coherent
evolution model there is a simple local relation between partons and hadrons in most
regions of phase space. The existence of such a relation can be linked with the concepts
of preconfinement and local parton-hadron duality [12]. We tentatively express this duality
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in terms of the n-particle inclusive rapidity distributions of partons (p) and hadrons (h)
by the following equation

Qn,h(yls yn) = QnQn,p(yly .V..) (5)

o being a constant. For n = 1 and ¢ & 2, this gives Eq. (3) for any y-interval. Equation (5)
can only be approximate because the Q,, contain short range correlations due to hadronic
resonances which are of course absent in the Q, ,. The interest of (5) lies in the fact that
it links the NB properties of the two distributions and reproduces not only (3) but also (4).
The proof is as follows. For any rapidity domain D, the generating functions of the multi-
plicity distributions in D

Fa.D(Z) = Z Pa(n)zn; a=h, P (6)

are obtained from Q,, by constructing the functionals

2 ([u(] = 1+ ;(n!)'1 § Qua(y1s - ) III u(y)dy, M
and substituting
u(y) =z—1in D, u(y) = 0 outside D. (8)
Hence Eq. (5) implies
Fy p(2) = F, p(2') with z'—1 = o(z—1). 9)
Assume one of the distributions, e.g. the partonic one, to be NB in D. This is expressed by
Fop(z') = [1=(Flky) (2 = D] 7" (10)
The substitution (9) then gives for the hadronic distribution in D
Fy p(z) = [1—(1s/ky) (z"'l)]_kh (amn
with the parameters
iy, = oA, ky =k, (12)

(11) has NB structure and (12) agrees with (3) and (4).

4. Clan structure of NB distributions

In previous papers [3, 4], we have argued that cascading is the most likely dynamical
reason for the NB behaviour observed in so many multiparticle production processes.
The results reported above for the parton distributions are based on a parton cascade
model and therefore support this view. In Refs. [3] and [4], we have also exploited what
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we have called the “‘clan structure” of NB distributions, i.e., the mathematical fact that
any NB distribution can be generated by independent emission of groups of particles
which we call clans [4], these clans having on the average a logarithmic multiplicity distri-
bution. In terms of generating functions (g.f.), the clan structure is expressed by the relation

Frp(z) = [1=(/k) (z—1)]7* = exp [N(£(b, 2)—1)] (13)
with N given by (2) and f; by
fib,z) = In(1—bz)In (1—b), b = Aj(A+k) (14)

fi (1 for logarithmic) is the g.f. of an average clan; it corresponds to the logarithmic multi-
plicity distribution

P, = —b™/[fi,In (1-b)] (15)

with average 7, as given in (2). Equation (13) shows that N is the mean number of clans.
_ The clan structure can also be formulated in terms of the n-particle distribution func-
tions, either the inclusive ones Q. (y,, ..., ¥,) considered in Section 3 (here we drop the
index a = p, h), or the exclusive ones obtained by expanding the functional (7) in powers
of z(y) = 1+u(y). In terms of this functional, it is expressed by

S([u(»)]) = exp [N(e([u(»)D—D] (16)
with
o([u()]) = 1+ i(n!)“l [ 4xss - ¥2) H u(y)dys (17)

The g, are the inclusive distributions of particles in an average clan, and the Ng, can be
shown to be the correlation functions of the original distribution as defined by Mueller [13].
Clans can therefore be regarded-as groupings of particles involving all the correlations
of the original distribution. In this sense, they are somewhat analogous to the connected
clusters of the Ursell-Mayer and Kahn-Uhlenbeck cluster expansions in statistical mechanics
[14]. Just as for these clusters, the concept of clan is of statistical nature. In general, it is
not possible to say which particles belong to the same clans on an event-by-event basis.

In the case of shower processes, however, one can try to give to the clan structure
a more concrete interpretation. At least approximately, clans are then expected to be groups
of particles of common ancestry. A very simple example is reported in Appendix Il
of Ref. [3], where the word “cluster” was used instead of “clan”. In this example, individual
clans have a geometric distribution with g.f.

fu,2) = z(v+z—vz)~! (18)

and average multiplicity v. The average clan with its logarithmic distribution of g.f. (14)
is then obtained by averaging (18) over v in an interval (1, v,,) With a weight function
oc 1/v [see Eqgs. (IIL. 3) of [3] and Eq. (22) below].
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As can be deduced from earlier work by one of us {15}, exactly the same clan structure
occurs in a Markov-process version of the Konishi-Ukawa-Veneziano model of parton
shower [16] when g — qq branching is neglected. In this case the clans are bremsstrahlung
gluon jets. We shall presently argue that, in the central rapidity region, this very simple
clan structure can be used for an approximate but physically intuitive description of the
partonic NB distributions reported in Section 2.

5. The evolution of partonic clans

Consider first the parton distribution in a fixed interval |y| < y,, for y, ~ 1.5-2.0
where the average clan multiplicities 71, are close to their maximum (Fig. 3). Since the mean
number of clans N is practically constant for /s = 29-2000 GeV (Fig. 1), the evolution
of the multiplicity distribution with /s is almost entirely due to the evolution of the average
clan, which is controlled by the single parameter b, see Eqgs. (14) and (15). From (14) we get

df(,) (—)

—(1=b)In(1-b) —fib, )+ T = —filb, ) +fi(b, 2), (19)

where f, is the g.f. (18) of the geometric distribution of mean multiplicity

v=(1-b)"" (20)
With (20) we can also write (19) as

Inv dfi(b, z)/dInv = —fi(b, z)+ £ (v, 2). 21)

This equation has a simple interpretation. As ./s increases at fixed y,, b and
v = (1—-b)"! increase. For an infinitesimal change, the multiplicity distribution of an
average clan evolves by addition of a geometric distribution given by the last term of (21),
the previous term ensuring that the normalization condition fi(b, 1) = 1 remains satisfied.
The logarithmic clan f; can therefore be taken as an average over geometric clans f; with
weight dInv. This is best seen by integrating (21):

fib, z) = Jv' fulv',2)dnv'/lnv, v=(1-b)"" (22)
1

(both f; and f, reduce to z for b = 0, v = 1).

An attractive feature of this interpretation is that the occurrence of geometric distri-
butions is very natural in shower models (see the examples mentioned at the end of Sectlon
4). This is linked with their evolution equation, which is

df (v, )ld Inv = —f,(v, 2)+[fi(v, 2} (23)

The first term in the right-hand side is again the normalization correction as in Eq. (21),
but the second term is now the square of f; itself. It corresponds to a self-similar cascade
process, as is expected for gluon jets when g — qq splitting is neglected [15].
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We now discuss the variations of the partonic clan structure with the size of the rapidity
window |y| < y, at constant \/s. For y, < 1.5-2.0, i, and b increase with y, (Fig. 3).
The obvious explanation is that for two windows of sizes y, and yo > y,, some of the
clans belonging to the window y, only fall partially inside the window y,, so that their
multiplicity inside the latter window is smaller. This growth of clan size with y, can again
be interpreted in terms of geometric clans, similarly to the growth with /s at fixed y,.

The situation is more complicated when y, grows above ~2 because then 7, and b
decrease, i.e., the average clan size decreases, despite the growth of the rapidity window.
Since N and therefore the number of clans grows even somewhat faster than for y, < 2
(see Fig. 1), the most straightforward explanation is that the additional clans appearing
at larger rapidities are small in rapidity spread and in multiplicity. However, if the addition-
al clans are still assumed to be geometric and produced independently, the overall clan
distribution can no longer be uniform in In v as was the case in Eq. (22). This would imply
departures from the logarithmic form for the average clan and therefore from the NB
form for the overall multiplicity distribution in large symmetric windows |y| < y,, but
this effect could well be very small (a recent paper by Cugnon and Harouna [17] illustrates
the insensitivity of the NB form for changes in the multiplicity distribution of clans).
Stronger deviations would of course occur for asymmetric windows |[y—y;| < y,, as
observed in the Monte Carlo results (Section 2). For increasing y,, these windows get also
more strongly affected by energy-momentum conservation.

6. Conclusions

Our main conclusion of the above analysis is that for the central region |y| < 2 we
can propose the following approximate but physically intuitive picture of the coherent
shower process in qq and gg systems at high \/s:

I. In the parton cascade there is an initial “skeleton™ part, to be called the source,
which emits in bremsstrahlung fashion (independent emission) smaller jets mostly com-
posed of gluons and having a geometric multiplicity distribution [see Eq. (18) for the
g.f.]l. We call them bremsstrahlung glion jets (BGIJ).

IL. For fixed window |y| < y,, the mean number N, of BGJ emitted by the source
is approximately constant in the energy range /s = 29-2000 GeV. It grows linearly
with y, and is about twice as large for gg as for qq (see Fig. 1).

III. The geometric multiplicity distribution of a BGJ depends only on its mean
multiplicity v. The latter is distributed with a weight oc dInv = dv/v over an interval
1 < v < vy, For fixed window |y| < g, Vi, increases with \/s. At equal y, and Js
the values of v,,,, are about the same for qq and gg systems.

IV. The parameters N, vy, are related by '

Np = kp In f_l +(ﬁP/kp)]’ vmax = 1+(ﬁP/kD) (24)

to the NB parameters 7, k, of the parton multiplicity distribution.
V. For /s > 200 GeV the latter are related by
Ry~ Wgf2, k> Ky (25)
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to the NB parameters 71, and %, of the charged hadron multiplicity distribution. This can
be interpreted as a manifestation of local parton-hadron duality.

It would be of course be of great interest to understand mathematically why such
simple approximate properties hold for the Lund Shower Model. While this problem is not
yet solved (the asymptotic treatment of Malaza and Webber [18] does not apply in the
/s range we have considered), it is likely that the mathematical structure of the model
can be sufficiently simplified to localize the elements which control the main behaviour.

On the other hand, the abundant experimental evidence on NB properties of multi-
plicities in high-energy hadronic and semi-leptonic reactions [1, 2] and their striking similar-
ity with the Monte Carlo results discussed above suggest that the properties I-V could
be tentatively extended to those reactions. This could lead to a unified picture for hard
and soft hadron production in central rapidity windows in terms of process-dependent
sources emitting bremsstrahlung gluon jets of a common type, with an appropriate form
of local parton-hadron duality for the final hadronization phase [19].

We are greatly indebted to T. Sjéstrand for his invaluable collaboration on the Monte
Carlo calculations and for many remarks and suggestions. We also acknowledge the help
of W. Kittel and F. Meyers who made the Nijmegen negative binomial fitting program
available for this work. We profited from discussions with G. Altarelli, T. T. Wu and
G. Veneziano.

APPENDIX
The NB distribution has the form 0 < b < 1, k£ > 0)
Py = (1-b), P, = Pok(k+1) ... (k+n—1b"n! for n>=1. (A1)

The average i and the dispersion D are given by

_ kb D* nz-n? 11 A2)
T W T® G ke '

The generating function (g.f.) is

Fa(@ = 3 P" = [(1=BIA=b2]" A3)

It leads immediately to the clan structure discussed in the main text, see Egs. (13)-(15)
and (2).
The geometric distribution of g.f. f; given by Eq. (18) — more precisely it is a truncated
geometric distribution — has the probabilities
Po=0, p,=@=1""H for n>1 (A.4)

and the mean multiplicity v. Combining Egs. (2), (13) and (22), one obtains the relation

1+ (n/k)

Fynp(z) = exp {k j!' [fiv, 2)—1]av/v} (A.5)
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which is equivalent to Eqgs. (13) and (22). It shows that the NB distribution can be gener-
ated by independent emission of geometric clans with mean multiplicity v ranging from 1
to 1+7ifk, the average number of such clans in (v, v+dv) being kdv/v.

One of the present authors [20] studied the class of distributions of points in a contin-
uous domain D,, characterized by the property that the multiplicity of points in D,
and in every connected or disconnected subdomain D of D, has a negative binomial
distribution. A distribution of this class is completely determined by the two functions
0.,(3) = dr/dy and k(y), where dii and k(y) are the average multiplicity and k-parameter
of the NB in the infinitesimal neighbourhood dy of the point y. For a gencral subdomain D
the NB parameters 7, and k, are given by

ip = g dyQ,(y), iiplkp = g dyQ,(3)/k(y). (A.6)
For non-overlapping domains D; and their union D, Eq. (A.6) gives the additivity property
Z(ﬁm/km) = (Z ﬁp,)/ku = ﬁo/kp- (A7)

We have tested this property on the Monte Carlo data for gq at /s = 2000 GeV with
two choices of domains D,. The results, listed in Table III for one choice, show clear viola-
tions of (A.7). Weaker violations of this type have been found in hadronic and semi-
-leptonic reactions [l¢, 2].

TABLE III
Test of additivity property (A.7) for qq at 4/5 = 2000 GeV
7 i k-t nlk

_ | - .
Dy Iyi<1 8.1 | 0.91 | 7.3 sum
D;:ly=-2l<1 7.9 | 0.55 . 4.3]
Ds:ly+2i <1 7.9 ; 0.55 } 431160
D: Iyl<3 239 = 0.28 ! 6.9
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