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The wave function suggested from the statistical model has been used as an input
to estimate the charm and bottom quark masses m. and my, in the context of the sum rules.
The moment ratio, R,, from SVZ moments and the photo-production cross-sections for
S-state mesons in Y(cc) and Y (bb) families have been computed with interesting predictions.

PACS numbers: 12.40.Ee, 12.35.Ht

1. Introduction

Over the past few years, a successful description of the v (cc) and Y (bb) families has
been achieved and many predictions of the charmonium as well as bottomium levels
have been confirmed experimentally. In non-relativistic charmonium models of v inter-
preted as a 1S state and o’ interpreted as a 28 state, a crucial quantity is the wave function
at the origin, ¢(0), since, in particular, the leptonic width is controlled by the square
modulus of the wave function at the origin, {¢(0)|2. However, in the absence of a satisfactory
solution to the confinement problem, the wave function of 2 meson in terms of its constitu-
ents cannot be determined from first principle. In the framework of a static model, such
as the MIT bag model, the wave function, however, can be calculated and expressed in
terms of a few phenomenological parameters related to a hadron. Unlike the conventional
quark model for hadron, in the statistical model [1-5], we arrive at the square modulus
of the S-state wave function of a meson, |¢(r){? corresponding to an average background
linear or harmonic oscillator potential in which the valence quark, q (or antiquark, g),
moves in the virtual cloud of quarks (or antiquarks). Interestingly, in this model, one
arrives at ¢(r)}|? without any reference to the context of the conventional wave equation
or field theoretical formalism; further, this |[¢(+)!* depends only on one parameter r,
corresponding to the size of a meson i.e. our model wave function is independent of all
other uncertain parameters like the quark mass, m,, as well as other interaction param-
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eters, With such an unconventional wave function, it would be interesting to know
how much spectroscopic and other relevant information can be extracted. In the present
work, we have used our model wave function as an input in the well known sum rules
corresponding to leptonic decay widths as well as moment sum rules to estimate the constit-
uent quark masses. We have further computed the moment ratio, R,, from SVZ moments
which is, surprisingly, found to possess the maximum value of the inverse square of the
corresponding (1S) ground state masses of y and Y families. Moreover, we have also made
calculations of the photo-production cross-sections of y and Y particles and our predicted
values agree closely with those computed by several other workers.

2. The statistical model

The statistical model for a hadron has so far successfully described some of the interest-
ing properties of mesons [1-4] and baryons [5] at least in the domain of S-state levels
in the past few years. As discussed at length in these works, our statistical model of a S-state
qq meson, suggests that hadrons are composite particles consisting of large numbers of
virtual quarks and antiquarks in addition to real valence quark (q) and antiquark (q)
such that only the valence pair (qq) determines the quantum numbers of the meson. The
valence quark in our model is assumed to be acting independently of and without any
correlation with the valence antiquark and we assume that the valence quark (and also the
valence antiquark) moves in an average linear or harmonic oscillator background potential
due to interaction with its own virtual quarks(or antiquarks) in the sea or cloud. We have
assumed that the valence quark (or antiquark) is identical and indistinguishable with the
virtual quarks (or antiquarks) in the sea. The indistinguishability of the valence quark
with the virtual quarks in the sea (and similarly for the antiquarks) calls for the existence
of the well-known quantum mechanical uncertainty or indeterminism in the location of
the valence quarks (and similarly for antiquark). Consequently, we came across a situation
of a continuous distribution of quarks (and also for antiquarks) through the virtual cloud,
and hence there is also a continuous distribution of colour (and flavour). Therefore, we
can imbibe the concept of the number density of quarks i.e. n(r) (and similarly for anti-
quarks ng(r) for its distribution in the respective phase space or configuration space of
a hadron. Further, for a continuous distribution of colour, we came across local colour
symmetry at each point of colour neutral meson so that the number density of quarks,
ny(r), and that of antiquarks, ny(r), at each point r must be the same. In other words,
due to colour neutrality of a hadron ny(r) = ny(r). As is well known, the number of particles
in some volume dv is proportional to the probability of finding a particle in this volume.
Hence, with this approach we may assign this number density, ny(r) = ng(r) = [p(r)i*.
Without going into further detailed derivation of |¢(r)|> we may recall an expression for
the exact normalized wave function corresponding to average harmonic oscillator back-
ground potential of the type ¥(r) = ar?+b experienced by the quark inside the hadron
as [2]

B> = A(rg—r*)*1*0(ro ~7), 1)
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where, A = 8/n?r§ is the normalization constant, and r, corresponds to the size of a meson.
Therefore, we get the square modulus of the wave function at r = 0 as

2 8
{qbns(o)i =33 (2)

T To(ns)

In our subsequent investigation, we shail use our model wave function as an input, since
our |$(0)]? is simpler than those suggested by other theoretical works. Moreover, it is
neither dependent on the quark mass parameter, m,, nor on the interaction parameter
a and b of the average background potential. i.e. independent of all other uncertain param-
eters except ro. Since the experimental data of the corresponding radii of vector meson
such as ¢ and Y meson are not available, we may get an order of ry(ns) from the theoreti-
cally predicted values [6-8]. In this context it is relevant to note that different authors
have theoretically computed the radius parameter, ro, of y(cc), Y(bb), and &(tt) families
in different phenomenological approaches [6-8]. An analysis of their predicted values
of ro(ns) for the aforesaid family shows the corresponding values of ro(ns) are almost
the same, which in turn suggests that the corresponding radii are independent of the mathe-
matical formalism used and also independent of the corresponding interaction between
quark (q) and antiquark (q). Therefore, we may assume r, for each member of cc, bb and tt
families as almost constant and as good as experimentally observed size parameters.
However, for our numerical calculations, we shall use subsequently the theoretically
estimated values of ry(ns) from Kaburagi et al. [6].

3. Estimate of quark masses from sum rules

A. Sum rules in annihilation

Although direct evidence of quarks has so far eluded experimental test, few experi-
ments that have been carried out to probe hadronic structure by means of electromagnetic
and weak interactions suggest that hadrons have constituents known as quarks. Hence,
final hadrons formed through an intermediate quark antiquark state may offer some clues
about the hadronic constituents. The newly discovered mesons with flavours charm and
bottom possess the important features that heavy quark antiquark bound states annihilate
into lepton pairs and hadrons. The expression of the decay rate of a vector meson into
a lepton pair, V — ete- is known by Van Royon-Weisskopf formula [9]

16 2.2
[(V, —e*e) = L"‘zeq 16, (0) 0)

and may be recast below flavour threshold as

I(V,,—=e’e) r(v,,—»e’e) p
~ n
Mg M,
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ro(2s)
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O

T
ro(1s)
where |$,{0)|> = 8/n2r3(ns) and v is any integer.
In our previous work [2] we have derived a mass formula of mesons, M, which as-
sumes the form:
4 3nari(ns) b

Mns = 2mgy+ + + —. 5
7 3mgra(ns) 4 2 (5)

In the present work, we assume the empirical relation
ro(ns) = en? ©)

where ¢ and B are constants. It is surprising to note that, assuming the above relation,
the value of the radius parameter, o, for different levels can be well computed. To obtain
the values of & and 8, we have used ro(1S) = 1.91 GeV-1 for y(18S) as computed by Kaburagi
et al. [6] and we get ¢ = 1.91 GeV-* for n = 1. For n = 2, ¢ = 1.91 GeV~! and r,(2S) =
= 4.184 GeV-! as inputs in (6), we found f = 1.13. Now, using the obtained value of
e =191 GeV-! and B = 1.13 one gets ro(3S) = 6.39 GeV-? and ry(4S) = 8.77 GeV-!
from (6), where the values compare favourably with ry(3S) = 6.403 GeV-* and ro(45) =
= 8.586 GeV-! computed by Kaburagi et al. [6], which in turn favours our conjecture
for the empirical relation (6). Similarly, for the Y(bb) we get ¢ = 1.090 GeV-* for r,(18) =
= 1.090 GeV-! and n = 1 as inputs in (6). Retaining the same value of § = 1.13 as obtained
in the y family, it is possible to reproduce the radii of the remaining S-states of Y family.
Therefore, it is meaningful to use our empirical relation (6) so that we come across the
following relation from (4), (5) and (6):

ro(2s)

Be'/? IV, —»e'e) _ pa=smn [y 4 N 3mard N b _(v+2)dr '
1287ae? M, 0 T 3m 2 4 2 ¢

q

ro(1s) (7)

Approximately evaluating the integral on the right hand side of (7) for ¢ and Y families
we get respectively,

e I(V,,—e'e” 0.1 +2 [0.02
a 7 (e Ra s iy — s | —— +1.64a+0.05b:| (8)
128noey M (2m,) (2m,) m,

e/’ I(Vy = e'e 0.3 +2 02
d 2 E Ve e ) ~ - v+3[——+1.7a+0.15b]. ©)
128naeg M, (2my) (2m,) my,

Adjusting the numerical values of m, and m,, we have performed our calculations for
different sets of values of v in the range 0 << v < 35 so as to be consistent with the sum
rule (8) and (9). For our numerical calculations we have used the experimentally observed



1015

5t oo (my)
4__

>

w

O 3

Z

7]

%)

<

=

x 2+

@

< \M_O

3 ——o (o)

! 1 L g 1 | | i -
0,0 5 10 15 20 25 30 35 40

-v—-—b

Fig. 1. Charm as well as bottom quark mass values predicted from sum rule in (8) and (9) plotted against
the integral values of v in the range of 10 < v < 35

values of I'y = 4.8 KeV for v (3095), I'y, = 2.1 KeV for v’ (3686) and I'y = 1.2 KeV
for Y (9459), I+ = 0.51 KeV for Y’ (10023). For the strength parameters @ and b of the
potential V(r) = ar?+b we have used a = 0.0228 GeV3, b = —~0.8698 GeV for v family
and a = 0.0688 GeV3, b = —0.7858 GeV for Y family from our previous work [2]. For
radius parameter, ro, of v and Y families we have considered the theoretically computed
values estimated by Kaburagi et al. [6]. Our calculated values of charm and bottom quark
masses, m, and m,, are plotted against v in the Fig. 1. We note from Fig. 1 that the quark
mass value, m,, does not change appreciably and approaches m. ~ 1.6 GeV and m, =
= 5 GeV, so that m, scales with respect to v.

B. Moment sum rule

In the context of testing quantum chromodynamics with sum rules, Miller and Olsson
[10] have investigated the consistency of e*e~ annihilation data with QCD. Moment sum
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tule through semilocal duality in which only sharp states appear, may be defined [10]
as

9 1
M:xp =" v+ 1 FnsM3:+1 (10)
o S
sharp

states

where Sy is a dimensional factor chosen arbitrarily and all other symbols have their usual
meanings. As before, the moment sum rule in the context of our statistical model (SM)
becomes:

ro(28)
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Fig. 2. Charm as well as bottom quark mass values predicted from moment sum rule in (13) plotted against
the integral values of v in the range of 5 < v < 40
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o syt wpet/? 3mgry 4 2 roro(an)
ro(28S) ,
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ro(1S)

where we have approximated the mass formula in the neighbourhood of ro(av) ~ [ry(1S)
+r4(28))/2 regarding the mass formula to be approximately constant in the accepted range
of integration. To estimate the quark mass values of m, and m, we have

128x%¢? 4 3nary b P!
rMET ~ -——lﬁi 2my+ —— + oy —
nfe Imgry 4 2

x [ro(28) ™3 1° —ro(18) 2110 (13)

Now, with m, as a variable, we have performed our calculation for different sets of values
of v in the range 0 <{v<{ 40. We have plotted our computed values of m, and m,, in the Fig. 2
against the different sets of integral values of v and we find in this case also that m, scales
with respect to v i.e. m, is independent of v and attains the constant value m, =~ 1.7 GeV
and m, ~ 5 GeV.

4. Moment ratio, R,, from SVZ moments

Following the well-known Shifman-Vainshtein-Zakharov (SVZ) work [i1] we may
define the moments M, as

1 I
M= L j Im 7(s) 4. (14)
s

Sn+1

where Im 7 (s) is proportional to the total cross-section which in the narrow width approxi-
mation is

Imn ~g=121"Y 8(s—M*T(V > e"e )M, (15)
J

where M, is the mass of the corresponding vector meson and I'; is the leptonic decay
width of the jth level. Within the framework of the statistical model, the moments may

assume the form:
32
= S () 09
7
J

where, 1o; corresponds to the sizes of the mesons of jth s-state levels, and N = 2n+1
withn = 1,2, 3 ... . As in SVZ work, the moment ratio, R,, in terms of power moments
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can be expressed as

w’
R, = —. )
My,

Using Eqs (16) and (17) we have made numerical estimate of the moment ratio, R,, both
for v and Y families for different values of » in the range 1 < n <{ 40. Our computed
values are displayed in Table I. It may be observed from the table that for any value of n,

TABLE I

Predicted values of moment ratios R, from (18) for ¢ and Y families listed
for the corresponding different integral values of min therange 1 < n < 40

{
. ! Ro(c?) Ry(bb)
! (Gev-2) (Gev-2)
1 0.0976 0.0098
2 | 0.0992 0.0098
3 i 0.0989 0.0099
4 § 0.0998 0.00993
5 : 0.1000 0.00994
10 0.1006 0.00997
15 0.1007 0.00999
20 0.1007 0.00999
30 0.10076 : 0.0100
40 0.10076 0.0100

both for y and Y families, R, is almost constant and attains values R, ~ 0.10076 GeV~2
for vy family and R, ~ 0.01 GeV-2 for Y family. In other words, within the framework of
our model the moment ratio is completely dominated by a single resonance. In this con-
text it may be noted that SVZ have assumed the maximum value of R, to be (E; +2m,)?
{(where E| is the ground state energy) i.e. the maximum value of R, should have value
(3.095)-2 = 0.1044 GeV->. Our predicted values of R, are found to compare favourably
with the assumed value of R, of SVZ for charmonium family. Hence, the behaviour of R,
in the statistical model differs from the conventional quark model [12] and enables us to
explain the physical meaning of the expccted moment ratio, R,.

5. Estimate of o /(yp) and o.(yp)

The mechanism of charm hadron production has bcen extensively discussed earlier
by the authors [13] since the discovery of w(cc) particles. Within the conventional models
of strong interactions (e.g. VDM, Regge poles, etc.) the y-meson photo production has
been considered with the basic aim of calculating the charm particles photo production
i.e. 6.(yp). However, without delving further into the mechanism of charm hadron pro-
duction, we may recall an expression for the quantity o,(yp) (where q represents ¢ or b)
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which may be represented as a sum of the contributions of vector mesons, y(cc) and Y(bb)
[14] as

- 4r
o4(vp) = ao(vp) Z ok (18)
n=1

where the symbols have their usual meanings. The vector meson photon coupling constant is
determined from the relation

I(V, > ee”) = 5 M2’/(ga/4m), 19
where M, represents the vector meson mass. Now using (3) in (19) we obtain

47 384

2
n

= [M,ro(m)] el (20)
Therefore, within the framework of the statistical model, the cross-sections of the charm
as well as bottom particles photo production take the form:

o,(Yp) > 122.23 e26(vp) 21 [M,ro(m)]72. @1

The cross-section, ¢,(yp), indicates the dependence on the masses of the vector meson,
M, the radius parameter, ro, and o(yp). However, to compute the value of o,(yp) from (21),
each vector meson within the family is taken to have the same total cross-section, o(yYp),
for scattering on the proton. Using the cxperimentally observed masses of the y(cc) and
Y(bb) particles for S-state levels and theoretically obtained [6] values of r, for these parti-
cles and considering o(yp) = 1.6 mb, o(Yp) = 174 ub we have o (yp) = 3.25 pb and
ou(yp) = 68.33 nb. Previously, Quigg and Rosner [15] and Horn [16] have theoretically
computed the cross-sections o (yp) and o,(yp) in the different phenomenological ap-
proaches. Quigg and Rosner {15] have obtained the value of 6(yp) = 2.8 ub and o,(yp) =
75 nb; on the other hand Horn [16] estimated the values of o.(yp) = 2 ub and o,(Yp)
= 25 nb. In comparison, our speculated values of o.(yp) = 3.25 pb and o6 (yp) =
68.33 nb are in good agreement with those obtained by Quigg and Rosner.

6. Conclusions

The statistical model proposed for mesons has been used to investigate some of the
properties of yp(cc) and Y(bb) mesons. Our main contribution becomes a new estimate of
|¢(0) > which plays an important role in various meson decays. Further, the close analytical
expression for |¢(r)}? for a meson is not only simple and elegant but also is easily amenable
to application in mesonic decays. Using our model wave function (which is free of several
uncertain parameters like the constituent quark masses and the parameters of the average
harmonic oscillator potential in which a quark or antiquark moves), we have shown that
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the sum rule is consistent in the context of our statistical model. Not only a reasonable
estimates of the charm quark mass, m. ~ 1.6 GeV, and bottom quark mass, m, ~ 5 GeV,
are obtained but also we come across an interesting situation that m, turns out to be almost
independent of the integral values of v of the sum rules. This appears to be a striking
feature of our model unlike other theoretical works. Another interesting feature of our
model we came across in the computation of the moment ratio, R,, is that it is dominated
by a single resonance as it possesses the maximum value of the inverse square of the corre-

- - 1
sponding ground state masses of the y(cc) and Y(bb) families as, lim R, = —

n—Jarge 1‘42
Considering the simplicity and elegance of the closed analytical form for |¢(r)!* of
a meson, which has been derived without any reference to the context of the conventional
equation of motion or using any field theoretical formalism and the fact that it yields
reasonable estimates of the quark masses, o,(yp) and R,, which agrees with other theoreti-
cal findings, it may be argued that our model for hadron is not far from reality.
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